Skip to main content
Log in

Cyclic sieving, rotation, and geometric representation theory

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study rotation of invariant vectors in tensor products of minuscule representations. We define a combinatorial notion of rotation of minuscule Littelmann paths. Using affine Grassmannians, we show that this rotation action is realized geometrically as rotation of components of the Satake fiber. As a consequence, we have a basis for invariant spaces, which is permuted by rotation (up to global sign). Finally, we diagonalize the rotation operator by showing that its eigenspaces are given by intersection homology of quiver varieties. As a consequence, we generalize Rhoades’ work on the cyclic sieving phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braden, T., Licata, A., Proudfoot, N., Webster, B.: Algebraic and geometric category O (in preparation)

  2. Fontaine, B., Kamnitzer, J., Kuperberg, G.: Buildings, spiders and geometric Satake. Comp. Math. (2013, accepted)

  3. Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566–593 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ginzburg, V.: Perverse sheaves on a loop group and Langlands duality. arXiv:alg-geom/9511007 (1995, preprint)

  5. Haines, T.J.: Equidimensionality of convolution morphisms and applications to saturation problems. Adv. Math. 207(1), 297–327 (2006). arXiv:math/0501504

    Article  MATH  MathSciNet  Google Scholar 

  6. Henriques, A., Kamnitzer, J.: Crystals and coboundary categories. Duke Math. J. 132, 191–216 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kato, S.: Spherical functions and a q-analogue of Kostant’s weight multiplicity formula. Invent. Math. 66, 461–468 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kodera, R., Naoi, K.: Loewy series of Weyl modules and the Poincaré polynomials of quiver varieties. Publ. RIMS 48(3), 477–500 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lusztig, G.: Singularities, character formulas, and a \(q\)-analog of weight multiplicities. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), vol. 101, pp. 208–229. Astérisque, Mathematical Society France (1983)

  10. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95–143 (2007). arXiv:math/0401222

    Article  MATH  Google Scholar 

  11. Mirković, I., Vybornov, M.: Quiver varieties and Beilinson-Drinfeld Grassmannians of type A. arXiv:0712.4160v2 (2007)

  12. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14, 145–238 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Petersen, T.K., Pylyavskyy, P., Rhoades, B.: Promotion and cyclic sieving via webs. J. Algebraic Comb. 30(1), 19–41 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rhoades, B.: Cyclic sieving, promotion, and representation theory. J. Comb. Theory Ser. A 117(1), 38–76 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Alexander Braverman, Dennis Gaitsgory, Greg Kuperberg, Anthony Licata, Hiraku Nakajima, and Oded Yacobi for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Kamnitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontaine, B., Kamnitzer, J. Cyclic sieving, rotation, and geometric representation theory. Sel. Math. New Ser. 20, 609–625 (2014). https://doi.org/10.1007/s00029-013-0144-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-013-0144-4

Keywords

Mathematics Subject Classification

Navigation