Skip to main content
Log in

Spherical and Whittaker functions via DAHA II

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

This paper is focused on the spinor (nonsymmetric) Whittaker functions in the rank one, related q-Toda–Dunkl operators, and other aspects of the spinor construction, including one-dimensional Bessel functions and the isomorphism between the affine Knizhnik–Zamolodchikov equation and the Quantum many-body problem (the Heckman–Opdam system).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkhipov, S., Gaitsgory, D.: Another realization of the category of modules over the small quantum group. Adv. Math. 173, 114–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezrukavnikov, R., Finkelberg, M.: Equivariant Satake category and Kostant-Whittaker reduction. preprint arXiv:0707.3799v2 (2007)

  3. Casselman, W.: Jacquet modules for real reductive groups. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 557–563. Acad. Sci. Fennica, Helsinki (1980)

  4. Cherednik, I.: Double affine Hecke algebras. London Mathematical Society Lecture Note Series, 319. Cambridge University Press, Cambridge (2006)

  5. Cherednik, I.: Intertwining operators of double affine Hecke algebras. Sel. Math. New Ser. 3, 459–495 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherednik, I.: Difference Macdonald-Mehta conjecture. IMRN 10, 449–467 (1997)

    Article  MathSciNet  Google Scholar 

  7. Cherednik, I.: Whittaker limits of difference spherical functions. IMRN. 20, 3793–3842; (2008), arXiv:0807.2155 (2009)

    Google Scholar 

  8. Cherednik, I.: Elliptic quantum many-body problem and double affine Knizhnik–Zamolodchikov equation. Commun. Math. Phys. 169(2), 441–461 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cherednik, I.: Difference-elliptic operators and root systems. IMRN 1, 43–59 (1995)

    Article  MathSciNet  Google Scholar 

  10. Cherednik, I.: Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations. Preprint RIMS 776 (1991). Adv. Math. 106, 65–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cherednik, I.: Induced representations of double affine Hecke algebras and applications. Math. Res. Lett. 1, 319–337 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Cherednik, I.: Nonsemisimple Macdonald polynomials. Sel. Math. 14, 3–4 (2009), 427–569; arXiv:0709.1742 [math.QA]

  13. Cherednik, I., Ma, X.: Spherical and Whittaker functions via DAHA I. Sel. Math

  14. Cherednik, I., Ma, X.: A new take on spherical, Whittaker and Bessel functions (v5). preprint arXiv:0904.4324v5 [math.QA] (2009)

  15. Drinfeld, V.: Degenerate affine Hecke algebras and Yangians. Funct. Anal. Appl. 21(1), 69–70 (1986)

    MathSciNet  Google Scholar 

  16. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. AMS. 311, 167–183 (1989)

    Google Scholar 

  17. Dunkl, C.F.: Hankel transforms associated to finite reflection groups. Contemp. Math. 138, 123–138 (1992)

    Article  MathSciNet  Google Scholar 

  18. Emsiz, E., Opdam E.M., Stokman J.V.: Trigonometric Cherednik algebra at critical level and quantum many-body problems. preprint arXiv:0804.0046 (2008)

  19. Etingof P., Whittaker functions on quantum groups and \(q\)-deformed Toda operators, AMS Transl. Ser. 2(194), 9–25, AMS, Providence, Rhode Island (1999)

  20. Finkelberg, M.: An equivalence of fusion categories. Geom. Funct. Anal. 6(2), 249–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gaitsgory, D.: Twisted Whittaker model and factorizable sheaves. Sel. Math. New Ser. 13(4), 617–659 (2008)

    Article  MathSciNet  Google Scholar 

  23. Garland, H., Grojnowski, I.: Affine Hecke algebras associated to Kac-Moody groups. preprint q-alg/9508019 (1995)

  24. Gerasimov, A., Lebedev, D., Oblezin, S.: On \(q\)-deformed \(\mathfrak{gl}_{l+1}\)-Whittaker functions, III. preprint arXiv: 0805.3754 [math.RT]

  25. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \({\cal O}\) for rational Cherednik algebras. Invent. Math. 154(3), 617–651 (2003)

    Google Scholar 

  26. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R., Kapranov, M., Vasserot, E.: Residue construction of Hecke algebras. Adv. Math. 128, 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Comp. Math. 64, 329–352 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Heckman, G.J., Opdam, E.M.: Harmonic analysis for affine Hecke algebras. In: Yau, S.-T. (ed.) Current Developments in Mathematics. Intern Press, Boston (1996)

  29. Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116(2), 299–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. III. J. AMS 7, 335–381 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Kostant, B., Kumar, S.: T-Equivariant K-theory of generalized flag varieties. J. Diff. Geom. 32, 549–603 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Lusztig, G.: Affine Hecke algebras and their graded version. J. AMS 2(3), 599–635 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Lusztig, G.: Quantum groups at roots of 1. Geom. Dedic. 35, 89–113 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lyubashenko, V.: Modular transformations for tensor categories. J. Pure Appl. Algebr. 98(3), 279–327 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Matsuo, A.: Integrable connections related to zonal spherical functions. Invent. Math. 110, 96–121 (1992)

    Article  MathSciNet  Google Scholar 

  36. Mutafyan, G., Tipunin, I. Yu.: Double affine Hecke algebra in logarithmic conformal field theory. preprint arXiv:0707.1625, (2007)

  37. Opdam, E.: Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compos. Math. 85, 333–373 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Opdam, E.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ruijsenaars, S.: Systems of Calogero-Moser type. In: Semenoff, G., Vinet, L. (eds.) Proceedings of the 1994 Banff Summer School “Particles and Fields” CRM Series in Mathematical Physics, pp. 251–352. Springer, New York (1999)

    Google Scholar 

  40. Sanderson, Y.: On the connection between Macdonald polynomials and Demazure characters. J Algebr. Comb. 11, 269–275 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shimeno, N.: A limit transition from the Heckman–Opdam hypergeometric functions to the Whittaker functions associated with root systems. preprint arxiv:math/0812.3773v1 (2008).

  42. Stokman, J.: Quantum affine Knizhnik-Zamolodchikov equations and quantum spherical functions I. IMRN 5, 1023–1090 (2011)

    MathSciNet  Google Scholar 

  43. Uglov, D.: Finite-difference representations of the degenerate affine Hecke algebra. preprint arxiv:hep-th/9409155v1 (1994)

  44. Varagnolo M., Vasserot E.: From double affine Hecke algebras to quantized affine Schur algebras. preprint arxiv:math/0307047 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Cherednik.

Additional information

Partially supported by NSF grant DMS–0800642.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherednik, I., Ma, X. Spherical and Whittaker functions via DAHA II. Sel. Math. New Ser. 19, 819–864 (2013). https://doi.org/10.1007/s00029-012-0116-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-012-0116-0

Keywords

Mathematics Subject Classification (2010)

Navigation