Skip to main content
Log in

On Hilbert modular threefolds of discriminant 49

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(K\) be the totally real cubic field of discriminant \(49\), let \({\fancyscript{O}}\) be its ring of integers, and let \(p\subset {\fancyscript{O}}\) be the prime over \(7\). Let \(\Gamma (p)\subset \Gamma = SL_{2} ({\fancyscript{O}})\) be the principal congruence subgroup of level \(p\). This paper investigates the geometry of the Hilbert modular threefold attached to \(\Gamma (p) \) and some related varieties. In particular, we discover an octic in \(\mathbb{P }^3\) with \(84\) isolated singular points of type \(A_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borisov, L.A., Gunnells, P.E.: Toric modular forms and nonvanishing of \(L\)-functions. J. Reine Angew. Math. 539, 149–165 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Borisov, L.A., Gunnells, P.E.: Toric varieties and modular forms. Invent. Math. 144(2), 297–325 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borisov, L.A., Gunnells, P.E., Popescu, S.: Elliptic functions and equations of modular curves. Math. Ann. 321(3), 553–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997), Computational algebra and number theory (London, 1993)

    Google Scholar 

  5. Edge, W.L.: The Klein group in three dimensions. Acta Math. 79, 153–223 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ehlers, F.: Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten. Math. Ann. 218(2), 127–156 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Endraß, S.: A projective surface of degree eight with \(168\) nodes. J. Algebraic Geom. 6(2), 325–334 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Freitag, E.: Hilbert Modular Forms. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  9. Frobenius, G.: Über Gruppencharaktere, Sitzungsberichte der Königliche Preußichen Akademie der Wissenschaften zu Berlin. 985–1021 (1896) (Gesammelte Abhandlungen v. III, pp. 1–37)

  10. Grundman, H.G.: Explicit resolutions of cubic cusp singularities. Math. Comp. 69(230), 815–825 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gunnells, P.E., Sczech, R.: Evaluation of Dedekind sums, Eisenstein cocycles, and special values of \(L\)-functions. Duke Math. J. 118(2), 229–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hecke, E.: Analytische Funktionen und algebraische Zahlen, zweiter Teil. Abh. Math. Sem. Hamburg Univ. 3, 213–236 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirzebruch, F.: Hilbert modular surfaces. Enseignement Math. (2) 19, 183–281 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Hirzebruch, F.: The Hilbert modular group for the field \({\mathbb{Q}}(\sqrt{5})\), and the cubic diagonal surface of Clebsch and Klein. Uspehi Mat. Nauk 31 (5(191)), 153–166 (1976), Translated from the German by Ju. I. Manin

  15. Hirzebruch, F.: The ring of Hilbert modular forms for real quadratic fields in small discriminant. Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, pp. 287–323. Lecture Notes in Mathematics, vol. 627

  16. Hirzebruch, F., Van de Ven, A.: Hilbert modular surfaces and the classification of algebraic surfaces. Invent. Math. 23, 1–29 (1974)

    Article  MathSciNet  Google Scholar 

  17. Hunt, B.: Nice modular varieties. Exp. Math. 9(4), 613–622 (2000)

    Article  MATH  Google Scholar 

  18. Hunt, B., Weintraub, S.H.: Janus-like algebraic varieties. J. Differ. Geom. 39(3), 509–557 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Kawamata, Y.: A generalization of Kodaira-Ramanujam’s vanishing theorem. Math. Ann. 261(1), 43–46 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original

  21. Labs, O.: Dessins d’enfants and hypersurfaces with many \(A_j\)-singularities. J. Lond. Math. Soc. (2) 74(3), 607–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann. 268(2), 159–171 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schur, I.: Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen. J. Reine Angew. Math. 132, 85–137 (1907)

    MATH  Google Scholar 

  24. Shimizu, H.: On discontinuous groups acting on a product of upper half planes. Ann. Math. 77, 33–71 (1963)

    Article  MATH  Google Scholar 

  25. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kano Memorial Lectures, 1

  26. Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23(2), 393–417 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Siegel, C.L.: The volume of the fundamental domain for some infinite groups. Trans. AMS 39, 209–218 (1936)

    Article  Google Scholar 

  28. Siegel, C.L.: Zur Bestimmung des Fundamentalbereiche der unimodularen Gruppe. Math. Ann. 137, 427–432 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  29. The PARI Group: Bordeaux, PARI/GP. 2005, available from http://pari.math.u-bordeaux.fr

  30. van der Geer, G.: Hilbert modular forms for the field \({\mathbb{Q}}(\sqrt{6})\). Math. Ann. 233(2), 163–179 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. van der Geer, G.: Minimal models for Hilbert modular surfaces of principal congruence subgroups. Topology 18(1), 29–39 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. van der Geer, G., van de Ven, A.: On the Minimality of Certain Hilbert Modular Surfaces. Complex Analysis and Algebraic Geometry. Iwanami Shoten, Tokyo (1977)

    Google Scholar 

  33. van der Geer, G., Zagier, D.: The Hilbert modular group for the field \(\mathbb{Q}(\sqrt{13})\). Inv. Math. 42, 93–133 (1977)

    Article  MATH  Google Scholar 

  34. Yang, T.: CM number fields and modular forms. Pure Appl. Math. Q. 1(2), 305–340 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Igor Dolgachev for referring us to Edge’s paper [5] (Remark 9.2), and we thank Don Zagier for his encouragement of this work. We thank an anonymous referee for a very careful reading and for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Gunnells.

Additional information

The authors were partially supported by the NSF, through grants DMS–1003445 (LB) and DMS–0801214 (PG)

Dedicated to Don Zagier, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, L.A., Gunnells, P.E. On Hilbert modular threefolds of discriminant 49. Sel. Math. New Ser. 19, 923–947 (2013). https://doi.org/10.1007/s00029-012-0108-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-012-0108-0

Mathematics Subject Classification (1991)

Navigation