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A Blow-up Mechanism for a Chemotaxis Model

MIGUEL A. HERRERO - JUAN J. L. VELAZQUEZ

Abstract

We consider the following nonlinear system of parabolic equations:

Here r, X and a are positive constants, and BR is a ball of radius R &#x3E; 0 in ]R2. At the boundary
of BR, we impose homogeneous Neumann conditions, namely:

Problem (1), (2) is a classical model to describe chemotaxis, i.e, the motion of organisms induced
by high concentrations of a chemical that they secrete. In this paper we prove that there exist radial
solutions of (1), (2) that develop a Dirac-delta type singularity in finite time, a feature known in
the literature as chemotactic collapse. The asymptotics of such solutions near the formation of the
singularity is described in detail, and particular attention is paid to the structure of the inner layer
around the unfolding singularity.

1. - Introduction

This article deals with a system of partial differential equations modelling
chemotaxis. This last term is commonly used to describe the motion of organ-
isms which have a tendency to aggregate by moving towards higher concentra-
tions of chemical substances that they themselves produce. A classical model
in chemotaxis is the so-called Keller-Segel system, which reads as follows:

Partially supported by DGICYT Grant PB93-0438
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together with initial conditions:

Here Q denotes a bounded and smooth open set in 2); a, x and r are
some positive constants, and u(x, t) (respectively v(x, t)) is a suitable rescaled
variable corresponding to the concentration of the biological species under con-
sideration (respectively that of the chemical released). See for instance [KS],
[JL], [N], [HVl] and [FL] for details about this and other chemotaxis models.

Concerning the mathematical analysis of problem ( 1.1 )-( 1.4), a first set of
results was obtained by Jager and Luckhaus in [JL], where the particular case
corresponding to setting r = 0 in (1.2) was discussed in two space dimensions.
Under such assumptions, it was proved in [JL] that ( 1.1 )-( 1.4) has global (in
time) radial solutions when the initial values have small enough mass. It was
also shown there that there exist radial solutions that blow-up at the origin in a
finite time T. By this we mean that liMtfT u (0, T) = oo for some T  oo. No-

tice, however, that Jo u (x , t)dx = f ~ uo(x)dx for all t &#x3E; 0 for which solutions
are defined, provided that this last quantity is finite (cf. ( 1.1 )-( 1.3)).

The analysis started in [JL] was then pursued by Nagai in reference [N].
Assuming only mild requirements on the initial values, it was proved in [N]
that blow-up never occurs in the case of one space dimension (N = 1). On
the other hand, there is finite-time blow-up when N &#x3E; 3 and u(r, t) is a radial
solution satisfying some conditions at t = 0 (cf. Theorem 3.1 in [N]). The case
N = 2 emerges then as a bordeline one, since the results in [N] show that there
is no blow-up if N = 2, Q is a ball, uo(r) is radially symmetric and:

where 1 0 1 denotes the volume of the set S2. However, blow-up for radially
symmetric solutions is shown to occur if N = 2, Q is a ball and uo(r) is a
suitable radially symmetric function such that:

After the discussion performed in [JL] and [N], a question that naturally arised
was that of describing the manner of blow-up when this phenomenon actually
occurs. Recently, it was proved in [HVI] that when N = 2 and S2 is a ball,
there exist radial solutions of ( 1.1 )-( 1.4) with r = 0 such that u (r, t ) blows up
in a finite time T, and it does so by concentrating into a multiple of the Dirac
mass centered at the origin (cf. Theorem 1 in [HVl]). This type of blow-up is
usually termed as chemotatic collapse, and is a mathematical representation of
aggregation into a single spora.
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When r &#x3E; 0 in (1.2), much less seems to be known about the evolution
in time of solutions of ( 1.1 )-( 1.4). At the technical level, serious complications
with respect to the case r = 0 arise. For instance, while in this last situation
an auxiliary mass function can be introduced that reduces the whole system to
a single nonlinear parabolic equation, no such procedure seems to be available
for the case of (1.1) and (1.2). It is possible, however, to gain further insight
into system ( 1.1 )-( 1.4) by means of matched asymptotic expansions methods.
By using such techniques, we recently showed in [HV2] that radial solutions
of ( 1.1 )-( 1.4) exist in a ball S2 c II~2, that exhibit chemotactic collapse in a
finite time T. The goal of this paper is to provide a rigorous proof of the
results obtained in [HV2]. More precisely, we shall prove the following:

THEOREM 1.1. Let R &#x3E; 0, and let = ~ x E II~2 : ~ JC  R 1. Then there exist
radial solutions of (1. 1) - ( 1.3) defined in an interval (0, T) with T &#x3E; 0, and such
that:

in the sense of measures, where 8 (0) is Dirac measure centered at r = 0, and:

as r -~ 0, where C is a positive constant depending on X and r. At t = T, the
profile near r = 0 is given by:

Moreover, if we set S (t) = (T - t) (supq u (r, t)) =- (T - t)u (0, t), one has
that limt T T Set) = 00. More precisely, there holds:

as t t T , fo r some Cl 1 &#x3E; 0.

It is possible to describe in further detail how chemotactic collapse develops.
To this end, we consider the stationary system:

One readily sees that for any constant K, the functions:

are radial solutions of (1.10) in We then have:
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THEOREM 1.2. Under the assumptions of Theorem 1.1, there holds:

as t f T, uniformly on sets I x Is R (t), where XR(t) = 1 when I x &#x3E; R (t) and
XR(t) = 0 otherwise, and:

as t T T, where K is a positive constant depending on X and r.

We conclude this Introduction by describing the plan of the article. Sec-

tion 2 below will be devoted to introducing some notation, as well as to recalling
briefly the way in which our results can be arrived at in a heuristic way. Sec-
tion 3 contains a topological argument which is a crucial ingredient in our
approach. We shall state a crucial technical result there (Proposition 3.1), and
show how to derive Theorems 1.1 and 1.2 from it. Its implementation requires
of a number of estimates which are provided in the subsequent sections. A first
set of such results is given in Section 4, where the oscillation of the rescaled
inner layer is estimated, and the first Fourier coefficients in the corresponding
expansion for solutions of (2.23) are given. Section 5 is devoted to describing
how our solutions stabilize towards their asymptotic profile in the inner layer.
The analysis of the asymptotics outside such interior region is then made in

Section 6. Finally, Section 7 contains a number of technical results that were
required in the previous steps, and whose proofs were initially postponed to
keep the flow of the arguments as smooth as possible.

2. - Preliminaries. A description of the mechanism of formation of singularities

In this section we shall introduce some relevant notation, and will briefly
describe the manner in which chemotactic collapse develops. To this end, we
shall borrow from the approach in [HV2] and refer to that paper for details.
To start with, we define a local mass function M(r, t) given by:

Differentiation of (2.1 ) yields:
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so that M satisfies:

We now introduce self-similar variables corresponding to the natural scales of
the problem:

where

Functions (D and V satisfy the system of equations:

We now make the following guess. Suppose that, as z ~ r)
behaves in (2.5) as in the case r = 0 analysed in [HVl]. The reason for such
assumption is that we expect all the time derivatives to be small for r » 1

(cf. (1.12) and the remarks made at the Introduction). In [HV 1 ] we obtained
existence of blowing up solutions of ( 1.1 )-( 1.3) with r = 0 such that:

where:

for someK &#x3E; 0.

We will look for solutions of our system with r &#x3E; 0 having a similar
behaviour for (D. Notice that in such case:
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Then in equation (2.5b) a source of the order of a Dirac mass appears.
We next consider the linear operator:

which is self-adjoint in the set:

is radially symmetric and

with domain:

f is radially symmetric and

Notice that L2 is a Hilbert space when endowed with the norm:

The spectrum of A consists of the eigenvalues:

and the correponding eigenfunctions can be written in the form:

where Lk (r) is the kth Laguerre polynomial. For simplicity, to proceed further
we split V(y, r) in the form:

Then:
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Taking into account (2.7), we readily see that whence:

On the other hand, since
in the form:

we may write (2.5a)

We shall often make use of (2.13), (2.14) (which is decoupled from 
instead of (2.5). Since = 0, we expect from (2.13) that G(y,r) will
approach exponentially fast towards a stationary solution of that equation. At
distances y r-v 8(T) (cf. (2.6b)) we then rewrite (2.13) in terms of the new

to obtain:

We expect those terms containing time derivatives to be negligible in the
equation above when i » 1. It is then natural to make the following ansatz: As
T - oo, solutions G(y, r) of (2.13) are such that G(y, r) - G(y, r) for y ~
8(T), where: 

’

with: O

On the other hand, it is reasonable to expect then that, as r -~ oo, 9 (2.14) will
be asymptotically equivalent to the equation:

Equations (2.15) can be integrated explicitly to obtain:

A quick computation reveals then that:



640

and: O

hence:

Substituting (2.17) into (2.16), we arrive at:

Following [HV2], we now introduce a function W(y, r) given by:

so that (D = I and (2.18) is then transformed into the following equation fory
W: 

As observed in [HV2], we expect that our sought-for solutions will behave
asymptotically as indicated in (2.6) in an inner layer near the point x = 0,
where the singularity will appear. In terms of W, this behaviour reads:

To obtain further insight about the asymptotics near the unfolding collapse,
we linearise around the limit profile in (2.21) by setting:
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so that ~ (y, r) satisfies:

We now write:

Taking into account (2.6) and (2.7), we observe as in [HV2] that g(y, r) can
be approximated as follows:

where

We have yet to obtain a suitable approximation for the last term in the

right in (2.23). To this end, we make use of (2.6) and (2.17) to observe that:

whence:
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The first term in the sum can be bounded as follows:

As to I2 ( y, t ), we readily see that:

From (2.26)-(2.28) we eventually arrive at:

Taking into account (2.25) and (2.29), (2.23) reads now:

We now look for solutions of (2.30) in the form:

One then readily sees that:

«  ( i ) as t oo (cf. (2.6b)), we now expect Q ( y, -r) -
for large r, in which case F solves:
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Equations (2.35) can be integrated to give:

for some explicit constant B &#x3E; 0. Recalling that we expect ~ (y, r) -~ 0 as
t ~ oo, we may integrate the equations for the two first Fourier coefficients

(cf. (2.32), (2.33)) to obtain that:

From (2.22), (2.30), (2.36) and (2.37), the following outer expansion has
been obtained for W(y, r) in 

On the other hand, by (2.6a) and (2.19), we obtain the following inner expansion
for W (y, r) in regions and r » 1 :

Matching (2.38) and (2.39) we obtain an integral equation for ~(t), namely:

This equation can be solved asymptotically for t » 1 (cf. for instance [HV I ] ,
[HV2]), thus yielding (2.6b) and thereby concluding the formal derivation of
the size of the inner layer where the singularity develops. Once the value of

is known, we may retrace the steps in [HV2] to obtain all the remaining
estimates in Theorems 1.1 and 1.2.
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3. - A basic topological argument

In this section we shall describe the main argument behind the proofs of
Theorems 1.1 and 1.2. To avoid winding up with details, we shall postpone
most of the technicalities involved to Sections 4-6 below. As a preliminary
step, we proceed to define a suitable class of functions. Let us set:

For given numbers ro, Ti and it with ro  Tl S oo, 0  ft  1, we now define
the set ,A (to, tl ; consisting of functions (D(y, t ) which are regular enough
(say Cl) and satisfy the following estimates for 0  y - ~ ~ (t )  ReT:/2 and

r  TI,

for some large enough constant M &#x3E; 0, where is defined as in the statement
of Theorem 1.1,

As in [HVI], for any (D E A(-ro, tl ; /~) we now define s(r) as follows:

where y = l6n2, and for a given number 0 &#x3E; 0 we define
x 

I I

Notice that in general ~(i) ~ ~(t). We shall impose however the following
condition for a function to belong to the clas .,4 (rio, il ; J1):
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We shall say E A(TO, tl ; if (D satisfies (3.2)-(3.5) and (3.7)
when strict inequalities there are replaced by the symbol  . To produce our
desired solutions, we shall select a function 4)(y, io) E A (fro, TO; J1 ) for some

to » 1 and some J1 E (0, 1), and will use it as an initial value to solve (2.5a)
with suitable boundary conditions at r = 0, and r &#x3E; ro. To this end, it

will be convenient to work with the auxiliary functions W(y, r) and 1/f(y, r),
given respectively in (2.19) and (2.22). We shall then consider initial values in
the form:

where F(y) is given in (2.36), and ao, a,, SP1 will be selected presently.
To (3.8) we should add a condition on G(y, r) given in (2.11), say,

Functions with j = 0, 1 will coincide with eigenfunctions qJj (y) given
in (2.10) everywhere except at a narrow layer near y = 0. We may then take

= for y &#x3E; with a &#x3E; 0 and j - 0, 1. In particular, §j = CPj
in the overlapping region corresponding to the matching described in Section 2,
and one thus obtain:

whence:

which provides an estimate on the values of parameters = 0, 1) in (3.8).
Near y = 0, iWo and 1 need to be redefined to avoid the logarithmic singularity
that would appear in (3.8) if j§ij = CPj for j - 0, 1. This can be done by
selecting these functions so that:

Notice that relations (3.8)-(3.11) are compatible. As a matter of fact, they
allow for many possible choices of the parameters involved. For j = 0, 1, and
t &#x3E; ro we now define:

where 1/1 (y, r; ao, al ) denotes the solution of (2.23) with initial value 1/1 (y, ro ;
ao, al) as in (3.8)-(3.11). As in [HVl], where the case r = 0 was discussed,
a key point in the proof of Theorem 1.1 and 1.2 is the following:
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PROPOSITION 3. l. Assume that constant M in (3.2) - (3.5) is selected large
enough, and that 8 &#x3E; 0 in (3.6) is sufficiently small. r) = 1/1 (y, r; ao, al )
be the solution of (2.23) defined for T &#x3E; to and corresponding to an initial value
1/1 (y, ro) n 1/1 (y, ro; ao, al ) satisfying the above requirements. Suppose also that:

for T E [ro, tl ] with rl &#x3E; to » 1. Then, if.

(cf. (3.12)), it then turns out that:

Let us suppose for the moment that Proposition 3.1 holds. Then we can
take advantage of a topological argument quite similar to that already used
in [HV 1 ] . To this end, we argue as follows. Let tj (ao, a 1; T) be the function
defined in (3.12). By our choice of initial values at t = io, we then have that,
for j = 0, 1:

where a = (ao, al ), 8 (a, To) -~ 0 as to -~ oo, uniformly for ! I a ~ _ ~ I ao I +
I al I bounded, and the last term in the equality above may be assumed to be
independent on a. On the other hand, by modifying if necessary our choice
of initial value, we may always assume that f = is differentiable with

respect to ao, a 1: we shall assume henceforth that such a selection has been
made. It then turns out that for j - 0, 1, equation ro) = 0 has a
unique solution aj such that:

Let rj, ro be such that ro, and define U(ro, tl) C R 2 as the open set

consisting of all points (ao, al) C R 2 such that the corresponding solution
of (2.23), (3.8) satisfies E 1). As a matter of fact, we
now have that:

where for r a ro, U(ro, t); 0) denotes the topological degree of the
mapping £ in the set r) at the value zero.

Assume now that -r) =,A q5 for any r E [to, Ti) with to &#x3E; 0, and denote
by r) the boundary of the open set U(ro, r). We notice that, if £ # 0
on U(al,l (to, -r)) for to S r S Tl, U(ro, r); 0) = d (f, Ll (to, to); 0) for
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any such r. Since U(ro, for To S r  il , it then follows from standard
continuous dependence results that:

and:

Actually, (3.16) holds for any Ti &#x3E; ro, as far as:

Indeed, suppose that there exists a first time r &#x3E; to when (3.16) fails
but (3.17) holds true. In view of our previous remark, there must be a point:

where i(p) = 0, and clearly T; f3l) E i; 1). We then use Propo-
sition 3.1 to deduce that f3 a contradiction.

We further observe that:

(3.18) U(ro, for any t &#x3E; io, provided that to » 1.

To check (3.18), we define r* = SUp{i : U(ro, t ) ~ ~ } . We already know that
i* &#x3E; ro. Assume now that t*  oo. By (3.16) and (3.17), we may select a
sequence of times increasing to { t * }, and a sequence (an) = 
such that £ (aon, in) = 0 and an E U(ro , in). Since U(ro , C U(iO, T,),
one has that (an) is bounded. Therefore, a subsequence (still denoted by
(an)) exists, which converges to some point a* = It then turns

out that ~(c~,c~;T*)=0, and by Proposition 3.1, the corresponding function
p (y, r ; a o, a 1) remains at the interior of A (to, t*; 1): this is the point where
restriction to » 1 needs to be imposed in (3.18). By continuous dependence
results, * would also remain at the interior of ,~4 (to, t* + 8 ; 1) for some 8 &#x3E; 0,
thus contradicting the definition of r*.

We are now able to explain the argument leading to the existence of so-
lutions referred to in Theorems 1.1 and 1.2. Take a sequence such that

tl &#x3E; ro and = 00. For any such n, in) =1= 41, and we may select
U’n = (aOn, such that t rn ) = 0. Let r) (y, -r; aln)
be the solution of (2.23) with initial value (y; aon, Ot In) satis-

fying (3.8)-(3.11). By Proposition 3.1, we have that o/n (y, 1’) E 4).
Since the sequence (an) is bounded, there exists a subsequence (still denoted
by (an)) and a value a = such that limn_o an = a E U(ro, to). It
then turns out that function * (y, i; ao, 0-t I), solution of (2.23) with initial value
~ (y, zo; provides a sought-for solution, and the proof is concluded. D
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4. - The proof of Proposition 3.1

Thoroughout this section we shall derive a number of estimates that will
be required in the proof of our basic Proposition. We begin as follows:

4.1. - Estimating the oscillation of E (t )

We first observe that (3.6) provides a bound of ê(i). Indeed, differentiating
both sides of (3.6) with respect to t yields:

In view of (3.2) and (3.4), we easily obtain that:

for some constant Cm that depends on M and 0 is a positive and small enough
number. Recalling (3.7), we thus obtain:

4.2. - Approximating G ( y , r) by G (y, r)

In the course of proving our results, precise estimates will be required on
the difference ! I G y - G y 1, where G(y,r) is defined in (2.11 ), and G ( y , t )
satisfies (2.15). We claim that the following result holds:

LEMMA 4. l. Assume that G(y, to) = G(y, to), where G and G are as recalled
above. Then for T &#x3E; to » 1, there holds:

where X2 = 1 if ~’ = &#x3E; 2 and is zero otherwise.

The proof of Lemma 4.1 will be postponed to Section 7 (cf. Subsection 7.1
there).
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4.3. - Analysis of the first Fourier coefficients

In view of (2.17), we may write (2.14) in the form:

where J - J ( y, r) is given in (2.17). Let now W (y, r) be the auxiliary
function defined in (2.19). A quick check reveals that the above equation for
~ transforms into the following one for W:

where

The corresponding equation for p(y, r) given in (2.22) reads now:

where g(y, r) is given in (2.24). We now write:

with (R, = 0 for k = 0, 1. One then sees that:

where we have set p ( y, r) = g(y, r) + ley, r) + m ( y, -r). If (3.14) holds, we
then deduce from (4.6) and (4.7) that:
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for k = 0, 1 and TO S T S Ti. Arguing as in Lemma 4.1 in [HVl], we obtain
that:

for Ti and k = 0, 1, where Cm is a positive constant depending on M.
We next proceed to estimate the terms and (~ok,m(., -r)). As-

suming without loss of generality that y &#x3E; 1, we first observe that:

Notice that:

whence:

hence:
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We may estimate £(y, t) as follows:

whence:

On the other hand, it follows from (4.12) that:

We now take advantage of (4.2) and (2.17) to obtain:

Let us set:

Arguing as in the previous case, we readily obtain that:

Moreover, in view of (4.2), there holds:

Putting all these estimates together, it then turns out from (4.9) that:
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where as by (4.9) and (3.14):

4.4. - Analysis of Q (y, r)

We shall pay attention now to the solution Q (y, r) of equation (2.34) for
r &#x3E; to with initial datum:

We then have:

LEMMA 4.2. Assume that 4) E A(ro, tl ; I) for to » 1. Then for I
there holds:

where P(-r) = max

a smooth function that satisfies I K (y, t) ~  Ce-2T(1 + y2) for r &#x3E; 1, Al and A2
are suitable real constants, F(y) is the function defined in (2.35), and S(r) is the
semigroup correponding to the linear operator A in (2.30).

The proof of this result is similar to that of Lemma 4.2 in [HV 1 ], and
will be omitted here. We shall also require in what follows an estimate for aQ .
This is provided by the following:

LEMMA 4.3. Assume E A(ro, 1’1; 1 ) for to » 1. Then:

where C &#x3E; 0 is independent on M.

We shall prove Lemma 4.3 in Section 7 (see Subsection 7.2 there).
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4.5. - Approximating the remainder function by Q (y, r)

As a next step, we shall aproximate function R(y, r) given in (4.8) by
Q(y, r). To this end, we split R in two terms as follows:

where R1 solves:

for r &#x3E; ro, and:

On the other hand, R2 satisfies:

for t &#x3E; to, and:

Function R 1 can now be analysed exactly as in [HVl], Subsection 4.2. In

particular, one has that:

As to R2, we first observe that by (4.13) we have that:

and in a similar way we obtain that:

On the other hand, since:

a routine computation reveals that:

so that by (4.26)-(4.28) we finally obtain:
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5. - Stabilization in the inner region

We now turn our attention to the region where ~ I y 1« 1 and T is large
enough. Our first goal consists in obtaining some rough bounds on ak (i) for
k = 0, 1. Differentiating both sides of (4.9) with respect to t yields:

where constant C in (5.2) does not depend on M. Notice that dependence
of CM on M in (5 .1 ) arises from the term A(r) in the representation for-
mula (4.11). We shall estimate this term later, but to begin with we want
to obtain suitable bounds for .~ (y, T) and m (y, T) (defined in (4.3)) in the region

1 where ~ _ £~~) . Let us set:

In view of (2.17), we see that:

whence:

On the other hand, if 0  y  1,

Putting together (5.4) and (5.5), we obtain:
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Combining this estimate with the bounds for A(r) and .~(y, r) obtained in (4.12)
and (4.13), we deduce that:

for

We may obtain improved estimates for m (y, r) in a similar way. In particular,
using Lemma 4.1 and (2.17), we readily see that:

whereas from (3.3) and Lemma 4.1 we derive:

for 0  ~  1. Putting together these two inequalities and (5.7), we eventually
obtain:

5.1. - Convergence towards a stationary profile

We next set out to obtain suitable sub-and supersolutions. As in [HVl],
we define for any given R &#x3E; 0:

which satisfies the equation:

Consider now the differential equation:

where Ào is a small parameter, 0  ho « l. Standard ODE theory shows then
that there exist solutions W R (17) such that:

Then there holds:
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LEMMA. For any Ào and R small enough with Ào » s(r), there exist functions :

satisfying:

for some constants B &#x3E; 1 and E E (0, 1 ) that depend only on X, and such that the
corresponding functions:

are respectively super and subsolutions for the equations:

on the region 0  17  1, -r &#x3E; 0, where:

The proof of Lemma 4.3 is entirely similar to that of Lemma 4.4 in [HVI].
The only differences with the proof in that article arise from the presence of the
term which is easily seen to introduce very small perturbations
in the regions under consideration. We therefore shall omit further details.

As a next step, we shall use the sub- and supersolutions provided by
Lemma 4.5 to prove that 4S (y , i ) is close to a stationary solution when y  E (i )8
with 8 E (0, 1). To this end, we observe that, by (4.23), (4.30), (5.1) and (5.2),

where and

As in [HVl], Subsection 4.5, we define:

In view of (4.3), w (q, r) satisfies:
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We shall use (5.8) and Lemma 5.1 to obtain sub- and supersolutions
for (5.17). To this end, we define 7P(T,’r) as follows:

By Lemma 5.1 and (5.15), we now see that:

If T ~ ro, a similar estimate can be obtained as in Subsection 4.6 in [HVI].
Moreover, we can obtain bounds for the derivatives of 4) as follows. Define:

By our previous results, W is close to a stationary solution with an
error of order:

On its turn, satisfies a parabolic equation for I 1. Then by
standard parabolic theory,
region. Hence:

at the interior of such

on 2  I À  1, so that (D also behaves as the corresponding stationary solution.
Summarising, we have that:
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5.2. - Asymptotic behaviour of A ( t )

We next use (5.20) to improve our previous estimates on A(r). To this

end, we compute:

We may then argue as in Subsection 4.3 to obtain that:

whence:

5.3. - Regularizing the rescaled free boundary

To proceed further, we observe that (5.21) allows to improve (5.1) as

follows:

where C is now independent of M. Given t a ro, we now define i) by
means of the relation:
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Taking into account (4.23), (5.2) and (5.22), we readily obtain that:

with C independent of M.

We now define r(r, r) by means of the formula:

Recalling the definition of WR in (5.11) and taking advantage of (5.25), we
deduce that:

We now define it(q, r) as follows:

In view of (5.17), it then turns out that:

We next claim that:

We may now use Lemma 5.1 (or, more precisely, a slight modification of
it, to take into account that changes with time), to prove that r)
decays exponentially fast in intervals, say, of the type ~ I t - t)  1. The term

in (5.28) yields a correction of order S(i)2, and the boundary
data give terms of order E2-e (8 (T ))-2 . Assuming enough regularity on the
correponding initial values, we then obtain that:

Suitable bounds for the derivatives of 11- can be obtained by rescaling. Actually,
if we define:
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Then v satisfies:

Takipg into account (5.30), we deduce by regularizing effects for parabolic
equations that:

on the set § S I a Is 1. By our choice of function v above, one has that

/vt11 = so that:

Set now T) = Wry. By (5.27) and (5.31), one then has that:11

Back to the original variables, this reads:

Let us write now:

In view of (5.26), we now have that:

By our previous definition, function is such that:
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Notice that we may T) for any TO and any T such that

I t - Tis ~. Suppose that we have T 1, T 2, both larger or equal than to and
such that ! We then set:

Taking advantage of (5.33), we then obtain:

whence:

which yields at once the estimate:

Since (5.33) continues to hold for any linear interpolation of 8l(T) and
in their common region of validity, we easily deduce that it is possible

to deform 81, 82 to obtain a globally defined function 8 (T) such that:

and moreover:

where C is now independent of M. Just as before, (5.34) gives:

for some

Indeed, if (5.36) fails to hold we would derive a contradiction with the definition
of 8 (r) in (3.6).

5.4. - Deriving a crucial integral equation

At this juncture, we may repeat the steps in [HVl], Subsection 4.5 to

obtain that: 
- -1

This equation is entirely analogous to (4.31) in [HV 1 ] . As remarked in
Subsection 4.5 in that paper, it can be used to obtain that:

is given in (3.1 ). This provides the crucial asymptotic estimate on
the size of the inner layer for r » 1.
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6. - Analysis of the solutions outside the inner layer

In this section we shall describe the behaviour of our solutions in regions
where y » s(’l’) and i » 1. To this end, two separate cases will be considered.
In the first place, we shall examine:

6.1. - The case where y » (E-(-c))o for some 0 &#x3E; 0 and y = 0(1)

Let us assume first that « y  D for some D &#x3E; 0 large but fixed.
Keeping to the notation introduced in Subsection 4.5, we set:

where R1 1 and Q are respectively given in (4.25) and (2.31). In particular
Z(y, r) satisfies: .

On the other hand, by (4.27) there holds:

Using a rescaling argument similar to that in Subsection 5.4, coupled with
standard regularizing effects for parabolic equations, we obtain:

Let R2(y, r) be the function defined in (4.24)-(4.26). By (4.29):

As in the case of R 1 ( y, T), one then has that:

Recalling the definition t ) in (2.19), we then obtain:
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Let us set now:

where Q(y, r) is defined in (2.34) with set) replaced by SeT) there (this last
function has been defined and analysed in Subsection 5.3). At r = io, we

impose accordingly:

Recalling (5.36), one then has that:

Using the differential equations satisfied by Q and Q, rescaling techniques and
regularizing results yield:

To estimate Q (y, t), we write:

so that S satisfies:

where - 0 for k = 0, 1. We may then bound S(y, r) by means of
classical estimates on caloric kernels and standard regularizing effects. To this
end, we observe that the source term in (6.2a) satisfies the bound:

whereas F(y) has a logarithmic singularity at y = 0. For any
can be estimated in the Ca -norm to obtain that:

while on the other hand:
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Plugging these estimates in (6.1 ), we arrive at:

for some and

6.2. - Estimating derivatives of 4$ (y , r)

As a next step, we proceed to derive bounds on i’~ a"~ in the region
considered in our previous paragraph. To this end, some approximations to the
actual solutions will be in order. We first as the (unique) solution
of the problem:

such that:

It is then easily seen that:

Set now and consider the function 4$($, T) given by:

A quick check reveals that:

with C independent of M. On the other hand, let G (~ , r) be the function
defined in (2.15) with (D replaced by &#x3E; there. We now claim that:

where C is independent of M, and Xl (respectively X 1 ) is equal to one if ~ &#x3E; 1

and zero otherwise (respectively X I = 1 - X 1 ). The proof of (6.7) is similar
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to that of Lemma 4.1 in Section 7, and will therefore be omitted. We next
observe that, by the definition of G, there holds:

Integrating this equation gives:

On integrating by parts, this yields:

It will be convenient to rewrite the previous equation in the following form:

We now compute:



666

whence:

On the other hand:

Let us assume now that Then:

In this case, we easily obtain from (6.8) the following estimate:

provided that

To proceed further, we rewrite (6.8) in the form:

Recalling the definition of 4$ as well as our previous estimate on h we arrive at:

For 9 &#x3E; 0, we now use (6.9) and (6.10) for ~ &#x3E; sfJ-2 to eventually
obtain that:
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Set now 4Jo(§) -- 8; . By our choice of i&#x3E; in (6.5), we may now takeX 1 +1

advantage of (6.11 ) to obtain:

Summarizing, we have that:

Let us set now:

By (2.14) and (6.12), we obtain:
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as well as:

Notice that from (5.34), (6.1 ) and (6.5), we have that:

1 and some f3 &#x3E; 0, where = 1 if § &#x3E; 1 and = 0

otherwise.

Concerning f (y, i), we claim that the following estimate holds:

To keep the flow of the main arguments here, we shall postpone the proof of
(6.18) until the next section (cf. Subsection 7.3 there) and continue. We now
define the rescaled variables:

where 4~  R  1. A quick computation reveals that z and f satisfy:

where 6x, 4$A, and G t are written in terms of the variables (~, , T). In

view of our previous estimates, the following bounds hold 4:
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whereas by (6.5),

Taking into account (6.11), we also obtain that:

Finally, from (6.12) we deduce the estimate:

as well as similar estimates for the derivatives I when k &#x3E; 1. On rescalingaa, -

time by, say, setting i = R2 , (6.19), (6.20) can be considered as a uniformly
parabolic system. Putting all the above estimates together, standard parabolic
theory then gives:

Estimate (6.21) will be instrumental in deriving suitable bounds for Toay *

this end, we now consider the system (6.19), (6.20) in regions I  .  4, and
denote by z 1, f I the solutions of the correponding Cauchy problem for (6.19),
(6.20) when restricted to the 2. Using Eidelman’s estimates for
Green’s functions of linear parabolic systems (cf. [E]) we obtain that:

whereas on the other hand,
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If we now set z2 = z - Zi , f 2 = readily see that the pair (z~ , f~)
satisfies a parabolic system of the type:

where, for i = 1, 2, functions ai (~, , i ) and bi (À, i ) (as well as their derivatives
with respect to h) are uniformly bounded for 1 s À S 2. Moreover, one also
has that:

We next restrict our attention to an interval X E (1 - ~, 1 + ~), where
8 &#x3E; 0 is small enough, and rescale space and time by setting 17 = À8l, S = --r 1*
It then turns out that ~z2, f 2) satisfy now:

on the The Green function for such system has properties
much alike those of the heat kernel. In particular (cf. for instance [E]) it turns

out that if we denote by the corresponding (vector) Green function,
one has that:

for some v &#x3E; 0, whenever

Furthermore, a similar property holds for the kernel corresponding to represent-
ing (z2, f 2~ in terms of their boundary data. Denoting such kernel by -r),
we also have that:

whenever

where v can be taken to be the same constant appearing in (6.25a). If 6 &#x3E; 0 is

small enough (but fixed), we have exponential decay on intervals of size 0(1),
and by iterating the corresponding kernels we eventually arrive at:
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We then may use representation formulae from parabolic potentials to obtain:

Together with (6.22), this implies that:

Recalling the definition of z and f, it follows from (6.26) and (6.21) that:

for ~(t)  y  1, where C is independent of M. Notice that (6.17) gives
quadratic bounds for We may therefore slightly modify our previous
argument to obtain similar estimates as ~ - 0 (with some extra decay rate).
Since on the other hand 4$ satisfies similar bounds with constants which do
not depend on M, we readily see that estimates (3.2)-(3.4) are recovered if we
take, say, J1  4 and M is initially selected large enough. -

6.3. - The external region

We shall conclude this section by discussing the case where y &#x3E; 1. As a
first step, we notice that (2.15) implies that:

Using (5.34) (for y  1) as well as (3.2) (for y &#x3E; 1), one easily obtains that:

where C is now independent of M, provided that To » 1. On the other hand,
one deduces from (2.15) and (6.28) that:
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Since G(y,T) given in (2.13) is taken to be quite close to G at T = io, we
may assume that (6.28) and (6.29) hold for G(y, r) at T = To. We then have
that

for 1  y  R eT/2 and to + 3 with 8 &#x3E; 0 small enough. We may
now adapt the arguments in [HV 1 ), Subsection 4.6, in order to derive suitable
bounds for y &#x3E; 1. As a first step, we notice that:

By standard parabolic theory, the derivatives of W satisfy the estimate obtained
by differentiating (formally) above. As in [HVl], we may now use (6.30) to
produce suitable sub- and supersolutions given in (2.5). In this

way, we arrive at:

4$ (y, t ) smooth and bounded for

We next improve (6.31) by means of a comparison argument involving sub-
and supersolutions of the type:

where ~ = y e-~ ~ 2 t ~-B, to and B &#x3E; 0 is a sufficiently large constant. Since
the is negligible as far as y ~ I Gy  C, we may
now select functions y (~ ) and h (~ ) as in [HVl] to eventually obtain by the
maximum principle that:

The local mass function M (r, t) given in (2.1 ) is then such that:
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A rescaling argument as that in the previous section then reveals that:

Recalling (2.4), we have thus obtained that:

Moreover, by rewriting (6.30) in terms of v and using Eidelman’s estimates
in [E], we readily see that:

whence:

To proceed further, we argue as in [HVI ], Subsection 4.7. Namely, we introduce
a new variable U(y, r) given by:

Since u satisfies:

(cf. ( 1.1 )), we may now produce sub - and supersolutions in the form:

where ~ = y, B_» 1 and i &#x3E; ro. Functions a (~ ) and b (~ ) are

selected so as to have 0 (respectively  0)9 Z being the corresponding
differential operator obtained from (6.36) after changing u into U there. Once
again, (6.30) is used to control the nonlinear terms there. As to functions

a (~ ) and b (~ ), we take them in the form:

where K, C are suitable constants. Concerning b(~), it suffices to have that:
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One then eventually obtains that:

where C can be selected independent of M if zo » 1 and constant B in the
definition of ~ is also large enough. We may now use (6.37) to estimate vr
(or, in a equivalent way, Gy). We do this by using a standard representation
formula for solutions of (1.2) via caloric kernels, and noticing that the constant
factor -1, as well as boundary terms, yield negligible contributions there. For
times t E (T - 3, T), one then obtains an estimate of the type:

+ (contribution from initial value) + (smaller terms),

where A is a positive constant. We shall split the integral above as follows:

Assume that &#x3E; 2T 2013 t ) 1 ~2 . In view of (6.34), we have that I x - ~ I
^- ~ I in such region, and after some simple manipulations we obtain:

with C independent of M .

We now proceed to estimate 12. To this end, we split that term again into
two, denoted by 12,1 1 and 12,2, where integration is performed respectively in the
regions ! x - § ) Is 2 ~ and ! x - ~ ~ &#x3E; ~ The term, 12, 2 can be estimated exactly
as II. As to 12,1, one has that u (x , s ) there, so that using (6.37) we
obtain that:

Concerning contribution from the initial values, we may suppose that G(y, to) -
G(y, to), and this in turn provides a bound of order 0 in (6.38) (with a
constant independent on M). We have thus obtained:

with C independent of M .
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At this juncture, we may differentiate in (1.2) to obtain:

together with (6.36), one then has a parabolic system for which bounds (6.37)
and (6.38) hold. On rescaling as in the previous cases, classical regularity
theory yields now that:

with C independent of M. In variables (G, y) this amounts to:

Since the argument just described is independent of the constant C appearing
in (6.30), it follows by a standard continuation argument that (6.40) continues
to hold as far as the solution exists.

END OF THE PROOF OF PROPOSITION 3.1.

Putting together our previous results, the proof of the Proposition is now con-
cluded. Indeed, (3.2) follows from (5.34), (6.3) and (6.31). We have recov-
ered (3.3) and (3.4) in (6.34), (6.35). From (5.34) and Subsection 5.4, we
obtain (3.7). Finally, (3.5) follows from (6.31). 0

7. - Some technical results.

In this final section, we provide the proofs of Lemmata 4.1 and 4.3, as

well as that of estimate (6.18).

7.1. - The proof of Lemma 4.1

By (2.17), we see that:

where A(r) is such that (G, = 0. This gives:
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To proceed further, a bound on G ~ will be required. Notice that, by (3.4):

From (7.4) and (7.5), it follows that:

whence:

Using (7.2), (7.3) and (7.7), it turns out that:

and (7.1), (7.3) and (7.7) readily give that:

Let us define now

In view of the definitions of G and G, one has that:
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where (g, CPo) = G7:, qJo &#x3E;= 0 and g(y, to) = 0. Equation (7. 10) can be
viewed as a nonhomogeneous, linear equation with forcing term (- G 7: ). De-

noting by Sr the semigroup generated by the linear differential operator in the
right of (7.10), we may now write:

From (7.9), we readily check that:

Since:

a straightforward computation yields:

In view of (7.9), one then has that:
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Regularizing results for parabolic equations readily give that:

rs

On the other hand, changing variables in the form r - r e- 2 , we may estimate
Kl 1 as follows:

We now compute:

As to KI,2, we notice that:

Summing up, we have obtained:

Taking into account (7.11 ), we then arrive at:

which concludes the proof.
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7.2. - The proof of Lemma 4.2

Let us define:

Denoting by S (r) the semigroup associated to the homogeneous part of (2.34),
we now have that:

whence

Keeping to the notations in Lemma 4.2, we write Q2 in the form:

Recalling (3.7), one readily checks that:

where C does not depend on M. On the other hand, we see that:
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A similar estimate is easily seen to hold for Summarizing, we have that:

In order to estimate we write:

where - 1 if j = k, and 3j,k - 0 otherwise. Arguing as in [HVI] we
readily estimate the second term to obtain:

for some 9 &#x3E; 0. Moreover, differentiating with respect to y yields:

One may then invoke standard parabolic theory to derive that:

It remains yet to estimate

choice of initial values:

To this end, we first recall that, by our

On the other satisfies the same differential equation as Q 1,1, with
a different initial value at r = TO. As a matter of fact, one has that:

In then turns out that the factor generates a Dirac deltax

at y = 0 and t - ro, with the same mass as that arising from the term

4iT -f- 8 (-C)2). We may then argue as in [HVI], Subsection 5.2, tox

derive the bound:

and from this and (7.13), the result follows.
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7.3. - The proof of (6.18)

Since f (y, ro) = G (y, to) - G (y, to), one may use the fact that 8 (-r) =
( 1 + 0 (~~ )) for some a &#x3E; 0, to remark that:

We may then use variation of constants formula in (6.16) to write:

We readily check that:

We next split L 3 as follows: _

In view of (6.7), we readily obtain:

On the other hand, using (6.7) and properties of the caloric kernel, we see that
for y  1,

Hence:

Summing up, we have obtained:
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To deal with L 2, we perform a similar splitting, and set L 2 = L 2,1 + L 2,2, where
integration in L2,1 (respectively in L2,2) is done from to to t - 1 (respectively
from t - 1 to r). In L2,1 we use the exponential decay of the corresponing
semigroup to obtain that:

As to L2,2, we notice that, arguing as for L2,1, one obtains:

Concerning the remaining term in L2, 1, we compute:
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Putting all these estimates together, we eventually obtain:

where C may now be selected independently on M. This concludes the proof. D
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