Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control Multivariable por Desacoplo
Información de la revista
Vol. 10. Núm. 1.
Páginas 3-17 (Enero - Marzo 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
7792
Vol. 10. Núm. 1.
Páginas 3-17 (Enero - Marzo 2013)
Tutorial
Open Access
Control Multivariable por Desacoplo
Multivariable Control by Decoupling
Visitas
7792
Fernando Morillaa,
Autor para correspondencia
fmorilla@dia.uned.es

Autor para correspondencia.
, Juan Garridob, Francisco Vázquezb
a Departamento de Informática y Automática, ETSI Informática, UNED, C/Juan del Rosal 16, 28040 Madrid, España
b Departamento de Informática y Análisis Numérico, Universidad de Córdoba, Campus Rabanales, Edificio Leonardo Da Vinci, 14071 Córdoba, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

La interacción entre variables es una característica inherente de los procesos multivariables, que dificulta su operación y el diseño de sus sistemas de control. Bajo el paradigma de Control por desacoplo se agrupan un conjunto de metodologías, que tradicionalmente han estado orientadas a eliminar o reducir la interacción, y que recientemente algunos investigadores han reorientado con objetivos de solucionar un problema tan complejo como es el control multivariable. Parte del material descrito en este artículo es bien conocido en el campo del control de procesos, pero la mayor parte de él son resultados de varios años de investigación de los autores en los que han primado la generalización del problema, la búsqueda de soluciones de fácil implementación y la combinación de bloques elementales de control PID. Esta conjunción de intereses provoca que no siempre se pueda conseguir un desacoplo perfecto, pero que sí se pueda conseguir una considerable reducción de la interacción en el nivel básico de la pirámide de control, en beneficio de otros sistemas de control que ocupan niveles jerárquicos superiores. El artículo resume todos los aspectos básicos del Control por desacoplo y su aplicación a dos procesos representativos: una planta experimental de cuatro tanques acoplados y un modelo 4×4 de un sistema experimental de calefacción, ventilación y aire acondicionado.

Palabras clave:
Control de procesos
Control multivariable
Control por desacoplo
Control PID
Abstract

The interaction between variables is inherent in multivariable processes and this fact may complicate their operation and control system design. Under the paradigm of decoupling control, several methodologies that traditionally have been addressed to cancel or reduce the interactions are gathered. Recently, this approach has been reoriented by several researchers with the aim to solve such a complex problem as the multivariable control. Parts of the material in this work are well known in the process control field; however, most of them are results obtained by the authors after several years of research giving priority to the problem generalization and practical issues like easiness of implementation and utilization of PID controllers as elementary blocks. This combination of interests makes difficult to obtain perfect decoupling in all cases; although it is possible to achieve an important interaction reduction at the basic level of the control pyramid in such a way that other control systems at higher hierarchical levels benefit of this fact. This article summarizes the main aspects of decoupling control and presents its application to two illustrative examples: an experimental quadruple tank process and a 4×4 model of a heat, ventilation and air conditioning system.

Keywords:
Process control
multivariable control
decoupling control
PID control
Referencias
[Albertos and Sala, 2004]
P. Albertos, A. Sala.
Multivariable Control Systems: An Engineering Approach.
Springer, (2004),
[Åström and Hägglund, 1984]
K.J. Åström, T. Hägglund.
Automatic tuning of simple regulators with specifications on phase and amplitude margins.
Automatica, 20 (1984), pp. 645-651
[Bristol, 1966]
E.H. Bristol.
On a New Measure of Interaction for Multivariable Process Control.
IEEE Transactions on Automatic Control, 11 (1966), pp. 133-134
[Cai et al., 2008]
W.J. Cai, W. Ni, M.J. He, C.Y. Ni.
Normalized decoupling - a new approach for MIMO process control system design.
Industrial and Engineering Chemistry Research, 47 (2008), pp. 7347-7356
[Gagnon et al., 1998]
E. Gagnon, A. Pomerleau, A. Desbiens.
Simplified, ideal or inverted decoupling?.
ISA Transactions, 37 (1998), pp. 265-276
[Garrido, 2012]
Garrido, J. 2012. Diseño de sistemas de control multivariable por desacoplo con controladores PID. Doctoral dissertation, UNED.
[Garrido et al., 2010]
Garrido, J., Vázquez, F., Morilla, F. 2010. Centralized Inverted Decoupling for TITO Processes. Proceedings of the 15th IEEE International Conference on Emerging Technologies and Factory Automation. Bilbao, Spain.
[Garrido et al., 2011a]
J. Garrido, F. Vázquez, F. Morilla.
An extended approach of inverted decoupling.
Journal of Process Control, 21 (2011), pp. 55-68
[Garrido et al., 2011b]
J. Garrido, F. Vázquez, F. Morilla.
Generalized Inverted Decoupling for TITO Processes.
Proceedings of the 18th IFAC World Congress, (2011),
[Garrido et al., 2012a]
J. Garrido, F. Vázquez, F. Morilla.
Centralized multivariable control by simplified decoupling.
Journal of Process Control, 22 (2012), pp. 1044-1066
[Garrido et al., 2012b]
J. Garrido, F. Vázquez, F. Morilla.
Multivariable PID Control by Inverted Decoupling: Application to the Benchmark PID 2012.
IFAC Conference on Advances in PID Control PID’12, (2012),
[Garrido et al., 2011c]
J. Garrido, F. Vázquez, F. Morilla, T. Hägglund.
Practical advantages of inverted decoupling. Proceedings of the Institution of Mechanical Engineers.
Part I: Journal of Systems and Control Engineering, 225 (2011), pp. 977-992
[González et al., 2010]
M.E. González, F. Vázquez, F. Morilla.
Control multivariable centralizado con desacoplo para aerogeneradores de velocidad variable.
Revista Iberoamericana de Automática e Informática industrial, 7 (2010), pp. 53-64
[Goodwin et al., 2001]
G.C. Goodwin, S.F. Graebe, M.E. Salgado.
Control System Design.
Prentice-Hall, (2001),
[Hägglund and Åström, 2004]
T. Hägglund, K.J. Åström.
Revisiting the Ziegler-Nichols step response method for PID control.
Journal of Process Control, 14 (2004), pp. 635-650
[Ho et al., 1995]
W.K. Ho, C.C. Hang, L.S. Cao.
Tuning of PID controllers based on gain and phase margin specifications.
Automatica, 31 (1995), pp. 497-502
[Johansson, 2000]
K.H. Johansson.
The quadruple-tank process: A multivariable laboratory process with an adjustable zero.
IEEE Transactions on Control Systems Technology, 8 (2000), pp. 456-465
[Lee et al., 2004]
M. Lee, K. Lee, C. Kim, J. Lee.
Analytical design of multiloop PID controllers for desired closed-loop responses.
AIChE Journal, 50 (2004), pp. 1631-1635
[Lieslehto, 1996]
Lieslehto, J. 1996. MIMO controller design using SISO controller design methods. Proceeding of the 13th IFAC World Congress. San Francisco, USA.
[Liu et al., 2007]
T. Liu, W. Zhang, F. Gao.
Analytical decoupling control strategy using a unity feedback control structure for MIMO processes with time delays.
Journal of Process Control, 17 (2007), pp. 173-186
[Maciejowski, 1989]
J.M. Maciejowski.
Multivariable Feedback Design.
Wokingham, Addison-Wesley, (1989),
[Marlin, 1995]
T.E. Marlin.
Process Control: Designing Processes and Control Systems for Dynamic Performance.
McGraw-Hill, (1995),
[Morilla and Dormido, 2000]
Morilla, F., Dormido, S. 2000. Methodologies for the tuning of PID controllers in the frequency domain. PID’00 IFAC Workshop on Digital Control: Past, present and future of PID Control. Terrassa, Spain.
[Morilla et al., 2008]
F. Morilla, F. Vázquez, J. Garrido.
Centralized PID control by decoupling for TITO processes. Proceedings of the 13th IEEE International Conference on Emerging Technologies and Factory Automation.
Hamburg, (2008),
[Nordfeldt and Hägglund, 2006]
P. Nordfeldt, T. Hägglund.
Decoupler and PID controller design of TITO systems.
Journal of Process Control, 16 (2006), pp. 923-936
[Ogunnaike and Harmon Ray, 1994]
B.A. Ogunnaike, W. Harmon Ray.
Process Dynamics.
Modelling and Control, Oxford University Press, (1994),
[Rivera et al., 1986]
D.E. Rivera, M. Morari, S. Skogestad.
Internal model control.
4. PID controller design. Industrial & Engineering Chemistry Process Design and Development, 25 (1986), pp. 252-265
[Salgado and Yuz, 2009]
M. Salgado, J. Yuz.
Una medida de interacción multivariable en el dominio del tiempo y la frecuencia.
Revista Iberoamericana de Automática e Informática industrial, 6 (2009), pp. 17-25
[Shen et al., 2010]
Y. Shen, W.J. Cai, S. Li.
Normalized decoupling control for high- dimensional MIMO processes for application in room temperature control HVAC systems.
Control Engineering Practice, 18 (2010), pp. 652-664
[Shinskey, 1979]
F.G. Shinskey.
Process Control Systems: Application.
Design and Adjustment, McGraw-Hill, (1979),
[Skogestad and Postlethwaite, 2005]
S. Skogestad, I. Postlethwaite.
Multivariable Feedback Control: Analysis and Design.
John Wiley & sons, (2005),
[Vázquez and Morilla, 2002]
F. Vázquez, F. Morilla.
Tuning decentralized PID controllers for MIMO systems with decouplers. Proceedings of the 15th IFAC World Congress.
Barcelona, (2002),
[Vázquez et al., 1999]
F. Vázquez, F. Morilla, S. Dormido.
An iterative method for tuning decentralized PID controllers. Proceedings of the 14th IFAC World Congress.
China, (1999),
[Wade, 1997]
H.L. Wade.
Inverted decoupling: A neglected technique.
ISA Transactions, 36 (1997), pp. 3-10
[Waller, 1974]
K.V.T Waller.
Decoupling in distillation.
AIChE Journal, 20 (1974), pp. 592-594
[Waller et al., 2003]
M. Waller, J.B. Waller, K.V. Waller.
Decoupling Revisited.
Industrial & Engineering Chemistry Research, 42 (2003), pp. 4575-4577
[Wang, 2003]
Q.G. Wang.
Decoupling Control.
Springer-Verlag, (2003),
[Wang et al., 2000]
Q.G. Wang, B. Huang, X. Guo.
Auto-tuning of TITO decoupling controllers from step tests.
ISA Transactions, 39 (2000), pp. 407-418
[Wang et al., 2002]
Q.G. Wang, Y. Zhang, M.S. Chiu.
Decoupling internal model control for multivariable systems with multiple time delays.
Chemical Engineering Science, 57 (2002), pp. 115-124
[Wang et al., 2003]
Q.G. Wang, Y. Zhang, M.S. Chiu.
Non-interacting control design for multivariable industrial processes.
Journal of Process Control, 13 (2003), pp. 253-265
[Xiong et al., 2007]
Q. Xiong, W.J. Cai, M.J. He.
Equivalent transfer function method for PI/PID controller design of MIMO processes.
Journal of Process Control, 17 (2007), pp. 665-673
[Zhang et al., 2006]
W. Zhang, L. Chen, L. Ou.
Algebraic Solution to H2 Control Problems II. The Multivariable Decoupling Case.
Industrial & Engineering Chemistry Research, 45 (2006), pp. 7163-7176
Copyright © 2012. CEA
Opciones de artículo
Herramientas