Skip to main content
Log in

Subgroup properties of pro-\(p\) extensions of centralizers

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove that a finitely generated pro-\(p\) group acting on a pro-\(p\) tree \(T\) with procyclic edge stabilizers is the fundamental pro-\(p\) group of a finite graph of pro-\(p\) groups with vertex groups being stabilizers of certain vertices of \(T\) and edge groups (when non-trivial) being stabilizers of certain edges of \(T\), in the following two situations: (1) the action is \(n\) -acylindrical, i.e., any non-identity element fixes not more than \(n\) edges; (2) the group \(G\) is generated by its vertex stabilizers. This theorem is applied to obtain several results about pro-\(p\) groups from the class \(\mathcal L \) defined and studied in Kochloukova and Zalesskii (Math Z 267:109–128, 2011) as pro-\(p\) analogues of limit groups. We prove that every pro-\(p\) group \(G\) from the class \(\mathcal L \) is the fundamental pro-\(p\) group of a finite graph of pro-\(p\) groups with infinite procyclic or trivial edge groups and finitely generated vertex groups; moreover, all non-abelian vertex groups are from the class \(\mathcal L \) of lower level than \(G\) with respect to the natural hierarchy. This allows us to give an affirmative answer to questions 9.1 and 9.3 in Kochloukova and Zalesskii (Math Z 267:109–128, 2011). Namely, we prove that a group \(G\) from the class \(\mathcal L \) has Euler–Poincaré characteristic zero if and only if it is abelian, and if every abelian pro-\(p\) subgroup of \(G\) is procyclic and \(G\) itself is not procyclic, then \(\mathrm{def}(G)\ge 2\). Moreover, we prove that \(G\) satisfies the Greenberg–Stallings property and any finitely generated non-abelian subgroup of \(G\) has finite index in its commensurator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bridson, M.R., Howie, J.: Normalizers in limit groups. Math. Ann. 337, 385–394 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bridson, M.R., Howie, J., Miller III, C.F., Short, H.: Subgroups of direct products of limit groups. Ann. Math. 170, 1447–1467 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chagas, S.C., Zalesskii, P.A.: The figure eight knot group is conjugacy separable. J. Algebra Appl. 8, 1–19 (2009)

    Article  MathSciNet  Google Scholar 

  4. Greenberg, L.: Discrete groups of motions. Can. J. Math. 12, 415–426 (1960)

    Article  MATH  Google Scholar 

  5. Herfort, W., Zalesskii, P.A.: A virtually free pro-\(p\) need not be the fundamental group of a profinite graph of finite groups. Arch. Math. (Basel) 94(1), 35–41 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Herfort, W.N., Zalesskii, P.A.: Addendum: virtually free pro-\(p\) groups whose torsion elements have finite centralizer. arXiv:0712.4244v1

  7. Herfort W., Zalesskii P.: Virtually free pro-\(p\) groups. IHES. http://link.springer.com/article/10.1007/s10240-013-0051-4 (2013)

  8. Herfort, W.N., Zalesskii, P.A., Zapata, T.A.: Splitting theorems for pro-\(p\) groups acting on pro-\(p\) trees and 2-generated subgroups of free pro-\(p\) products with cyclic amalgamations. arXiv:1103.2955

  9. Kapovich, I.: Subgroup properties of fully residually free groups. Trans. Am. Math. Soc. 354, 335–362 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kharlampovich, O., Myasnikov, A.: Elementary theory of free nonabelian groups. J. Algebra 302, 451–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kharlampovich, O., Myasnikov, A.: Implicit function theorem over free groups. J. Algebra 290, 1–203 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kharlampovich, O., Myasnikov, A.: Effective JSJ decompositions. Contemporary mathematics. AMS. In: Borovik, A. (ed.) Algorithms, Languages, Logic. CONM/378, pp. 87–212 (2005)

  13. Kochloukova, D.: On subdirect products of type \(FP_m\). J. Group Theory 13, 1–19 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kochloukova, D., Zalesskii, P.: On pro-\(p\) analogues of limit groups via extensions of centralizers. Math. Z. 267, 109–128 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lackenby, M.: Large groups, property \((\tau )\) and the homology growth of subgroups. Math. Proc. Camb. Philos. Soc. 146(3), 625–648 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lubotzky, A.: Group presentation, \(p\)-adic analytic groups and lattices in \(SL_2(\mathbb{C})\). Ann. Math. 118, 115–130 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  18. Nikolaev, A., Serbin, D.: Finite index subgroups of fully residually free groups. Internat. J. Algebra Comput. 21(4), 651–673 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ribes, L., Zalesskii, P.: Profinite Groups, 2nd edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  20. Ribes, L., Zalesskii, P.: Pro-\(p\) trees and applications. In: Du Sautoy, M. P. F., Segal, D., Shalev, A. (eds.) New Horizons in Pro-\(p\) Groups. Progress in Mathematics, vol. 184, pp. 75–119, Birkhauser, Boston (2000)

  21. Ribes, L.: On amalgamated products of profinite groups. Math. Z. 123, 357–364 (1971)

    Article  MathSciNet  Google Scholar 

  22. Rosset, Sh: Finite index and finite codimension. J. Pure Appl. Algebra 104, 97–107 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sela, Z.: Diophantine geometry over groups. I. Makanin-Razborov diagrams. Publ. Inst. Hautes E’tudes Sci. 93, 31–105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sela, Z.: Diophantine geometry over groups. II. Completions, closures and formal solutions. Israel J. Math. 134, 173–254 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sela, Z.: Diophantine geometry over groups. III. Rigid and solid solutions. Israel J. Math. 134, 1–73 (2005)

    Article  Google Scholar 

  26. Sela, Z.: Diophantine geometry over groups. IV. An iterative procedure for validation of a sentence. Israel J. Math. 143, 1–130 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sela, Z.: Diophantine geometry over groups. \(V_2\): quantifier elimination. II. Geom. Funct. Anal. 16, 537–706 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Sela, Z.: Diophantine geometry over groups. VI. The elementary theory of a free group. Geom. Funct. Anal. 16, 707–730 (2006)

    MATH  MathSciNet  Google Scholar 

  29. Serre, J.P.: Sur la dimension cohomologique des groupes profinis. Topology 3, 413–420 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  30. Serre, J.P.: Galois Cohomology. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. Serre, J.P.: Trees. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Stallings, J.R.: Topology of finite graphs. Invent. Math. 71, 551–565 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zalesskii, P.A.: Open subgroups of free profinite products. In: Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989), pp. 473–491, Contemporary Mathematics, vol. 131, part 1. American Mathematical Society, Providence, RI (1992)

  34. Zalesskii, P.A.: Geometric characterization of free constructions of profinite groups. (Russian) Sibirsk. Mat. Zh. 30(2), 73–84, 226 (1989); translation in. Siberian Math. J. 30(2), 227–235 (1989)

  35. Zalesskii, P., Melnikov, O.: Subgroups of profinite groups acting on trees. Math. USSR Sbornik 63, 405–424 (1989)

    Article  MathSciNet  Google Scholar 

  36. Zalesskii, P.A., Mel’nikov, O.V.: Fundamental groups of graphs of profinite groups. Leningr. Math. J. 1, 921–940 (1990)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was carried out while the first author was holding a CNPq Postdoctoral Fellowship at the University of Brasília. He would like to thank CNPq for the financial support and the Department of Mathematics at the University of Brasília for its warm hospitality and the excellent research environment. The authors thank the anonymous referee for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilir Snopce.

Additional information

This research was partially supported by CNPq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snopce, I., Zalesskii, P.A. Subgroup properties of pro-\(p\) extensions of centralizers. Sel. Math. New Ser. 20, 465–489 (2014). https://doi.org/10.1007/s00029-013-0128-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-013-0128-4

Mathematics Subject Classification (1999)

Navigation