Skip to main content
Log in

The V-filtration for tame unit \(F\)-crystals

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(X\) be a smooth variety over an algebraically closed field of characteristic \(p > 0, Z\) a smooth divisor, and \(j: U=X {\setminus } Z \rightarrow X\) the natural inclusion. We introduce in an axiomatic way the notion of a \(V\)-filtration on unit \(F\)-crystals and prove such axioms determine a unique filtration. It is shown that if \(\mathcal M \) is a tame unit \(F\)-crystal on \(U\), then such a \(V\)-filtration along \(Z\) exists on \(j_*\mathcal M \). The degree zero component of the associated graded module is proven to be the (unipotent) nearby cycles functor of Grothendieck and Deligne under the Emerton–Kisin Riemann–Hilbert correspondence. A few applications to \(\mathbb A ^1\) and gluing are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, A., Kleiman, S.L.: On the purity of the branch locus. Compositio Math. 23, 461–465 (1971)

    MATH  MathSciNet  Google Scholar 

  2. Beilinson, A.A.: How to glue perverse sheaves. In: \(K\)-theory, Arithmetic and Geometry (Moscow, 1984–1986), vol. 1289 of Lecture Notes in Mathematics, pp. 42–51. Springer, Berlin (1987)

  3. Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. I. In: Lecture Notes in Mathematics, vol. 340. Springer, Berlin. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II) (1973)

  4. Derksen, H., Weyman, J.: Quiver representations. Notices Am. Math. Soc. 52(2), 200–206 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Eisenbud, D.: Commutative Algebra, vol. 150 of Graduate Texts in Mathematics. Springer, New York. With a view toward algebraic geometry (1995)

  6. Emerton, M., Kisin, M.: The Riemann–Hilbert correspondence for unit \(F\)-crystals. Astérisque, 93, vi+257 (2004)

  7. Gabber, O.: Notes on some \(t\)-structures. In: Geometric Aspects of Dwork Theory, vols. I, II, pp. 711–734. Walter de Gruyter GmbH & Co. KG, Berlin (2004)

  8. Grothendieck, A., Murre, J.P.: The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme. In: Lecture Notes in Mathematics, vol. 208. Springer, Berlin (1971)

  9. Grothendieck, A.: Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, vol. 1960/61 of Séminaire de Géométrie Algébrique. Institut des Hautes Études Scientifiques, Paris (1963)

  10. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32, 361 (1967)

    Google Scholar 

  11. Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, vol. 288. Springer, Berlin (1972). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I). Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S, Rim

  12. Haastert, B.: Über Differentialoperatoren und D-Moduln in positiver Charakteristik. Manuscripta Math. 58(4), 385–415 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Algebraic Geometry (Tokyo/Kyoto, 1982), vol. 1016 of Lecture Notes in Mathematics, pp. 134–142. Springer, Berlin (1983)

  14. Katz, N.M.: \(p\)-adic properties of modular schemes and modular forms. In: Modular Functions of One Variable, III (Proceedings of International Summer School, University of Antwerp, Antwerp, 1972), pp. 69–190. Lecture Notes in Mathematics, vol. 350. Springer, Berlin (1973)

  15. Lyubeznik, G.: \(F\)-modules: applications to local cohomology and \(D\)-modules in characteristic \(p>0\). J. Reine Angew. Math. 491, 65–130 (1997)

  16. Malgrange, B.: Polynômes de Bernstein–Sato et cohomologie évanescente. Analysis and topology on singular spaces, II, III (Luminy, 1981), vol. 101 of Astérisque, pp. 243–267. Society of Mathematics, France, Paris (1983)

  17. Milne, J.S.: Étale Cohomology, vol. 33 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1980)

    Google Scholar 

  18. Mustaţă, M.: Bernstein–Sato polynomials in positive characteristic. J. Algebra 321(1), 128–151 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. MacPherson, R., Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math. 84(2), 403–435 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Verdier, J.-L.: Prolongement des faisceaux pervers monodromiques. Astérisque 130, 218–236 (1985). Differential systems and singularities (Luminy, 1983)

    Google Scholar 

Download references

Acknowledgments

The author benefited from conversations with Sam Gunningham and was greatly assisted by notes from Kari Vilonen about the \(V\)-filtration in characteristic zero. The author would like to thank David Nadler for suggesting to pursue the \(V\)-filtration in positive characteristic in the crystalline setting and his patience and assistance while the author found the correct context for it. He is extremely grateful to Matthew Emerton for his assistance in leading the author through the unit \(F\)-module Riemann–Hilbert correspondence, the suggestion to consider tame ramification and supplying the author with very helpful insights into conducting research in positive characteristic geometry. Lastly, he would also like to thank the referee for providing many useful and thoughtful comments which undoubtedly improved the quality of this manuscript; particularly in the presentation of the proof of 4.2.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore J. Stadnik Jr..

Additional information

Author partially supported by NSF grant DMS-0636646.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadnik, T.J. The V-filtration for tame unit \(F\)-crystals. Sel. Math. New Ser. 20, 855–883 (2014). https://doi.org/10.1007/s00029-013-0139-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-013-0139-1

Mathematics Subject Classification (2010)

Navigation