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Summary. We further investigate the computing power of the recently introduced P
systems with Z-multisets (also known as hybrid sets) as generative devices. These systems
apply catalytic rules in the maximally parallel way, even consuming absent non-catalysts,
effectively generating vectors of arbitrary (not just non-negative) integers. The rules may
be made inapplicable only by dissolution rules. However, this releases the catalysts into
the immediately outer region, where new rules might become applicable to them. We
discuss the generative power of this model. Finally, we consider the variant with mobile
catalysts.

1 Introduction

Membrane systems (cell-like, with symbol-objects) have traditionally been viewed
as collections of hierarchically arranged multiset processors [12]. In the list of
open problems disseminated in 2015 [11], Gheorghe Păun suggested going beyond
the traditional setting where symbol multiplicities in multisets are restricted to
non-negative integers. One suggested approach [6] defines generalized multisets as
taking multiplicities from arbitrary finitely generated, totally ordered commutative
groups.

In work [3], a different approach is taken: only catalytic rules are allowed, and
the applicability of a rule only depends on presence of the corresponding catalyst
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in the given region. Consuming an absent non-catalyst makes its multiplicity neg-
ative. While in [3] it was already established that such model is not universal, we
found it interesting to investigate its generative power more precisely.

Since the number of catalysts remains finite and does not change throughout
the computation, this induces a finite set of “rule teams” which can be applied
in parallel in one step. The virtual absence of applicability conditions and the
finiteness of the “teams” hints at the possibility of seeing them as integer vectors;
in this case the P system itself can be seen as evolving by sequentially adding such
vectors (possibly having negative components) to the contents of its membranes.
Paper [2] compares this general model to vector addition systems [5, 9] (adapted
to allow negative vector components [8]) and blind register machines [7].

Here we return to the particular model from [3], discussing the lower bound of
its generative power and giving some results on the variant with target indications.

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing; see [13] for a comprehensive introduction to both. We
only remark that, as common in membrane computing, multisets in O◦ = NO are
represented by strings in O∗, keeping in mind that the order of symbols is not
relevant.

2.1 Extending Multisets

To represent also negative multiplicities, multisets must be extended. A Z-multiset,
allowing integer multiplicities (called a hybrid set in [4]) would be from ZO; it
can be represented by a string in (O ∪ O−)∗, where O− = {a− | a ∈ O} is a
set of symbols that represents objects in multiplicity “negative one”. Note that,
as opposed to P systems with matter-antimatter [1], symbol a− here is not an
actual object, but simply a convenient way to represent a deficit of a, and the
actual multiplicity of a represented by a string w is |w|a − |w|a− . We also do not
distinguish between notations a−k and (a−)k. The superscript − can be used as a
morphism, producing a multiset with opposite multiplicities, e.g., (ak)− represents
the same Z-multiset as the one in the previous sentence. As the strings here are
only used to represent [Z-] multisets, we may write an equality sign between the
strings representing the same [Z-] multiset. For conciseness, let us use the notation
O• = (O ∪ O−)∗. Finally, since it will be always clear from the context, we may
call an element of O• “multiset”, omitting the word “representing”. Assuming an
order is fixed on O, for u ∈ O•, vector (|u|a − |u|a−)a∈O is denoted by ψO(u); the
subscript O may be omitted when it is clear from the context. This vector is called
the Parihkh image of u.
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2.2 Linear Sets

The linear set generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂ Zn and an
offset a0 ∈ Zn is defined as follows:

〈A,a0〉N =

{
a0 +

∑d

i=1
kiai | ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector, we will call the corresponding linear set homo-
geneous; we also will use a short notation 〈A〉N = 〈A,0〉N.

We use the notation ZnLINN =
{
〈A,a0〉N | A ∈ (Zn)d, a0 ∈ Z, m ∈ N

}
, to

refer to the class of all linear sets. Semilinear sets are defined as finite unions of
linear sets. We use the notations ZnSLINN to refer to the classes of semilinear
sets of n-dimensional vectors. In case no restriction is imposed on the dimension,
n is replaced by ∗. We may omit n if n = 1. A finite union of linear sets which
only differ in the starting vectors is called uniform semilinear:

ZnSLINU
N =

{⋃
b∈B〈A,b〉N | A ∈ (Zn)d, B ∈ (Zn)k, d, k ∈ N

}
=
{{

b +
∑d

i=1 kiai | ki ∈ N, 1 ≤ i ≤ d
}
| A ∈ (Zn)d, B ∈ (Zn)k, d, k ∈ N

}
.

Let us denote these sets by 〈A,B〉N.

3 Purely Catalytic P Systems over Integers

In purely catalytic P systems over integers the set of objects is a disjoint union
of catalysts C and the regular objects O. The regular objects are allowed to have
any integer multiplicity, while the catalysts are only allowed to appear in a non-
negative number of copies.

The rules can be of the two following types:

• catalytic rules: cu→ cv, where c ∈ C and u, v ∈ O∗;
• catalytic rules with dissolution: cu → cvδ, where c ∈ C, u, v ∈ O∗, and δ 6∈

C ∪O is the symbol indicating membrane dissolution.

The rules applied in parallel cannot involve more catalysts than available in the
system; the multiplicities of regular objects, on the other hand, do not influence
the applicability of rules. An application of a rule cu→ cv in a region containing
cw (c ∈ C, u, v ∈ O∗, w ∈ O• produces cw(cu)−cv = cwv(u−), or, in terms of
vectors, ignoring the catalyst, vector ψ(w) + ψ(v) − ψ(u) is represented by the
contents of that region after the rule has been applied. An application of a rule
cu → cvδ produces the same effect, and then dissolves the enclosing membrane,
moving the contents of the dissolved membrane into the parent membrane.

Purely catalytic P systems over integers evolve under the maximally par-
allel semantics, so each catalyst enters exactly one rule (non-deterministically
chosen), unless the given region has no rules associated with this catalyst. By
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ZdOZPm(pcatk, δ) we denote the family of sets of d-dimensional vectors of inte-
gers generated by purely catalytic P systems over integers with dissolution, at most
m membranes and at most k catalysts. If any of parameters d,m, k is unbounded,
it is replaced by ∗ in the notation.

We also use notations for extended features (listed in parentheses in the nota-
tion of the sets of Z-vectors generated by the corresponding families of P systems).
Target indications, denoted by tar, allow the non-catalysts to be sent to a different
membrane. In the right side of the rules, sending object a is written by (a, tar),
where tar ∈ {out} ∪ {inj | 1 ≤ j ≤ m}; j here is a label of immediately inner
membrane. In this paper, we may write tarn in the notation of a set of Z-vectors
generated by a family of P systems; this generalization reflects the possibility to
assign targets even to negative multiplicites of objects.

Another feature is mobile catalysts [10], i.e., targets may also be associated to
the catalysts, and thus the catalysts move across the membrane structure; we de-
note this feature by mpcatk since the systems we consider are purely catalytic. We
use the plus sign between the features of catalytic mobility and dissolution when
it is allowed for the same rule to move a catalyst and to dissolve the membrane
currently containing it.

4 Results

4.1 Simplifications and Observations

First, we would like to explicitly allow rules of the form c→ cx, (c ∈ C, x ∈ O•),
i.e., the multiset of regular objects in the left side being empty. This does not
change the model, since any Z-multiset x can be written as u(v−), u, v ∈ O∗, and,
fixing some a ∈ O, c→ cx is equivalent to cau→ av. Moreover, any rule cu→ cv
is equivalent to c → cu(v−), so it suffices to only consider rules of types c → cx
and c→ cxδ (c ∈ C, x ∈ O•).

Second, notice that it is enough to start with a single catalyst in any region,
because it can perform the role of any number of catalysts, and if multiple cat-
alysts are initially in the same region, they will always stay in the same region
(possibly, merged with others). Indeed, take an arbitrary region of an arbitrary
purely catalytic P system over integers, say, it has catalysts ci, 1 ≤ i ≤ d, and each
catalyst ci has associated rules ci → cixi,j , 1 ≤ j ≤ ni, where xi,j ∈ O• ∪ O•δ.
Note that if none of the catalysts has associated rules, then they are equivalent to
a single catalyst with no associated rules, so in the following we assume the con-
trary. If some catalyst ci has no associated rules, it is then equivalent to it having
associated a single rule ci → ci, i.e., xi,1 = λ and ni = 1, so in the following we
assume ni ≥ 1 for 1 ≤ i ≤ d. We can now replace all these catalysts by a single
catalyst c having associated the following set of rules:

{c→ cx1,j1 · · ·xd,jd | 1 ≤ ji ≤ ni, 1 ≤ i ≤ d}.
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On the other side, no catalyst in some region is equivalent to one catalyst with no
associated rules. Therefore, without restricting the generality, in the following we
assume that in the initial configuration of an arbitrary purely catalytic P system
over integers, each membrane region i, 1 ≤ i ≤ m, contains precisely one catalyst,
and we can call it ci.

Third, notice that no information enters membranes, so the outer regions can-
not affect the inner regions in any way. Hence, if the output region i0 is not the
skin, then only the membrane substructure inside i0, including i0 is relevant for the
result, and other membranes are irrelevant and may be removed without affecting
the result, making i0 the skin (unless some rule in some removed membrane had
applicable rules, but could never be dissolved, in which case the generated set of
vectors is empty, which is a degenerate case). So in the following, we assume that
the output region is always the skin.

Fourth, every elementary membrane having no rules associated to the catalysts
available there may be removed from the system without affecting the result (unless
it is the output membrane, in which case a singleton is generated, which is a
degenerate case), so in the following we assume that each elementary membrane
has some applicable rules. Clearly, the P system will not reach the halting until
this membrane is dissolved.

Consider this reasoning starting from the elementary membranes outside, by
induction. Take any non-elementary membrane i which becomes elementary during
a computation. Assume i is not dissolved (i.e., it has no rules associated to any of
the catalysts that were placed within the membrane substructure inside i, including
i), but it is not the output membrane. Then all the computation in the membrane
substructure inside i, including i, does not contribute to the result, and can be
removed from the system without affecting the result.

As a summary of the fourth observation, without restricting the generality
(except, possibly the degenerate cases generating the empty set or some singleton),
we may assume that any purely catalytic P system over integers has applicable
rules associated to all elementary membranes, and all membranes except the skin
must be dissolved at some moment during the computation.

Finally, for every region except the skin, a catalyst ci without associated rules
is equivalent to a catalyst with a rule ci → ci. Hence, without restricting the
generality, we may assume that the catalysts are never idle before the halting is
reached. Clearly, (excluding the degenerate case generating the empty set), the
skin should have no rules associated to any catalyst of the system.

We would like to note that even without pruning the membrane structure by
removing membrane substructures not contributing to the result, the membrane
structure obtained at halting (if at all reachable) is unique.

We recall that in [2], the following generalization approach is taken: There is
a finite number of reachable membrane structures. These could be used as states
of a sequential P system, which may be obtained, separately for each membrane
structure, by combining the behavior of all catalysts in all regions of the P system.
Indeed, having fixed a reachable membrane structure, we know which membranes



20 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

have been dissolved, and thus the resulting location of each catalyst. Then, for each
catalyst, associated rules in its current location are considered and combined, sim-
ilarly to the second observation above, but globally. Having obtained a sequential
system, the catalyst is no longer needed. Then, in [2] it was shown that such a
generalization is nothing else but a sequential blind vector addition system with
states, and it was claimed that it characterizes precisely the family of all semilinear
vectors of integers.

Indeed, in this way any purely catalytic P system over integers can be substi-
tuted by a sequential blind vector addition system with states, so the upper bound
of the family of all semilinear sets of vectors of integers, or, equivalently, the family
of all integer vector sets, generated by blind register machines, holds. However, the
reverse is not necessarily true, i.e., it does not follow that for any sequential blind
vector addition system with states there would exist an equivalent purely catalytic
P system over integers.

Another result in [2] has been obtained for integer vector addition P systems,
namely Theorem 5. That model has been shown to characterize exactly the uniform
semilinear sets. However, since in the model of integer vector addition P systems,
as opposed to purely catalytic P systems over integers, there is no concept of a
catalyst, dissolving a membrane only disables rules of that region, without enabling
rules that, in purely catalytic P systems over integers, are contained in the parent
region and associated to the catalysts that were in the dissolved region. Hence,
the characterization from Theorem 5 of [2] has no direct implication on the power
of purely catalytic P systems over integers.

Therefore, at this point in the present paper we would like to definitely deviate
into the particularities of how dissolution affects the computation, and the lower
bounds.

4.2 Generative Power

We recall that we discuss the family of integer vector sets generated by purely
catalytic P systems over integers, with the usual halting condition.

Since the output region cannot be dissolved by definition and any other appli-
cable rule can never be stopped, single-membrane purely catalytic P systems over
integers are degenerate:

ZdOZP1(pcat∗, δ) = {∅} ∪ {{v} | v ∈ Zd}.

For simplicity, we will not mention these degenerate cases while considering mul-
tiple membranes.

With two membranes, a characterization is still straightforward:

ZdOZP2(pcat∗, δ) = ZdSLINU
N .

Indeed, let A be the finite set of vectors corresponding to the non-dissolving rules
in the elementary membranes, and let B be the finite set of sums of two vectors:
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the one corresponding to the initial configuration and vectors corresponding to the
dissolving rules in the elementary membrane; the skin should have no rules. If the
catalyst in the elementary membrane is c2, then the correspondence mentioned
above is c2 → c2x↔ ψ(x), and similarly with dissolution. An arbitrary computa-
tion of a P system consists of an arbitrary number of applications of non-dissolving
rules and one application of a dissolving rule. Hence, the resulting vector sums up
from the “initial” vector, one arbitrary “dissolving” vector, and an arbitrary linear
combination of “non-dissolving” vectors.

It is worth noting that, by a similar reasoning, for a P system with multiple
membranes, if the chronological order of dissolving membranes is fixed, the result is
still ZdSLINU

N . Indeed, each combination of rules (one for each catalyst) yields one
vector, so all such possible combinations of non-dissolving rules yield a finite set
of vectors, and multiple non-dissolving steps yield a linear set generated by these
vectors. Thus, over the whole computation the result sums up from the initial
configuration, a finite number of dissolution vectors, and a finite number of linear
sets corresponding to the membrane structures reached during that computation.
Since the total number of chronological orders of dissolving membranes is bounded,
the known result already follows:

ZdOZP∗(pcat∗, δ) ⊆ ZdSLINN.

Even with three membranes, in case two of them are elementary, the power of
such purely catalytic P systems over integers is still ZdSLINU

N , but for a different
reason: each elementary membrane contributes with its uniform semilinear set,
and a sum of two uniform semilinear sets is still uniform semilinear.

Let us now examine a P system with three nested membranes – the minimal
number to obtain a set which is not in ZdSLINU

N . Let the vector obtained by
joining the initial contents of all membranes be a, the set of non-dissolving vectors
of the elementary membrane be A3, the set of dissolving vectors of the elementary
membrane be B3, the sets of non-dissolving and dissolving vectors in the middle
membrane associated to catalyst c2 are A2 and B2, and the similar sets associated
to catalyst c3 (which will arrive from the elementary membrane) are A and B. Let
us see what the resulting vector set is built from, besides a.

A non-dissolving computation in three membranes adds at each step (an ele-
ment of) A3 to the elementary membrane and (an element of) A2 to the middle
membrane. Eventually all objects will arrive to the skin, so the three-membrane
phase of the computation will contribute by (an arbitrary element of) 〈A2 +A3〉N.

Then there are two possibilities. If membrane 2 is dissolved first, then the
system continues computing by only applying the rules in membrane 3, and even-
tually dissolving membrane 3, yielding B2 + 〈A3〉N + B3. However, if membrane
3 is dissolved first, then both catalysts are active in membrane 2, eventually dis-
solving it, yielding B3 + 〈A2 +A〉N + (B2 +A ∪A2 +B ∪A+B). The expression
in parentheses corresponds to applying at least one dissolving rule. Therefore, the
set of integer vectors generated by such a purely catalytic P system over integers
with three nested membranes is
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M = a+B3+〈A2+A3〉N+
(
B2+〈A3〉N ∪ 〈A2+A〉N+

(
B2+A ∪A2+B ∪B2+B

))
,

and the power of all three-membrane purely catalytic P systems over integers,
noting that the power of the nested case subsumes the power of the case with two
elementary membranes, is

ZdOZP1(pcat∗, δ) = {M | a ∈ Zd, A2, A3, B2, B3, A,B ∈ FIN(Zd)},

where M is the expression above. Unfortunately, it is not obvious what can be
simplified in it, except B3 can subsume a. So we try to analyze it in details,
possibly going into particular cases.

All terms in the expression M are bounded except three: 〈A3 +A2〉N, 〈A3〉N
and 〈A+A2〉N. These terms are not independent, even though A2, A3 and A are
three independent finite sets of vectors. It is, however, possible to separate them
in a particular case when |A3| = 1, choosing A2 = −A3 and A = C − A2. Since
A3 is a singleton, the identity A3−A3 = {0} holds, so the three unbounded terms
become 〈{0}〉N, 〈A3〉N and 〈C〉N, so we are getting close to obtaining a union of
two particular linear (or even uniform semilinear) sets with different base vectors.

Indeed, if we choose a = 0, B3 = {0}, B2 = {0}, B = {0} and A3 = {e},
expression M simplifies to 〈{e}〉N∪〈C〉N +(C+{e}∪{0}), which can be rewritten
as 〈{e}〉N ∪ 〈C〉N ∪ {e} 〈C〉N.

Alternatively, to avoid dealing with the union of three cases when membrane
2 is divided last, if we choose B2 = A2 and B = A, then the last parenthesis in
the general expression of set M becomes simply A2 + A = C. Choosing a = 0,
B3 = {0}, and A3 = {e}, expression M simplifies to 〈{e}〉N − {e} ∪ 〈C〉N + C.
Since 0 ∈ 〈{e}〉N − {e} and 〈C〉N + C ∪ {0} = 〈C〉N, in this case we can rewrite
M to

−{e} ∪ 〈{e}〉N ∪ 〈C〉N ,
which is a union of any two homogeneous linear sets, such that the first one has
only one generator, united with the opposite vector of that generator. Hence,

ZdOZPn(cat, δ) ) ZdSLINU
N , n ≥ 3.

What if B = ∅, i.e., catalyst c3 has no associated dissolution rules in region 2?
Then the general expression of set M is immediately simplified to

M = a +B2 +B3 + 〈A2 +A3〉N + (〈A3〉N ∪ 〈A2 +A〉N +A),

and in our case of A3 = {e}, A2 = −{e} and A = C + {e}, M becomes

a +B2 +B3 + (〈{e}〉N ∪ 〈C〉N + C + {e}),

and choosing a +B2 +B3 = {−e}, and noticing that C 0 times is covered by e 0
times and 〈C〉N +C ∪{0} = 〈C〉N, we simplify M to {−e}∪ 〈{e}〉N ∪〈C〉N, i.e., an
“almost clean union” we already obtained before. Finally, we notice that we can
equivalently write it as

〈{e},−e〉N ∪ 〈C〉N .
Continuing the current approach with more membranes would only result in more
cases.
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4.3 Communication

We would like to remark that adding target indications to the regular objects
should not increase the power of purely catalytic P systems over integers. Indeed,
looking at a purely catalytic P system over integers, it is easily decidable which
membranes will eventually be dissolved. Hence, the only question is whether the
contents of a region specified by target, after possible dissolutions, will be in the
output. There is no need to examine the future of a moved regular object, since
the resources in purely catalytic P systems over integers are unbounded, and we
can view this copy of a moved object as staying in that region until the end of the
computation.

However, if also the catalysts are allowed to have target indications associated,
it does make a difference. We claim the following characterizations.

ZdOZP∗(mpcatk, tarn) = ZdSLINN, k ≥ 1,
ZdOZP∗(mpcatk + δ) = ZdSLINN, k ≥ 1,
ZdOZP∗(mpcat∗, δ) = ZdSLINN,

The upper bound in either case is easy to see because the number of possible
arrangements of catalysts across the given membrane structure (and any possible
structures obtained from it by membrane dissolutions) is bounded. Hence, purely
catalytic P systems over integers with mobile catalysts are still not more powerful
than blind vector-addition systems with states, which characterize Z∗SLINN, see
[2]. We now proceed to ⊇ inclusions.

Consider an arbitrary semilinear set
⋃

1≤i≤m〈Ai, bi〉N, where for each i, 1 ≤ i ≤
m, Ai is a finite set, Ai ∪ {bi} ⊆ Zd. We construct the following purely catalytic
P system over integers

Π1 = (O,C, µ,w1, · · · , w2m+1, R1, · · · , R2m+1, i0 = 1) where

O = {ai | 1 ≤ i ≤ d}, C = {c},
µ = [ [ [ ]m+2 ]2 · · · [ [ ]2m+1 ]m+1 ]1,

w1 = c, wi+1 = λ, 1 ≥ i ≥ 2m,

R1 = {c→ (c, ini+1)vi | 1 ≤ i ≤ m, ψ(vi) = bi},
Ri+1 = {c→ c(v, out) | ψ(v) ∈ Ai} ∪ {c→ (c, inm+i+1)}, 1 ≤ i ≤ m,

Rm+i+1 = ∅, 1 ≤ i ≤ m.

The work of Π1 consists of a non-deterministic choice of i-th linear set to generate,
by moving catalyst c into membrane i+ 1 and producing bi. After sending to the
skin an arbitrary combination of vectors from Ai, the catalyst enters membrane
m+ i+ 1 and the system halts.

The system Π2 is obtained from Π1 by replacing the sets Ri+1 of rules, 1 ≤
i ≤ m, by

{c→ cv | ψ(v) ∈ Ai} ∪ {c→ (c, inm+i+1)δ}.
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It works just as Π1, with one difference, Here, instead of sending v out (possibly
containing negative multiplicities), the linear combination of vectors from Ai is
generated directly in membrane i+1, and is released into the skin upon dissolution
of membrane i + 1, simultaneously with sending the catalyst into the elementary
membrane m + i + 1. Now consider the following purely catalytic P system over
integers.

Π3 = (O,C, µ,w1, · · · , w3m+1, R1, · · · , R3m+1, i0 = 1) where

O = {ai | 1 ≤ i ≤ d}, C = {ci | 1 ≤ i ≤ m+ 1},
µ = [ [ [ [ ]

2m+2
]
m+2

]
2
· · · [ [ [ ]

3m+1
]
2m+1

]
m+1

]
1
,

w1 = c1, wi+1 = λ, 1 ≤ i ≤ 2m,

w2m+1+i = c1+i, 1 ≥ i ≥ m,
R1 = {c1 → (c1, ini+1)vi | 1 ≤ i ≤ m, ψ(vi) = bi},

Ri+1 = {c1 → c1v | ψ(v) ∈ Ai}
∪ {c1 → (c1, inm+i+1), ci → ciδ}, 1 ≤ i ≤ m,

Rm+i+1 = {c1 → (c1, in2m+i+1), ci → (ci, out)}, 1 ≤ i ≤ m,
R2m+i+1 = {c1 → c1δ}, 1 ≤ i ≤ m.

The basic idea is the same, but the implementation is a little longer. To each
linear set i, 1 ≤ i ≤ n, three nested membranes are associated (i + 1, m + i + 1
and 2m + i + 1). The beginning is just like in the case of Π2, until catalyst c1 is
sent into membrane m+ i+ 1, but membrane i+ 1 is not dissolved yet. Then, c1
enters the elementary membrane 2m+ i+1 and dissolves it, releasing catalyst ci+1

into the surrounding membrane m + i + 1. Clearly, c1 cannot reenter membrane
2m+i+1, which no longer exists, so it has no applicable associated rules. Catalyst
ci, however, is sent out to membrane i + 1, and dissolves it, which releases all
generated regular objects to the skin and halts the computation. This proves the
characterizations.

5 Conclusions

We have reproved that the power of purely catalytic P systems over integers is
contained in the family of all semilinear sets of vectors of integers. We then have
shown that with one membrane purely catalytic P systems over integers give de-
generate results, and with two membranes they are characterized exactly by the
family of all uniform semilinear sets of vectors of integers. With more membranes,
this equality becomes a strict inclusion, and a specific union of linear sets with
different base vectors have been obtained. More specifically, for any vector e ∈ Zd

and any finite set C ⊆ Zd, purely catalytic P systems over integers can generate

〈{e},−e〉 ∪ 〈C〉N .
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The most interesting open question remaining is whether Z∗OZP∗(pcat∗, δ) is
closed under union. While in almost all cases in membrane computing closure
under union is trivial, e.g., by making a non-deterministic choice in the first step
of the computation, the current situation is rather surprising.

Finally, we have considered the variants with mobile catalysts, and showed
a few combinations of features leading to characterizations of semilinear sets of
Z-vectors.
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brane systems. In H. Jürgensen, J. Karhumäki, and A. Okhotin, editors, Descrip-
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