
Asynchronous Spiking Neural P Systems
with Local Synchronization

Tao Song1, Linqiang Pan1, Gheorghe Păun2
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Summary. Spiking neural P systems (SN P systems, for short) are a class of distributed
parallel computing devices inspired from the way neurons communicate by means of
spikes. Asynchronous SN P systems are non-synchronized systems, where the use of spik-
ing rules (even if they are enabled by the contents of neurons) is not obligatory. In this
paper, with a biological inspiration (in order to achieve some specific biological func-
tioning, neurons from the same functioning motif or community work synchronously to
cooperate with each other), we introduce the notion of local synchronization into asyn-
chronous SN P systems. The computation power of asynchronous SN P systems with
local synchronization is investigated. Such systems consisting of general neurons (resp.
unbounded neurons) and using standard spiking rules are proved to be universal. Asyn-
chronous SN P systems with local synchronization consisting of bounded neurons and
using standard spiking rules characterize the semilinear sets of natural numbers. These
results show that the local synchronization is useful, it provides some “programming
capacity” useful for achieving a desired computational power.

1 Introduction

Membrane computing is one of the recent branches of natural computing. It was
initiated in [9] and has developed rapidly (already in 2003, ISI considered mem-
brane computing as a “fast emerging research area in computer science”, see
http://esi-topics.com). The aim is to abstract computing ideas (data struc-
tures, operations with data, ways to control operations, computing models, etc.)
from the structure and the functioning of a single cell and from complexes of
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cells, such as tissues and organs, including the brain. The obtained models are dis-
tributed and parallel computing devices, usually called P systems. There are three
main classes of P systems investigated: cell-like P systems (based on a cell-like
(hence hierarchical) arrangement of membranes delimiting compartments where
multisets of chemicals evolve according to given evolution rules) [9], tissue-like P
systems (instead of hierarchical arrangement of membranes, one considers arbi-
trary graphs as underlying structures, with membranes placed in the nodes, and
with the edges corresponding to communication channels) [7], and neural-like P
systems. Many variants of all these systems have been considered; an overview
of the field can be found in [10] and [11], with up-to-date information available
at the membrane computing website (http://ppage.psystems.eu). For an intro-
duction to membrane computing, one may consult [10] and [11]. The present work
deals with a class of neural-like P systems, called spiking neural P systems (SN P
systems, for short), introduced in [5].

SN P systems are a class of distributed and parallel computing models inspired
by spiking neurons. As we know, neurons are one of the most interesting cell-types
in the human body. A large number of neurons working in a cooperative manner
are able to perform tasks (such as thought, self-awareness, intuition) that are not
yet matched by the tools we can build with our current technology. However, we
believe that the distributed manner in which the brain processes information is
important in obtaining better performance for electronic computers, that is why
we are interested in SN P systems defined as a computation model. We stress
that in this work SN P systems are a subject of a theoretical computer science
investigation, without any intention to propose a platform for modeling biological
processes.

Briefly, an SN P system consists of a set of neurons placed in the nodes of
a directed graph, where neurons send signals (called spikes and denoted by the
symbol a in what follows) along synapses (arcs of the graph). Spikes evolve by
means of standard spiking rules, which are of the form E/ac → a; d, where E is
a regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The
meaning is that if a neuron contains k spikes such that ak ∈ L(E) and k ≥ c, then
it can consume c spikes and produce one spike after a delay of d steps. This spike
is sent to all neurons connected by an outgoing synapse starting in the neuron
where the rule was applied. There are also standard forgetting rules, of the form
as → λ, with the meaning that s ≥ 1 spikes are forgotten if the neuron contains
exactly s spikes. Extended rules were considered in [3]: these rules are of the form
E/ac → ap; d, with the meaning that when using this rule, c spikes are consumed
and p spikes are produced. Because p can be 0 or greater than 0, we obtain a
generalization of both standard spiking and forgetting rules.

A rule is bounded if it is of the form ai/ac → ap; d, where 0 < c ≤ i, 0 < p ≤ c,
d ≥ 0. A neuron is bounded if it contains only bounded rules. A rule is called
unbounded if it is of the form ai(aj)∗/ac → ap; d, with i ≥ 0, j ≥ 1, c ≥ p > 0,
d ≥ 0. (Note that also rules of the form ai(aj)+/ac → ap; d are covered, as they
can be rewritten in the form ai+j(aj)∗/ac → ap; d.) A neuron is unbounded if it
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contains only unbounded rules. A neuron is general if it contains both bounded
and unbounded rules. An SN P system is bounded if all neurons in the system
are bounded. It is unbounded if it has both bounded and unbounded neurons. An
SN P system is general if it contains at least one general neuron (i.e., a neuron
containing both bounded and unbounded rules).

An SN P system works in a synchronized manner. A global clock is assumed,
and in each time unit, the rule to be applied in each neuron is non-deterministically
chosen; one rule must be applied in each neuron with applicable rules. The work
of the system is sequential in each neuron: only (at most) one rule is applied in
each neuron. One of the neurons is considered to be the output one, and its spikes
are also sent to the environment. The moments of time when a spike is emitted by
the output neuron are marked with 1, and the other moments are marked with 0.
This binary sequence is called the spike train of the system; it might be infinite if
the computation does not stop. Various numbers can be associated with a spike
train, which can be considered as computed (or generated) by an SN P system.

Synchronized SN P systems using standard rules were proved to be computa-
tionally complete both in the generating and the accepting case [5]. In the proof
of these results, the synchronization plays a crucial role. However, both from a
mathematical point of view and from a neuro-biological point of view, it is rather
natural to consider non-synchronized systems, where the use of rules is not oblig-
atory. Even if a neuron has a rule enabled in a given time unit, this rule is not
obligatorily used. The neuron may remain unfired, maybe receiving spikes from the
neighboring neurons. If the unused rule may be used later, it is used later, without
any restriction on the interval when it has remained unused. If further spikes made
the rule non-applicable, then the computation continues in the new circumstances
(maybe other rules are enabled now). With this motivation, asynchronous SN P
systems were introduced in [2]. It was proved that asynchronous general SN P
systems with extended rules are equivalent with Turing machines; asynchronous
unbounded SN P systems with extended rules are not universal. However, it re-
mains open whether asynchronous general SN P systems with standard rules are
universal.

In a biological neural system, motifs with 4-5 neurons and communities with
12-15 neurons, associated with some specific functioning, are rather common [1].
The neurons from the same motif or community will work synchronously to co-
operate with each other. That is, in a biological neural system, neurons work
asynchronously at the global level, but neurons from the same functioning motif
or community work synchronously at the local level. With this biological inspira-
tion, we introduce asynchronous SN P systems with local synchronization, where
a family of sets of neurons (we call them ls-sets) is specified; if one of the neurons
from an ls-set fires, then all neurons from this set should fire, provided that they
have enabled rules. Of course, it is possible that all neurons from an ls-set remain
unfired even if they have enabled rules, because of the global asynchronous mode.
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In this work, we prove that asynchronous general or unbounded SN P systems
with local synchronization using standard rules are universal; in the bounded case
a characterization of semilinear sets of numbers is obtained.

In the asynchronous SN P systems constructed in [2], the non-determinism
comes from two resources: (1) the asynchronous mode; (2) the non-deterministic
choice of enabled rules to be applied. Each neuron of a system constructed in
the present paper works in a deterministic way, in the sense that at each step
each neuron has at most one enabled rule; however, the whole system works in a
non-deterministic way because of the asynchronous mode.

In the proofs of the universality results in this work, the feature of local synchro-
nization plays a crucial role. An asynchronous general SN P system with standard
rules loses this “programming capacity” ensured by the extended rules and the
local synchronization. So, our research gives some hint to support the conjecture
that an asynchronous general SN P system with standard rules is non-universal
[2].

2 Preliminaries

It is useful for readers to have some familiarity with basic elements of language
theory, e.g., from [13], as well as basic membrane computing [10]. We here only
introduce the necessary prerequisites.

The set of natural numbers is denoted by N.
For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ;

the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, we write simply a∗ and a+ instead
of {a}∗, {a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)

+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)

+) = (L(E1))
+, for all regular expressions E1, E2 over V . Unnecessary

parentheses can be omitted when writing a regular expression, and (E)+∪{λ} can
also be written as E∗.

By SLIN , NRE we denote the families of semilinear and of Turing computable
sets of numbers. (SLIN is the family of length sets of regular languages – languages
characterized by regular expressions;NRE is the family of length sets of recursively
enumerable languages – those recognized by Turing machines.)

In the university proofs, the notion of a register machine is used. A register
machine is a construct M = (m,H, l0, lh, R), where m is the number of registers,
H is the set of instruction labels, l0 is the start label, lh is the halt label (assigned
to instruction HALT), and R is the set of instructions; each element of H labels
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only one instruction from R, thus precisely identifying it. The instructions are of
the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-zero, then subtract 1 from it, and go to
the instruction with label lj ; otherwise, go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way.
The register machine starts with all registers empty (i.e., storing the number zero).
It applies the instruction with label l0 and proceeds to apply instructions as indi-
cated by labels (and, in the case of SUB instructions, by the contents of registers).
If the register machine reaches the halt instruction, then the number n stored at
that time in the first register is said to be computed by M . The set of all numbers
computed by M is denoted by N(M). It is known that register machines compute
all sets of numbers which are Turing computable, hence they characterize NRE
[8].

Without loss of generality, it can be assumed that l0 labels an ADD instruction,
that in the halting configuration all registers different from the first one are empty,
and that the output register is never decremented during the computation (its
content is only added to).

A strongly monotonic register machine is a non-deterministic machine with
only one register (this is also the output register). This register is initially zero
and can only be incremented by 1 at each computation step (that is why we call
such a machine strongly monotonic). When the machine halts, the value stored
in the register is said to be generated. It is known that a set of natural numbers
is semilinear if and only if it can be generated by a strongly monotonic register
machine.

A register machine can also be used in the accepting mode: one starts with all
registers empty, except one specified register, the input one, where a number x is
introduced; the computation starts (with instruction with label l0) and, if it halts,
then the number x is accepted. In this way, again all sets of numbers from NRE
are characterized. Furthermore, a register machine can be used for computing
functions φ : N −→ N: certain registers are designated as input registers and
a specific one as the output register; numbers x1, . . . , xk are introduced in the
input registers and the value of a function φ(x1, . . . ,mk) is obtained in the output
register – providing that φ is defined for x1, x2, . . . , xk, otherwise the computation
never halts. Turing computable functions can be computed in this way.

We use the following convention. When the power of two number generat-
ing/accepting devices D1 and D2 are compared, number zero is ignored, that is,
N(D1) = N(D2) if and only if N(D1)− {0} = N(D2)− {0} (this corresponds to
the usual practice of ignoring the empty string in language and automata theory).
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3 Asynchronous Spiking Neural P Systems with Local
Synchronization

In this section, we introduce the variant of SN P systems investigated in this work
– asynchronous spiking neural P systems with local synchronization. The definition
is complete, but familiarity with the basic elements of classic SN P systems (e.g.,
from [11], [12]) is helpful.

An asynchronous spiking neural P system (without delay) with local synchro-
nization is a construct of the form:

Π = (O, σ1, σ2, . . . , σm, Loc, syn, out), where

• m ≥ 1 is the degree of the system;
• O = {a} is the singleton alphabet (a is called spike);
• σ1, σ2, . . . , σm are neurons of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

(1) ni ≥ 0 is the initial number of spikes contained in σi;
(2) Ri is a finite set of extended rules of the following form: E/ac → ap, where

E is a regular expression over O, c ≥ 1 and c ≥ p ≥ 0;
• Loc = {loc1, loc2, . . . , locl} ⊆ P({σ1, σ2, . . . , σm}) is the family of sets of locally

synchronous neurons (we call these sets ls-sets), where P({σ1, σ2, . . . , σm}) is
the power set of {σ1, σ2, . . . , σm}; the number max{|loc1|, |loc2|, . . . , |locl|} is
the local synchronization degree of the system;

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn is the set of synapses
between neurons;

• out ∈ {1, 2, . . . ,m} indicates the output neuron.

A rule E/ac → ap with p ≥ 1 is called extended firing (we also say spiking)
rule; a rule E/ac → ap with p = 0 is written in the form E/ac → λ and is called a
forgetting rule. If L(E) = {ac}, then the rules are written in the simplified forms
ac → ap and ac → λ. A rule of the type E/ac → a and ac → λ is said to be
standard.

The rules are applied as follows. If neuron σi contains k spikes and ak ∈ L(E),
k ≥ c, then the rule E/ac → ap ∈ Ri is enabled and can be applied. This means
that c spikes are consumed (thus k − c spikes remain in neuron σi), the neuron is
fired, and it produces p spikes. The p spikes emitted by a neuron σi are replicated
and they go to all neurons σj such that (i, j) ∈ syn (each neuron σj receives p
spikes). Every neuron can contain several rules. Because two firing rules, E1/a

c1 →
ap1 and E2/a

c2 → ap2 , can have L(E1)∩L(E2) ̸= ∅, it is possible that two or more
spiking rules are enabled in a neuron at some moment, and then one of them is
chosen non-deterministically.

If the rule is a forgetting one of the form E/ac → λ, then, when it is applied,
c ≥ 1 spikes are removed.

A global clock is assumed, marking the time for all neurons. In each time unit,
any neuron is free to use a rule or not, i.e., a neuron can remain still in spite of the
fact that it contains rules which are enabled by its contents. If the content of the
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neuron is not changed, a rule which is enabled in a given step can fire later. If new
spikes are received, then it is possible that other rules will be enabled and applied
or not. Furthermore, for neurons in the same ls-set locj , if one of these neurons
fires, then all neurons in locj that have enabled rules should fire. Of course, it
is possible that all neurons from locj remain unfired even if they have enabled
rules. That is, all neurons from locj may remain still, or all neurons from locj with
enabled rules fire at a same step (of course, neurons without enabled rules cannot
fire). Hence, neurons work asynchronously at the global level, but neurons in each
ls-set work synchronously.

The “state” of the system at a given time is described by the number of spikes
present in each neuron. That is, the configuration of the system is of the form
⟨r1, r2, . . . , rm⟩ for ri ≥ 0, which indicates that neuron σi contains ri spikes. With
this notation, the initial configuration of the system is ⟨n1, n2, . . . , nm⟩. By using
the rules as described above, one can define transitions among configurations. Any
series of transitions starting from the initial configuration is called a computation.
A computation is successful if it reaches a configuration where no rule can be
applied in any neuron (i.e., the SN P system has halted). The result of a compu-
tation is defined here as the total number of spikes sent into the environment by
the output neuron. (Because of the asynchronous mode, now “the time does not
matter”. The output neuron can remain still for any number of steps between two
consecutive spikes, therefore the result of a computation can no longer be defined
in terms of the steps between two consecutive spikes as in the standard SN P
systems definition.)

Specifically, a number x is generated by an SN P system if there is a halting
computation of the system where the output neuron emits exactly x spikes (if
several spikes are emitted at the same time, all of them are counted). Because of
the non-determinism in using the rules, a given system computes in this way a set
of numbers.

The rules, the neurons, and the SN P systems are called bounded, unbounded,
or general as defined in the Introduction – the definitions are obvious, so we do
not recall them here.

Asynchronous SN P systems with local synchronization can be used as com-
puting devices in various ways, but here we consider them only as generators of
numbers. We denote by N(Π) the set of numbers generated by an asynchronous
SN P system with local synchronization Π, and by NSpikoutP

locsyn
m (α, ls) with

α ∈ {gen, boun, unb} and ls ≥ 0, the family of such sets of numbers generated by
systems of type α (gen stands for general, boun for bounded, unb for unbounded),
with at most m neurons, and local synchronization degree at most ls. If one of
the parameters m and ls is not bounded, then it is replaced with ∗. The subscript
out reminds us of the fact that we count all spikes sent into the environment as
computation results.
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4 Asynchronous General SN P Systems with Local
Synchronization

In this section, we investigate the computation power of asynchronous general SN P
systems with local synchronization, and we prove that such systems using standard
rules are universal. It was formulated as an open problem whether asynchronous
SN P systems with standard rules are universal and it was conjectured that the
answer is negative in [2]. So, the feature of local synchronization provides a useful
“programming capacity”.

As it is usual in the area of spiking neural P systems, asynchronous SN P sys-
tems with local synchronization are represented graphically, which may be easier
to understand than in a symbolic way. We use an oval with rules inside to repre-
sent a neuron, and a directed graph to represent the structure of the system: the
neurons are placed in the nodes of the graph and the edges represent the synapses;
the output neuron has an outgoing arrow, suggesting its communication with the
environment.

Theorem 1. NRE = NSpikoutP
locsyn
∗ (gen, ∗).

We only have to prove that NRE ⊆ NSpikoutP
locsyn
∗ (gen, ∗), since the con-

verse inclusion is straightforward (or we can invoke for it the Turing-Church thesis).
To this aim, we use the characterization of NRE by means of generating register
machines. Let us consider a register machine M = (m,H, l0, lh, I). As mentioned
in Section 2, without any loss of generality, we may assume that in the halting
configuration, all registers different from register 1 are empty, and that the output
register is never decremented during a computation. For each register r of M , let
sr be the number of SUB instructions acting on register r. If there is no such SUB
instruction, then sr = 0, which is the case for the first register r = 1. In what
follows, a specific asynchronous SN P system with local synchronization Π will be
constructed to simulate the register machine M , where each neuron in system Π
has only standard rules.

The system Π consists of three types of modules – ADD modules, SUB mod-
ules, and a FIN module. ADD modules and SUB modules are used to simulate the
ADD and SUB instructions of M , respectively; the FIN module is used to output
a computation result.

In general, a neuron σr is associated with each register r of M ; the number
stored in register r is encoded by the number of spikes in neuron σr. Specifically, if
register r holds the number n ≥ 0, then neuron σr contains 2n spikes. With each
label li of an instruction in M , a neuron σli is associated. In the initial config-
uration, all neurons are empty, with the exception of neuron σl0 associated with
the initial instruction l0 of M , which contains one spike. During a computation,
a neuron σli having one spike inside will become active and starts to simulate an
instruction li : (OP(r), lj , lk) of M : starting with neuron σli activated, one changes
neuron σr as requested by OP, then one introduces one spike into neuron σlj or neu-
ron σlk , which becomes active in this way. When neuron σlh (associated with the
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label lh of the halting instruction of M) is activated, a computation in M is com-
pletely simulated in Π; the FIN module starts to output the computation result
(the number of spikes sent into the environment by the output neuron corresponds
to the number stored in register 1 of M).

In what follows, the modules ADD, SUB, and FIN are given in the standard
graphical way, also specifying their ls-sets, and their work is briefly analyzed.

Module ADD (shown in Figure 1) – simulating an ADD instruction li : (ADD
(r), lj , lk).

The initial instruction of M , the one with label l0, is an ADD instruction. Let
us assume that at step t, an instruction li : (ADD(r), lj , lk) has to be simulated, with
one spike present in neuron σli (like σl0 in the initial configuration) and no spike
in any other neurons, except in those neurons associated with registers. Having
one spike inside, the rule a → a is enabled, neuron σli can fire, and at some time it
will do it (otherwise, the computation does not halt), sending one spike to neurons
σ
l
(1)
i

, σ
l
(2)
i

and σ
l
(3)
i

, respectively. Having one spike inside, neurons σ
l
(1)
i

, σ
l
(2)
i

and

σ
l
(3)
i

can fire; neurons σ
l
(1)
i

and σ
l
(2)
i

will fire at the same step (because they are

in the same ls-set {σ
l
(1)
i
, σ

l
(2)
i
}) sending two spikes to neurons σ

l
(3)
i
, σ

l
(4)
i

and σr,

respectively. In this way, the number of spikes in neuron σr is increased by two,
which corresponds to the fact that the number stored in register r is increased by
one. For neuron σ

l
(3)
i
, we have two possible cases.

Proof. (1) Neuron σ
l
(3)
i

fires before neurons σ
l
(1)
i

and σ
l
(2)
i

fire. Note that, in this

case, when neuron σ
l
(3)
i

fires, neuron σ
l
(4)
i

does not fire (it has no enabled rule),

although neurons σ
l
(3)
i

and σ
l
(4)
i

are in the same ls-set {σ
l
(3)
i
, σ

l
(4)
i
}. Neurons

σ
l
(5)
i

and σ
l
(6)
i

receive one spike from neuron σ
l
(3)
i

and they keep inactive. After

neurons σ
l
(3)
i

and σ
l
(4)
i

receive two spikes from neurons σ
l
(1)
i

and σ
l
(2)
i

, both of

neurons σ
l
(3)
i

and σ
l
(4)
i

can fire, and they will fire at a same step, sending two

spikes to neurons σ
l
(5)
i

and σ
l
(6)
i

. In this way, both of neurons σ
l
(5)
i

and σ
l
(6)
i

accumulate 3 spikes. With 3 spikes inside, neuron σ
l
(5)
i

can fire at any step by

the rule a3 → a, and send one spike to neuron σlj . After neuron σlj receives
one spike, it becomes active, starting to simulate the instruction lj of M .

When neuron σlj fires, it is possible that neuron σ
l
(6)
i

still contains three

spikes because of non-synchronization. In this case, neuron σ
l
(6)
i

should also

fire (because they are in the same ls-set) at the same step removing all three
spikes, which insures that no spike remains in the module (except those in σr).

(2) Neuron σ
l
(3)
i

fires after neurons σ
l
(1)
i

and σ
l
(2)
i

fire. In this case, neuron σ
l
(3)
i

accumulates three spikes and neuron σ
l
(4)
i

has two spikes. Neurons σ
l
(3)
i

and

σ
l
(4)
i

will fire at a same step. Similar to case (1), neuron σlk will become active,

starting to simulate the instruction lk ofM (at the same step “cleaning” neuron
σ
l
(5)
i
).
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Fig. 1. Module ADD with four ls-sets {σ
l
(1)
i

, σ
l
(2)
i

}, {σ
l
(3)
i

, σ
l
(4)
i

}, {σ
l
(5)
i

, σlk} and

{σ
l
(6)
i

, σlj} for simulating li : (ADD(r), lj , lk)

Therefore, after firing neuron σli , the system adds two spikes to neuron σr and
non-deterministically fires one of neurons σlj and σlk , which correctly simulates
the ADD instruction li : (ADD(r), lj , lk).

Module SUB (shown in Figure 2) – simulating a SUB instruction li : (SUB(r),
lj , lk).

A SUB instruction li is simulated in Π in the following way. Initially, neuron
σli has one spike, and other neurons are empty, except the neurons associated with
registers. With one spike inside, the rule a → a in neuron σli is enabled, and it will
fire at some step sending one spike to neurons σ

l
(1)
i
, σ

l
(2)
i
, and σr. These neurons

will fire simultaneously, because they are in the same ls-set. For neuron σr, there
are two cases.

(1) Before receiving one spike from neuron σli , neuron σr contains 2n (n > 0)
spikes (corresponding to the fact that the number stored in register r is n, and
n > 0). In this case, neuron σr gets 2n+ 1 spikes and the rule a(a2)+/a3 → a
is enabled. So, when neurons σ

l
(1)
i

, σ
l
(2)
i

, and σr fire at some step, they send

three spikes to each of neurons σ
l
(3)
i

and σ
l
(4)
i

. In neuron σr, three spike are

consumed, ending with 2n+ 1− 3 = 2(n− 1) spikes, which simulates the fact
that the number stored in register r is decreased by one. With three spikes
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Fig. 2. Module SUB with three ls-sets {σ
l
(1)
i

, σ
l
(2)
i

, σr}, {σl
(3)
1

, σ
l
(3)
2

, . . . , σ
l
(3)
sr

, σlk} and

{σ
l
(4)
1

, σ
l
(4)
2

, . . . , σ
l
(4)
sr

, σlj} for simulating li : (SUB(r), lj , lk)

inside, neuron σ
l
(3)
i

can fire, sending one spike to neuron σlj , hence neuron σlj

will become active, and the system Π starts to simulate instruction lj of M .
When neuron σlj fires, it is possible that neuron σ

l
(4)
i

also contains three

spikes because of non-synchronization. In this case, all neurons σ
l
(4)
s

should also

fire (because they are in the same ls-set {σ
l
(4)
1
, σ

l
(4)
2
, . . . , σ

l
(4)
sr
, σlj}) removing

simultaneously the three spikes, hence these neurons return to the initial state,
with no spike inside.

(2) When receiving one spike from neuron σli , neuron σr has no spike inside (cor-
responding to the fact that the number stored in register r is 0). In this case,
after neuron σr receives one spike from neuron σli , the rule a → λ in neuron σr

is enabled. When neurons σ
l
(1)
i

, σ
l
(2)
i

, and σr fire at some step, they send two

spikes to each of neurons σ
l
(3)
i

and σ
l
(4)
i

. In neuron σr, one spike is consumed,

ending with 0 spikes, which means that the number stored in register r of M is
zero. With two spikes inside, neuron σ

l
(4)
i

can fire, sending one spike to neuron

σlk , hence neuron σlk will become active, and the system Π starts to simulate
instruction lk of M .

Similar to case (1), the ls-set {σ
l
(3)
1
, σ

l
(3)
2
, . . . , σ

l
(3)
sr
, σlk} ensures that no

“wrong” step is done in system Π.

The simulation of SUB instruction is correct: system Π starts from spiking
neuron σli and ends in firing neuron σlj (if the number stored in register r is
greater than 0 and it was decreased by one), or in firing neuron σlk (if the number
stored in register r is 0).
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Note that there is no interference between the ADD modules and the SUB mod-
ules, other than correctly firing the neurons σlj or σlk , which may label instructions
of the other kind. However, it is possible to have interferences between two SUB
modules. Specifically, if there are several SUB instructions lv that act on the same
register r, then neuron σr has synapses to all neurons σ

l
(3)
v

and σ
l
(4)
v
. When a SUB

instruction li : (SUB(r), lj , lk) is simulated, in the SUB module associated with lv
(lv ̸= li) all neurons receive no spike except for neurons σ

l
(3)
v

and σ
l
(4)
v
, each of them

having one spike inside. Because we have the ls-sets {σ
l
(3)
1
, σ

l
(3)
2
, . . . , σ

l
(3)
sr
, σlk} and

{σ
l
(4)
1
, σ

l
(4)
2
, . . . , σ

l
(4)
sr
, σlj}, when neuron σ

l
(3)
i

(resp. σ
l
(4)
i
) fires, each of neurons σ

l
(3)
v

(resp. σ
l
(4)
v
) (lv ̸= li) should also fire at the same step removing its spike. Conse-

quently, the interference among SUB modules will not cause undesired steps in Π
(i.e., steps that do not correspond to correct simulations of instructions of M).

Module FIN (shown in Figure 3) – outputting the result of computation.

Fig. 3. The FIN module of Π

The functioning of this module is obvious: after activating the neuron σlh ,
neuron σ1 outputs one spike for each two spikes present inside; the last spike
remains idle in the system.

From the above description of the modules and of their work, it is clear that
the register machine M is correctly simulated by the system Π. Therefore, N(Π)
= N(M), and this completes the proof. ⊓⊔

In Theorem 1, the number m of neurons and the local synchronization degree
ls are not bounded (thus, denoted by ∗). As expected, these parameters can be
bounded by making use of the fact that there are (small) universal register ma-
chines. Such machines are given, e.g., in [6], but they are used in the accepting
mode: the code of a particular register machine is introduced in register 1, an input
for the particular machine is introduced in register 2, and the result is obtained in
register 0. The universal machine halts if and only if the particular machine halts
for the given input. The problem which remains to be solved is to pass from such
an universal register machine to a generative SN P system.

Corollary 1. NRE = NSpikoutP
locsyn
152 (gen, 5).

Consider the universal register machine Mu from [6] as shown in Figure 4.
It takes the code code(M) of a particular register machine M which computes a
function φ in register 1 and a number x in register 2, and outputs the value of
φ(x) in register 0.
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Take an arbitrary set K in NRE and consider its membership function φK :
N −→ {0, 1}. There is a register machine MK computing this function. Starting
with a number x in its input register, MK halts if and only if x ∈ K, hence
φK(x) = 1. Let code(MK) be its code; we introduce code(MK) in register 1 of
Mu, thus obtaining a register machine Mu(K). It takes any natural number n (in
register 2) and halts (with 1 in register 0) if and only if n ∈ K. We modify Mu(K)
as follows. A further register is added, labeled with 8; consider two further labels,
l−1, l−2, with l−1 being the initial label of the machine we want to obtain. Consider
also the instructions l−1 : (ADD(2), l−2, l−2), l−2 : (ADD(8), l−1, l0), where l0 is the
start label of Mu. The register machine M ′ obtained in this way has 9 registers,
11 ADD and 13 SUB instructions, and 25 labels; the result of a computation is
stored in register 8, which is never decremented during a computation. Clearly,
n ∈ N(M ′) if and only if φK(n) = 1, hence n ∈ K, therefore N(M ′) = K: M ′ first
“proposes” a number x to machine Mu(K), by introducing it both in register 2,
as needed for Mu and in register 8, the output one of M ′; when the computation
of Mu(K) halts, also the computation of M ′ halts. Therefore, the number x is
accepted and the computation of M ′ halts if and only if x ∈ K.

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),

l2 : (ADD(6), l3), l3 : (SUB(5), l2, l4),

l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),

l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),

l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),

l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),

l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19),

l14 : (SUB(5), l16, l17), l15 : (SUB(3), l18, l20),

l16 : (ADD(4), l11), l17 : (ADD(2), l21),

l18 : (SUB(4), l0, lh), l19 : (SUB(0), l0, l18),

l20 : (ADD(0), l0), l21 : (ADD(3), l18),

lh : HALT

Fig. 4. A universal register machine Mu from Korec [6]

As in the proof of Theorem 1, we can construct an asynchronous SN P system
with local synchronization ΠM ′ to simulate the register machine M ′. The system
ΠM ′ has
Proof. • 9 neurons for the 9 registers,
• 25 neurons for the 25 labels,
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• 6× 11 neurons for the 11 ADD instructions,
• 4× 13 neurons for the 13 SUB instructions,

which gives a total of 152 neurons.
The maximal size of ls-sets in the ADD module shown in Figure 1 is 2; the

maximal size of ls-sets in the SUB module shown in Figure 2 is max{3, sr + 1},
where sr is the number of SUB instructions acting on register r; the maximal size
of ls-sets in the FIN module shown in Figure 3 is 0. So, the local synchronization
degree is not more than max{3, sr + 1}. We can check that register 5 in M ′

u has
4 SUB instructions, which is maximal, hence max{3, sr + 1} = 5. Therefore, our
corollary holds. ⊓⊔

The above way of passing from computing universal register machines to reg-
ister machines used in the generative way can be used in all results in membrane
computing which show the computational completeness of a class of P systems by
means of proofs based on the simulation of register machines. In this way, bounds
on many parameters of the resulting P systems can be obtained. Note that many
such bounds were reported in membrane computing (obtained by directly simulat-
ing a generating register machine), but no such result was reported for the number
of neurons in SN P systems which characterize NRE. For instance, all universality
results given in Chapter 13 of [11] are stated for SN P systems with arbitrarily
many neurons. All these results can be improved from this point of view by using
the technique from the proof of the previous corollary. Actually, also the number
of rules in an SN P system should be considered (neurons can be saved by putting
in the same neuron several rules), hence a double hierarchy should be discussed:
number of neurons and number of rules.

5 Asynchronous Unbounded SN P System with Local
Synchronization

In [2] it was proved that asynchronous unbounded SN P systems with extended
rules can only characterize SLIN . In this section, making use of the “programming
capability” of local synchronization, we prove that asynchronous unbounded SN
P systems with local synchronization can achieve the Turing completeness.

Theorem 2. NRE = NSpikoutP
locsyn
∗ (unb, ∗).

We only have to prove that NRE ⊆ NSpikoutP
locsyn
∗ (unb, ∗), since the con-

verse inclusion is straightforward (or we can invoke for it the Turing-Church
thesis). As in the proof of Theorem 1, let us consider a register machine M =
(m,H, l0, lh, I), with the properties specified in Section 2. For each register r of
M , let sr be the number of instructions of the form li : (SUB(r), lj , lk).

As in the proof of Theorem 1, we construct an SN P system Π ′ consististing
of three types of modules – ADD, SUB, and FIN. The first and the third types
of modules can be easily obtained by modifying the ADD and FIN modules from
Figures 1 and 3, respectively, while the SUB module is given in Figure 5.
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Specifically, we observe that in the ADD and FIN modules from the proof
of Theorem 3, all bounded neurons never contain more than three spikes. Then,
each bounded rule ac → a, ac → λ can be replaced with the unbounded rule
ac(a4)∗/ac → a, ac(a4)∗/ac → λ, respectively, and the functioning of modules
ADD and FIN is not changed.

The difficulty with the module SUB from Figure 2 is that the neurons σr

contain both unbounded rules and the bounded rule a → λ, which we do not
see how can be turned to an unbounded rule. That is why we present a different
module SUB, more complex than that from Figure 2.

Fig. 5. The SUB module of Π ′ with ls-sets {σr, σl
(1)
i

, σ
l
(2)
i

, σ
l
(8)
i

}, {σ
l
(5)
i

, σ
l
(6)
i

, σ
l
(7)
i

},
{σ

l
(3)
1

, σ
l
(3)
2

, . . . , σ
l
(3)
sr

, σ
l
(4)
1

, σ
l
(4)
2

, . . . , σ
l
(4)
sr

, σ
l
(9)
1

, σ
l
(9)
2

, . . . , σ
l
(9)
sr

}

It is given in Figure 5 and it works as follows.
The simulation of a SUB instruction li : (SUB(r), lj , lk) is started with neuron

σli having one spike. The rule a(a2)∗/a → a is enabled and neuron σli fires at
some step, sending a spike to neurons σ

l
(1)
i

, σ
l
(2)
i

and σr, respectively. For neuron

σr, there are two cases.
Proof. (1) Neuron σr has 2n (n > 0) spikes (corresponding to the fact that the

number stored in register r is n, and n > 0) before it receives one spike from
neuron σli . In this case, neuron σr gets 2n+1 spikes and the rule a(a2)+/a3 → a
is enabled. When neurons σ

l
(1)
i

, σ
l
(2)
i

, and σr fire at some step, they send three
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spikes to neuron σ
l
(3)
i

, as well as two spikes to neuron σ
l
(4)
i

. (Note that neuron

σ
l
(8)
i

is in the same ls-set with neurons σ
l
(1)
i

, σ
l
(2)
i

, and σr, but it has no spike

inside, so it cannot fire.) In neuron σr, three spikes are consumed, ending with
2n+ 1− 3 = 2(n− 1) spikes, which simulates the fact that the number stored
in register r is decreased by one. Neuron σ

l
(3)
i

removes the three spikes inside

by the forgetting rule a(a2)+/a3 → λ, meanwhile neuron σ
l
(4)
i

fires by the rule

(a2)+/a2 → a, sending one spike to neuron σlj , hence neuron σlj will become
active, and the system Π starts to simulate instruction lj of M .

(2) Neuron σr has no spike inside (corresponding to the fact that the number
stored in register r is 0) before it receives one spike from neuron σli . In this
case, after neuron σr receives one spike from neuron σli , it keeps inactive for
no rule is enabled. Neurons σ

l
(1)
i

and σ
l
(2)
i

fire at some step, sending two spikes

to neuron σ
l
(3)
i

, as well as one spike to neuron σ
l
(4)
i

. With two spikes inside,

neuron σ
l
(3)
i

can fire at some step, sending one spike to neurons σ
l
(5)
i
, σ

l
(6)
i
,

and σ
l
(7)
i
, respectively. At the same moment, neuron σ

l
(4)
i

removes the spike

inside by the forgetting rule a(a2)∗/a → λ. Neurons σ
l
(5)
i
, σ

l
(6)
i
, and σ

l
(7)
i

fire

at some step sending two spikes to neuron σr and one spike to neuron σ
l
(8)
i
.

After neuron σr receives the two spikes, it has three spikes inside and the rule
a(a2)+/a3 → a is enabled. Neurons σr and σ

l
(8)
i

fire at some moment, sending

one spike to each of the neurons σ
l
(3)
i

, σ
l
(4)
i

, and σ
l
(9)
i

. Neurons σ
l
(3)
i

, σ
l
(4)
i

, and

σ
l
(9)
i

fire at some step, removing the spikes in neurons σ
l
(3)
i

, σ
l
(4)
i

and sending

one spike to neuron σlk from σ
l
(9)
i

. Therefore, neuron σlk becomes active, and

the system Π starts to simulate instruction lk of M . In neuron σr, there is no
spike inside, which means that the number stored in register r of M is zero.
Note that it is possible to have interferences between two SUB modules.

Specifically, if there are several SUB instructions lv that act on the same reg-
ister r, then neuron σr has synapses to all neurons σ

l
(3)
v

and σ
l
(4)
v
. When a

SUB instruction li : (SUB(r), lj , lk) is simulated, in the SUB module associated
with lv (lv ̸= li) all neurons receive no spike except for neurons σ

l
(3)
v

and σ
l
(4)
v
.

Each of neurons σ
l
(3)
v

and σ
l
(4)
v

has one spike inside. Because we have the ls-set

{σ
l
(3)
1
, σ

l
(3)
2
, . . . , σ

l
(3)
sr
, σ

l
(4)
1
, σ

l
(4)
2
, . . . , σ

l
(4)
sr
, σ

l
(9)
1
, σ

l
(9)
2
, . . . , σ

l
(9)
sr
}, when neuron σ

l
(3)
i

and σ
l
(4)
i

fire, each of neurons σ
l
(3)
v

and σ
l
(4)
v

(lv ̸= li) should also fire at the same

step removing its spike. Consequently, the interference among SUB modules will
not cause undesired steps in Π (i.e., steps that do not correspond to correct sim-
ulations of instructions of M). Therefore, the simulation of SUB instruction is
correct.

With the above description, we can see that the unbounded SN P system Π ′

can correctly simulate register machine M , hence N(M) = N(Π ′). ⊓⊔
Similar with Corollary 1, we can also have the following corollary.

Corollary 2. NRE = NSpikoutP
locsyn
217 (unb, 12).
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Indeed, the system Π ′ has

• 9 neurons for the 9 registers,
• 25 neurons for the 25 labels,
• 6× 11 neurons for the 11 ADD instructions,
• 9× 13 neurons for the 13 SUB instructions,

which gives a total of 217 neurons. The reader can easily check that the local
synchronization degree is 12.

6 Asynchronous Bounded SN P Systems with Local
Synchronization

In this section, we investigate the computation power of asynchronous bounded SN
P systems with local synchronization. It was shown that asynchronous bounded
SN P systems with extended rules can characterize semilinear sets of numbers [4],
but it is open whether this result holds when the systems are restricted to use
only standard rules. In the following, we prove that a set of natural numbers is
semilinear if only if it can be generated by asynchronous bounded SN P systems
with local synchronization using standard rules.

Lemma 1. NSpikoutP
locsyn
∗ (boun, ∗) ⊆ SLIN .

Take an asynchronous bounded SN P system with local synchronization using
standard rules, Π. The number of neurons is fixed, and the number of spikes in
each neuron is bounded, hence the number of configurations reached by Π is finite.
Let C be the set of configurations of Π, and C0 be the initial configuration of Π.

We construct the right-linear grammar G = (C, {a}, C0, P ), where P contains
the following productions:
Proof. (1) C → C ′, for C,C ′ ∈ C such that there is a transition C ⇒ C ′ in Π

during which the output neuron does not spike;
(2) C → aC ′, for C,C ′ ∈ C such that there is a transition C ⇒ C ′ in Π during

which the output neuron spikes;
(3) C → λ, for any C ∈ C in which all neurons have no enabled rules.

Clearly, the construction of G ensures the fact that N(Π) is the length set

of the regular language L(G), hence it is semilinear. Therefore, NSpikoutP
locsyn
∗

(boun, ∗) ⊆ SLIN . ⊓⊔

Lemma 2. SLIN ⊆ NSpikoutP
locsyn
∗ (boun, ∗).

Since a set of natural numbers is semilinear if and only if it can be generated
by a strongly monotonic register machine, it is enough to prove that any strongly
monotonic register machine can be simulated by an asynchronous bounded SN
P system with local synchronization using standard rules. Let M be a strongly
monotonic register machine. Clearly, the machine M has only register 1 and the
ADD instructions of the forms li : (ADD(1), lj , lk).
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An asynchronous bounded SN P system with local synchronization using stan-
dard rules Π can be constructed as in the proof of Theorem 1 to simulate the
strongly monotonic register machine M : we place the rule a2 → a in neuron σ1

(it is associated with register 1 and it is also the output neuron), also considering
the ls-set consisting of neurons σ1 and σ

l
(3)
v
, σ

l
(4)
v

for all ADD instructions lv of M .

Moreover, in neuron σlh we provide no rule (when M halts, also Π halts, so the
FIN module is here not necessary). The above mentioned new ls-set make sure
that as soon as the simulation of an ADD instruction of M reaches the neurons
σ
l
(3)
j
, σ

l
(4)
j
, then also neuron σ1 spikes, thus getting empty, ready for a further in-

crement by one. That is, neuron σ1 is either empty or it contains two spikes – in
the latter case, one spike is sent to the environment. Thus, the equivalence of M
and Π is obvious. ⊓⊔

By Lemmas 1 and 2, the following theorem holds.
Proof. Theorem 3. NSpikoutP

locsyn
∗ (boun, ∗) = SLIN .

7 Conclusions and Remarks

In this work, inspired by the fact that neurons in the same functioning brain motif
or community work synchronously to achieve some specific biological functions, we
introduce local synchronization into the framework of SN P systems. The compu-
tation power of asynchronous SN P systems with local synchronization is investi-
gated. Asynchronous SN P systems with local synchronization consisting of general
neurons (resp. unbounded neurons) and using standard spiking rules are proved to
be universal. Asynchronous SN P systems with local synchronization consisting of
bounded neurons and using standard spiking rules can characterize the semilinear
sets of natural numbers. It was already known that (1) asynchronous general SN P
systems with extended rules are universal; (2) asynchronous unbounded SN P sys-
tems with extended rules can only characterize semilinear sets of natural numbers
[2]. However, the computation power of asynchronous general (resp. unbounded)
SN P systems with standard rules is unknown. The results from this paper show
that such systems can reach universality if they are provided with the “program-
ming capability” of local synchronization. So, local synchronization is a powerful
ingredient for achieving “Turing creative capability”.

The local synchronization degrees in Corollary 1 and Corollary 2 are 5 and 12,
respectively. It remains open whether or not these values can be improved. We con-
jecture that the value two is enough to achieve universality for asynchronous SN P
systems with local synchronization consisting of general neurons (resp. unbounded
neurons) and using standard spiking rules.

In the systems constructed in Theorem 1 and Theorem 2, forgetting rules are
used. It remains open whether forgetting rules can be removed without any loss of
computation power. We conjecture the answer is positive (that is, we believe that
the feature of local synchronization is powerful enough to remove forgetting rules
without decreasing the computation power).
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