
kPWorkbench: A Software Framework for Kernel
P Systems

Marian Gheorghe1, Florentin Ipate2, Laurentiu Mierla2, and Savas Konur1

1 School of Electrical Engineering and Computer Science, University of Bradford
Bradford BD7 1DP, UK
{m.gheorghe, s.konur}@bradford.ac.uk

2 Department of Computer Science, University of Bucharest
Str. Academiei nr. 14, 010014, Bucharest, Romania
florentin.ipate@ifsoft.ro, laurentiu.mierla@gmail.com

Summary. P systems are the computational models introduced in the context of mem-
brane computing, a computational paradigm within the more general area of uncon-
ventional computing. Kernel P (kP) systems are defined to unify the specification of
different variants of P systems, motivated by challenging theoretical aspects and the
need to model different problems. In this paper, we present kPWorkbench, a software
framework developed to support kP systems. kPWorkbench integrates several simula-
tion and verification tools and methods, and provides a software suit for the modelling
and analysis of membrane systems.

1 Introduction

Membrane computing is a computational paradigm, within the more general area
of unconventional computing [24], inspired by the structure and behaviour of the
eukaryotic cell. The formal models introduced in this context are called membrane
systems or P systems. After their introduction [22], membrane systems have been
widely investigated for computational properties and complexity aspects, but also
as a model for various applications [23]. The introduction of different variants
of P systems has been motivated by challenging theoretical aspects, but also by
the need to model different problems. An account of the theoretical developments
is presented in [23], a set of general applications can be found in [6], whereas
specific applications in systems and synthetic biology are provided in [11] and
some of the future challenges are presented in [14]. More recently, applications
in optimisations and graphics [16] and synchronisation of distributed systems [9]
have been developed.

Several variants of P systems have been introduced and studied to model and
analyse different problems, e.g., systems and synthetic biology [11], synchronisation
of distributed systems [9], optimisations and graphics [16]. While the introduction
of new variants allowed modelling different sets of problems, the ad-hoc addition

180 M. Gheorghe et al.

of new features has caused an abundance of P system variants, with a lack of a
coherent integrating view, and well-defined framework would allow us to analyse,
verify and validate the system behaviour.

We introduced kernel P systems (kP systems) [15] as an attempt to target these
issues and create more general membrane computing models, integrating the most
used concepts from P systems. A revised version of the model and the specification
language can be found in [12] and its usage to specify the 3-colouring problem and
a comparison to another solution provided in a similar context [8], is described in
[13]. The kP systems have been also used to specify and analyse, through formal
verification, synthetic biology systems [21, 20].

We have previously studied the theoretical aspects [15] and the verification
and simulation techniques developed for kP systems [10, 3, 2]. In this paper,
we present kPWorkbench (available and can be downloaded from its website
http://www.kpworkbench.org), a software framework developed to support the
analysis of kP systems. kPWorkbench integrates several simulation and verifica-
tion tools and methods. The framework also facilitates verification by incorporat-
ing a property language based on natural language statements, which makes the
property specification a very easy task. These features make kPWorkbench the
only available tool supporting the non-probabilistic analysis of membrane systems
through simulation and verification. The usability and novelty of our approach
have been illustrated by some case studies [21, 20] chosen from synthetic biology
(a new and emerging branch of biology that aspires to the engineering of new
biological systems).

The paper is organised as follows: in Section 2 are introduced the key con-
cepts and definitions related to kP systems; the kPWorkbench is discussed in
Section 3; in Section 4 are summarised some kP systems applications; Section 5
illustrates through some examples the use of the kPWorkbench platform and
final conclusions are provided in Section 6.

2 Kernel P Systems

A kP system is made of compartments placed in a graph-like structure. A com-
partment Ci has a type ti = (Ri, σi), ti ∈ T , where T represents the set of all
types, describing the associated set of rules Ri and the execution strategy that
the compartment may follow. Note that, unlike traditional P system models, in
kP systems each compartment may have its own rule application strategy. The
following definitions are largely from [15].

Definition 1. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; µ defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and
E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of

A Software Framework for Kernel P Systems 181

a compartment type from T and an initial multiset, wi over A; i0 is the output
compartment where the result is obtained.

Each rule r may have a guard g denoted as r {g}. The rule r is applicable
to a multiset w when its left hand side is contained into w and g holds for w.
The guards are constructed using multisets over A and relational and Boolean
operators. For example, rule r : ac → c {≥ a3∧ ≥ b2 ∨ ¬ > c} can be applied
iff the current multiset, w, includes the left hand side of r, i.e., ac and the guard
holds for w - it has at least 3 a′s and 2 b′s or no more than a c. A formal definition
may be found in [15].

Definition 2. A rule associated with a compartment type li can have one of the
following types:

(a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and tj
indicates a compartment type from T – see Definition 1 – with instance compart-
ments linked to the current compartment; tj might indicate the type of the current
compartment, i.e., tli – in this case it is ignored; if a link does not exist (the two
compartments are not in E) then the rule is not applied; if a target, tj, refers to
a compartment type that has more than one instance connected to li, then one of
them will be non-deterministically chosen;

(b) structure changing rules; the following types are considered:

(b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},
where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj , tj,hj) like in rewrit-
ing and communication rules; the compartment li will be replaced by p com-
partments; the j-th compartment, instantiated from the compartment type tij
contains the same objects as li, but x, which will be replaced by yj; all the links
of li are inherited by each of the newly created compartments;

(b2) membrane dissolution rule: [x]tli → λ {g};
the compartment li and its entire contents is destroyed together with its links.
This contrasts with the classical dissolution semantics where the inner multiset
is passed to the parent membrane - in a tree-like membrane structure;

(b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is trans-
formed into y; if more than one instance of the compartment type tlj exists then
one of them will be non-deterministically picked up; g is a guard that refers to
the compartment instantiated from the compartment type tli ;

(b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are discon-
nected.

Each compartment can be regarded as an instance of a particular compartment
type and is therefore subject to its associated rules. One of the main distinctive
features of kP systems is the execution strategy which is now statutory to types

182 M. Gheorghe et al.

rather than unitary across the system. Thus, each membrane applies its type spe-
cific instruction set, as coordinated by the associated execution strategy.

An execution strategy can be defined as a sequence σ = σ1&σ2& . . .&σn, where
σi denotes an atomic component of the form:

• ε, an analogue to the generic skip instruction; ε is generally used to denote an
empty execution strategy;

• r, a rule from the set Rt (the set of rules associated with type t). If r is appli-
cable, then it is executed, advancing towards the next rule in the succession;
otherwise, the compartment terminates the execution thread for this particular
computational step and thus, no further rule will be applied;

• (r1, . . . , rn), with ri ∈ Rt, 1 ≤ i ≤ n symbolizes a non-deterministic choice
within a set of rules. One and only one applicable rule will be executed if
such a rule exists, otherwise the atom is simply skipped. In other words the
non-deterministic choice block is always applicable;

• (r1, . . . , rn)∗, with ri ∈ Rt, 1 ≤ i ≤ n indicates the arbitrary execution of a set
of rules in Rt. The group can execute zero or more times, arbitrarily but also
depending on the applicability of the constituent rules;

• (r1, . . . , rn)>, ri ∈ Rt, 1 ≤ i ≤ n represents the maximally parallel execution
of a set of rules. If no rules are applicable, then execution proceeds to the
subsequent atom in the chain.

The execution strategy itself is a notable asset in defining more complex be-
haviour at the compartment level. For instance, weak priorities can be easily ex-
pressed as sequences of maximally parallel execution blocks: (r1)>&(r2)>& . . .&(r3)>

or non-deterministic choice groups if single execution is required. Together with
composite guards, they provide an unprecedented modelling fluency and plastic-
ity for membrane systems. Whether such macro-like concepts and structures are
preferred over traditional modelling with simple but numerous compartments in
complex arrangements is a debatable aspect.

The kP system models are described in a machine readable language, called
kP–Lingua [10]. Below, we illustrate the kP systems concepts on an example, which
is slightly adjusted from [10, 2].

Example 1. A type definition in kP–Lingua.

type C1 {

choice {

> 2b : 2b -> b, a(C2) .

b -> 2b .

}

}

type C2 {

choice {

a -> a, {b, 2c}(C1) .

}

}

m1 {2x, b} (C1) - m2 {x} (C2) .

A Software Framework for Kernel P Systems 183

Above, C1, C2 denote two compartment types, which are instantiated as m1, m2,
respectively. m1 starts with the initial multiset 2x, b and m2 starts with x. The
rules of C1 are chosen non-deterministically, only one at a time – this is achieved
by the use of the key word choice. The first rule is fired only when its guard
becomes true; in other words, only when the current multiset has at least three
b’s. This rule also sends an a to the instance of C2 that is linked. In the type C2,
there is only one rule to be fired, which happens only when there is an a in the
compartment C1.

3 kPWorkbench

kPWorkbench is an integrated software suit developed to provide a tool support
for kP systems. kPWorkbench employs a set of tools and methods, allowing one
to model membrane systems and to analyse them through simulation and verifica-
tion. In the following, we briefly discuss some features of the software framework.

3.1 Features

Modeling.

kPWorkbench accepts kP system models specified in an intuitive modelling lan-
guage, kP–Lingua. kP systems accumulate the most important aspects of various P
system variants, so kP–Lingua provides a generic language to model various mem-
brane systems. kPWorkbench features a graphical model editor, permitting to
create new model files and editing existing files.

The grammar of the kP–Lingua language is written in ANTLR (ANother Tool
for Language Recognition) [1], automatically generating the necessary syntactic
and semantic analysers. ANTLR also constructs the data structures that rep-
resent the corresponding abstract syntax tree (AST) together with a traversing
functionality.

Simulation.

kPWorkbench offers two different approaches to simulate kP systems. In both
approaches, a kP–Lingua model is provided as an input, and the execution traces of
the model are returned as an output. These traces permit exploring the dynamics
of the system and observing how the system evolves over time.

In the first approach, we have developed a custom simulation tool [3], which
recreates the system dynamics as a set of simulation runs. The tool translates a kP–
Lingua specification into an internal data structure, which permits representing
compartments, containing multisets of objects and rules, and their connections
with other compartments.

In the second approach, we have integrated the Flame simulator [7], a general
purpose large scale agent based simulation environment. Flame is based on the X-
machine formalism [17], a type of extended finite state machine whose transitions

184 M. Gheorghe et al.

Prop. Pattern Lang. Construct LTL formula CTL formula

Next next p X p EX p
Existence eventually p F p EF p
Absence never p ¬(F p) ¬(EF p)
Universality always p G p AG p
Recurrence infinitely-often p G F p AG EF p
Steady-State steady-state p F G p AF AG p
Until p until q p U q A (p U q)
Response p followed-by q G (p → F q) AG (p → EF q)
Precedence p preceded-by q ¬(¬p U (¬p ∧ q)) ¬(E (¬p U (¬p ∧ q)))

Table 1: Some property patterns defined in kP–Queries and the LTL and CTL
translations. Note that LTL implicitly quantifies universally over paths (i.e. “ne-
cessity”). To complement this semantics, in CTL we translate some formulas by
assuming quantification over some paths (i.e. “possibility”).

are labelled by processing functions that operate on a (possibly infinite) set called
memory, that models the system data. Flame has been successfully used in various
applications, ranging from biology to macroeconomics.

In order to simulate kernel P system models using the Flame framework, an
automated model translation has been implemented for converting the kP–Lingua
specification into communicating X-machines [17]. One of the main advantages of
this approach is the high scalability degree and efficiency for simulating large scale
models.

Verification.

Although there have been some efforts to apply formal verification, in particular
model checking, methods and methodologies for various P systems (e.g., [19, 4]),
utilising a comprehensive, integrated and automated verification approach is a very
challenging task in the context of membrane computing. For example, it is very
difficult to transform some complex features, e.g. membrane division, dissolution
and link creation/destruction, into suitable abstractions in model checking tools.

We have successfully addressed these issues, and developed a verification envi-
ronment [10, 2] for kPWorkbench, integrating some state of the art model check-
ing tools, e.g. the Spin [18] and NuSMV [5]. The translations from a kP–Lingua
representation to the corresponding Spin and NuSMV inputs (i.e. Promela and
Smv, respectively) are automatically performed.

In order to facilitate the property specification task, kPWorkbench features
a property language, kP–Queries, based on natural language statements. The lan-
guage also provides a list of property patterns (templates), generated from most
commonly used queries (see Table 1). The property language permits specifying
the target logic (i.e. LTL and CTL) for different properties without placing a re-
quirement on a specific model checker. In this way, we can use the same set of
properties in various verification experiments.

A Software Framework for Kernel P Systems 185

3.2 System architecture

Fig. 1: The overview architecture of kPWorkbench framework

Figure 1 depicts an overview of the kPWorkbench system architecture, which
consists of three modules:

1. The kernel P (kP) module takes a kP system model specified in kP–Lingua,
which can be created or edited using a dedicated model editor, as input. The kP–
Lingua module parses the input file and validates its syntax via ANTLR (which
generates the necessary syntactic and semantic analysers). The kP–Model module
accommodates the corresponding data structures of the input model, comprising
compartment types, execution strategies, rules, multiset of objects and connections
between compartments. The kP–Lingua module instantiates a kP–Model object
and maps the AST generated by ANTLR to that object. This object is used as
Data Transfer Object (DTO) between different modules of the framework. This
separation helps developers to easily add new components to the framework.

2. The Simulation module consists of two components, kPWorkbench Sim-
ulator and Flame Translator. Both require the kP–Model object and simulator
parameters, e.g. number of steps, as input. The kPWorkbench Simulator com-
ponent is a custom simulator, which processes the multisets of objects of the input
model with respect to its execution strategies and rules. The Flame Translator
transforms the kP–Model object into a Flame Model object that aggregates agent,
function, input, condition and output classes. It assigns each compartment to an
agent, and the rules and the multiset of objects are stored as agent data. It cre-
ates a specific function for each type of execution strategy. In addition it creates
C functions that represent the system behaviour (they are executed by Flame

186 M. Gheorghe et al.

when the agent makes a transition from one state to another). The Flame Trans-
lator uses the ANTLR template group feature to produce the Flame simulator
specifications from the Flame Model object.

3. The Verification module contains three components: the Spin and NuSMV
translators and the kP–Queries module:

The Spin Translator has two main components: Translator and Promela
(Spin’s specification language). The Promela component aggregates the Promela
language specifications: MType, Array, Do statement, If statement, Init, etc. The
Translator maps the kP–Model object to a Promela object using the following
procedure [10]: (i) A compartment type is translated into a data type definition
with the multiset of objects and links to other compartments, and also with tem-
porary storage variables that provide the parallelism of P systems. (ii) Multiset of
objects is assigned to an integer array where an index denotes the object and its
value represents the multiplicity of the object. (iii) The set of rules are organised
according to the execution strategies mapped by a Proctype definition – a Promela
process. (iv) Maximal parallelism and arbitrary execution strategies are mapped
to the Do statement, and choice execution strategy is mapped to If statement.

After the mapping process, the Translator component translates the Promela
object to the corresponding Promela model, used by the Spin model checker. How-
ever, this translation is not simple and straightforward, especially the structure
changing rules, and arbitrary and maximal parallelism execution strategies com-
plicate the translation process. More details about the translation from kP System
model to the Spin model checker specification can be found in [10].

Similarly, the NuSMV Translator translates the kP–Model object to the corre-
sponding NuSMV representation (NuSMV’s specification language). The transla-
tor has two main components: Translator and NuSMV. The NuSMV component
consists of subcomponents representing the NuSMV language objects, such as
module, variables, INVARs, Case Statements, Conditions, and logical connectives.
The Translator maps the kP–Model object to the NuSMV object as follows: (i)
Each compartment is translated into a module. (ii) The content of compartments
is translated into variables. (iii) The initial multisets of the compartment are as-
signed into module parameters. (iv) Rules and guards are translated into the case
statements. (v) The behaviour of execution strategies and the parallelism of P
systems are achieved by introducing custom variables.

After the mapping process, the Translator component generates the NuSMV
model from the NuSMV object, which is then provided as input to the NuSMV
model checker. During the mapping process, we have overcome a few challenging
domain specific restrictions. For example, unlike Promela, NuSMV has restrictions
on defining arrays, and only allows accessing a value of array by a symbolic constant
index; but it does not allow assigning a value by a symbolic constant. Therefore,
instead of using arrays, we created a variable for each multiset of objects. Also,
in Promela, we can non-deterministically pick a true statement among branches
when there are more than one true statements; whereas, in NuSMV the selections
are only deterministic. It always chooses the first true statement from a list of

A Software Framework for Kernel P Systems 187

conditions. We overcome that issue by introducing an INVAR declaration whenever
a non-determinism behaviour is required.

The kP–Queries module receives a property, natural language based state-
ments, as input. The user can build properties from the property language edi-
tor. The editor interacts with the kP–Lingua model, and permits accessing the
native model elements, which simplifies the property building process. The kP–
Queries’ domain language has its own grammar, which is independent from and
much simpler than the target model checking languages. The DSL (domain spe-
cific language) of the property language is written in ANTLR, receiving the EBNF
grammar as input and generates the corresponding syntactic and semantic anal-
ysers as well as the corresponding AST. In order to simplify the traversal of the
AST, we adapt a strategy, which maps the AST to a better structured internal data
representation. To traverse between the elements of the internal data structure (a
tree-like hierarchy), we follow the Visitor design pattern. Namely, the internal data
nodes are treated as visitable entities, which are able to accept visitors and request
to visit them. Each visitor has a specific functionality for visiting every single node.
The visitor design pattern approach enables the kP–Queries module to translate
every node of the internal presentation of property into the target model checker’s
corresponding property specification language.

4 Applications

Although membrane computing is mainly inspired from biology, its application to
biological systems has been very limited due to the lack of a coherent and well-
defined framework that allows us to analyse, verify and validate these systems.
The methods and methodologies we have developed in [15, 10, 3, 2] to tackle these
issues have filled an important gap in this respect. kPWorkbench, implementing
these methodologies and algorithms, now provides a fully automated tool support,
facilitating the modelling and analysis of biological systems through simulation
and verification.

The usability and novelty of our approach has already been illustrated in some
well-known case studies, chosen from systems and synthetic biology. In [21], we
showed how our approach utilises the non-deterministic analysis of two biological
systems, the quorum sensing in P. aeruginosas (a bacterial pathogen) and the
synthetic pulse generator. Namely, we used our approach to observe various phe-
nomena in genetic regulatory networks, e.g. various interactions between molecular
species and various dependencies between molecules. Likewise, in [20], we showed
how our approach can be used to formally analyse unconventional programs, e.g.
some genetic Boolean gates.

We believe that our methods and techniques, and hence the kPWorkbench
platform, provide significant contributions to the membrane & unconventional
computing communities.

188 M. Gheorghe et al.

Prop. Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations

1 Universality
(i) No more than one termination signal will be generated
(ii) always m.t <= 1
(iii) ltl prop { [] (c[0].x[t] <= 1 || state != step complete) }

2 Absence
(i) The system will never generate 15 as a square number
(ii) never m.s = 15
(iii) ltl prop { !(<> (c[0].x[s] == 15 && state == step complete)) }

3 Steady-state
(i) In the long run, the system will converge to a state in which, if the termination
signal is generated, no more a objects will be available
(ii) steady-state (m.a = 0 implies m.t = 1)
(iii) ltl prop { <> ([] ((c[0].x[a] == 0 -> c[0].x[t] == 1) ||

state != step complete) && state != step complete) }
Prop. Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations

4 Existence
(i) The system will eventually consume all a objects, on some runs
(ii) eventually m.a = 0
(iii) SPEC EF m.a = 0

5 Existence
(i) On some runs the system will eventually halt
(ii) eventually m.t = 1
(iii) SPEC EF m.t = 1

6 Universality
(i) No more than one termination signal will be generated
(ii) always m.t <= 1
(iii) SPEC AG m.t <= 1

7 Absence
(i) The system will never generate 15 as a square number
(ii) never m.s = 15
(iii) SPEC !(EF m.s = 15)

8 Precedence
(i) The consumption of all a objects will always be preceded by a halting signal
(ii) m.a = 0 preceded-by m.t = 1
(iii) SPEC !(E [!(m.a = 0) U (!(m.a = 0) & m.t = 1)])

9 Response
(i) By starting the computation with at least one a object, on some runs the system
will eventually consume all of them
(ii) m.a >0 followed-by m.a = 0
(iii) SPEC AG (m.a > 0 -> EF m.a = 0)

10 Response
(i) A halting signal will always be followed by the consumption of all a objects
(ii) m.t = 1 followed-by m.a = 0
(iii) SPEC AG (m.t = 1 -> EF m.a = 0)

Table 2: List of properties derived from the property language and their represen-
tations in different formats.

5 Examples

5.1 Generating square numbers

We present below a kernel P systems model that generates square numbers (start-
ing with 1) each step. The multiplicity of object “s” is equal to the square number
produced each step.

type main {

max {

= t: a -> {} .

< t: a -> a, 2b, s .

< t: a -> a, s, t .

< t: b -> b, s .

A Software Framework for Kernel P Systems 189

m0

m1 m2

m3

Fig. 2: The structure.

}

}

m {a} (main) .

An execution trace for this model can be visualised as follows:

a

a 2b s

a 4b 4s

a 6b 9s

...

kPWorkbench automatically converts the kP-Lingua model into the corre-
sponding input languages of the Spin, and NuSMV model checkers. In order to
verify that the problem works as desired, we have constructed a set of properties
specified in kP-Queries, listed in Table 2. The applied pattern types are given in
the second column of the table. For each property we provide the following infor-
mation; (i) informal description of each kP-Query, (ii) the formal kP-Query, (iii)
the translated form of the kP-Query into the LTL specifications written in Spin
modelling language, and CTL specifications written in the NuSMV language. The
results of all queries are positive, as expected.

5.2 Broadcasting with acknowledgement

In this case study, we consider broadcasting with acknowledgement in ad-hoc net-
works. Each level of nodes in the hierarchy has associated a unique type with
communication rules to neighbouring (lower and upper) levels. This is the only
way we can simulate signalling with kP systems such that we do not hard-wire
the target membranes in communication rules, i.e. assume we do not know how
many child-nodes are connected to each parent as long as we group them by the
same type; evidently, this only applies to tree structures. The kP Systems model
written in kP–Lingua is given as follows:

type L0 {

max {

a -> b, a (L1), a (L2) .

}

}

190 M. Gheorghe et al.

type L1 {

max {

a, c -> c (L0) .

}

}

type L2 {

max {

a -> b, a (L3) .

b, c -> c (L0) .

}

}

type L3 {

max {

a, c -> c (L2) .

}

}

m0 {a} (L0) .

m1 {c} (L1) - m0 .

m2 {} (L2) - m0.

m3 {c} (L3) - m2 .

In order to verify that the model works as desired, we have verified some
properties, presented in Table 3. The results are positive, except Properties 1 and
5, as expected. These results confirm the desired system behaviour.

6 Conclusion

We have presented the kPWorkbench toolset developed to support kernel P
systems. kPWorkbench integrates several simulation and verification tools and
methods and permits modelling and analysis of membrane systems. It also features
a property language based on natural language statements to facilitate property
specification. These features make kPWorkbench the only available integrated
toolset permitting non-deterministic analysis (through simulation and verification)
of membrane systems.

We are planning to work on more case studies from different fields, e.g., systems
& synthetic biology, engineering and economics.

Acknowledgements. The work of FI and LM was supported by a grant of the
Romanian National Authority for Scientific Research, CNCS-UEFISCDI (project
number: PN-II-ID-PCE-2011-3-0688). MG and SK acknowledge the support pro-
vided for synthetic biology research by EPSRC ROADBLOCK (project number:
EP/I031812/1).

A Software Framework for Kernel P Systems 191

Prop. Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations

3 Existence
(i) The terminal nodes will receive the broadcast message at the same time
(ii) eventually (m1.a >0 and m3.a >0)
(iii) ltl prop { <> ((c[0].x[a] > 0 && c[0].x[a] > 0) &&

state == step complete) }

3 Absence
(i) The root node will never receive an acknowledgement without sending a broadcast
(ii) never m0.a >0 and m0.c >0
(iii) ltl prop { !(<> ((c[0].x[a] > 0 && c[0].x[c] > 0) &&

state == step complete)) }

3 Response
(i) The node m2 will always receive broadcast message before its child node (m3)
(ii) m2.a = 1 followed-by m3.a = 1
(iii) ltl prop { [] ((c[0].x[a] == 1 -> <> (c[0].x[a] == 1 &&

state == step complete)) || state != step complete) }
Prop. Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations

4 Existence
(i) The node m1 will eventually receive the broadcast message
(ii) eventually m1.a >0
(iii) SPEC EF m1.a > 0

5 Existence
(i) The terminal nodes will receive the broadcast message at the same time
(ii) eventually m1.a >0 and m3.a >0
(iii) SPEC EF (m1.a > 0 & m3.a > 0)

6 Absence
(i) The root node will never receive an acknowledgement without sending a broadcast
(ii) never m0.a >0 and m0.c >0
(iii) SPEC !(EF (m0.a > 0 & m0.c > 0))

7 Response
(i) The node m2 will always receive the broadcast message before its child node (m3)
(ii) m2.a = 1 followed-by m3.a = 1
(iii) SPEC AG (m2.a = 1 -> EF m3.a = 1)

9 Steady-state

(i) In the long run, the system will converge to a state in which the root node
will have been received the acknowledgement from all the terminal nodes and
no more broadcasts will occur
(ii) steady-state (m0.c = 2 implies m0.a = 0)
(iii) SPEC AF (AG (m0.c = 2 -> m0.a = 0))

9 Steady-state

(i) In the long run, the system will converge to a state in which the root node
will have been received the acknowledgement from all the terminal nodes and
no more acknowledgements will occur
(ii) steady-state (m0.c = 2 implies (m1.c = 0 and m3.c = 0))
(iii) SPEC AF (AG (m0.c = 2 -> (m1.c = 0 & m3.c = 0)))

Table 3: List of properties derived from the property language and their represen-
tations in different formats.

References

1. ANTLR website, url: http://www.antlr.org
2. Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., Niculescu, I.: Extended simulation

and verification platform for kernel P systems. In: 15th International Conference on
Membrane Computing. LNCS, vol. 8961, pp. 158–168. Springer (2014)

3. Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., Ipate, F.: High performance
simulations of kernel P systems. In: Proceedings of the 2014 IEEE 16th Interna-
tional Conference on High Performance Computing and Communication. pp. 409–
412. HPCC ’14, Paris, France (2014)

4. Blakes, J., Twycross, J., Konur, S., Romero-Campero, F., Krasnogor, N., Gheorghe,
M.: Infobiotics workbench: A P systems based tool for systems and synthetic biology.
In: [11], pp. 1–41

192 M. Gheorghe et al.

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV version 2: An open source tool for symbolic
model checking. In: Proc. International Conference on Computer-Aided Verification
(CAV 2002). LNCS, vol. 2404, pp. 359–364. Springer, Copenhagen, Denmark (2002)

6. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane Com-
puting. Springer (2006)

7. Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.: Ex-
ploitation of high performance computing in the FLAME agent-based simulation
framework. In: Proceedings of the IEEE 14th International Conference on High Per-
formance Computing and Communication. pp. 538–545. HPCC ’12, Liverpool, UK
(2012)

8. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: A uniform family
of tissue P systems with cell division solving 3-COL in a linear time. Theoretical
Computer Science 404, 76–87 (2008)

9. Dinneen, M.J., Yun-Bum, K., Nicolescu, R.: Faster synchronization in P systems.
Natural Computing 11(4), 637–651 (2012)

10. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierlă, L.: Model checking kernel
P systems. In: 14th International Conference on Membrane Computing. LNCS, vol.
8340, pp. 151–172. Springer (2013)

11. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing in Systems and Synthetic Biology. Springer (2014)

12. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P systems - version 1. In: 11th Brain-
storming Week on Membrane Computing, pp. 97–124. Fénix Editora (2013)

13. Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M.J., Ţurcanu, A., Valencia-
Cabrera, L., Garćıa-Quismondo, M., Mierlă, L.: 3-Col problem modelling using simple
kernel P systems. Int. Journal of Computer Mathematics 90(4), 816–830 (2012)

14. Gheorghe, M., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Research frontiers of
membrane computing: Open problems and research topics. International Journal of
Foundations of Computer Scence 24, 547–624 (2013)

15. Gheorghe, M., Ipate, F., Dragomir, C.: Kernel P systems. In: 10th Brainstorming
Week on Membrane Computing, pp. 153–170. Fénix Editora (2012)

16. Gimel’farb, G.L., Nicolescu, R., Ragavan, S.: P system implementation of dynamic
programming stereo. Journal of Mathematical Imaging and Vision 47(1–2), 13–26
(2013)

17. Holcombe, M.: X-machines as a basis for dynamic system specification. Softw. Eng.
J. 3(2), 69–76 (1988)

18. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Soft. Eng. 23(5),
275–295 (1997)

19. Ipate, F., Lefticaru, R., Tudose, C.: Formal verification of P systems using Spin.
International Journal of Foundations of Computer Science 22(1), 133–142 (2011)

20. Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., Krasnogor, N.: Conventional ver-
ification for unconventional computing: a genetic XOR gate example. Fundamenta
Informaticae 134(1-2), 97–110 (2014)

21. Konur, S., Gheorghe, M., Dragomir, C., Mierlă, L., Ipate, F., Krasnogor, N.: Quali-
tative and quantitative analysis of systems and synthetic biology constructs using P
systems. ACS Synthetic Biology 4(1), 83–92 (2015)

22. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

A Software Framework for Kernel P Systems 193

23. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

24. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer
(2012)

