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Summary. Languages appeared from the very beginning in membrane computing, by
their length sets or directly as sets of strings. We briefly recall here this relationship, with
some details about certain recent developments. In particular, we discuss the possibility
to associate a control word with a computation in a P system. An improvement of a result
concerning the control words of spiking neural P systems is given: regular languages can
be obtained as control words of such systems with only four neurons (and with usual
extended rules: no more spikes are produces than consumed). Several research topics are
pointed out.

1 Introduction

Basically, membrane computing is associated with multiset processing in the com-
partments defined by a membrane structure, hence with handling numbers encoded
in a unary manner, by means of the multiplicity of given objects, represented by
symbols of an alphabet. However, from the very beginning, [22], also P systems
were considered whose objects are strings. While the multisets of objects are pro-
cessed by biochemical or biological inspired rules (similar to reactions taking place
among the chemicals in a cell, or by other operations, such as symport and an-
tiport), the string objects should be processed by specific rules, such as rewriting,
splicing (from DNA computing), replication. However, also in the case of symbol
objects we can “compute” (generate, accept or translate) strings and languages,
and we find this case particularly interesting, taking into account the qualitative
difference between the “internal data structure”, the multiset, and the “external
data structure”, the string (hence with a positional information). That is why
in what follows we only discuss this case, of symbol objects P systems handling
languages.

For P systems with string objects we refer to the corresponding chapter of [31]
and to the current bibliography of membrane computing from [38]. It is important
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to note, however, that P systems with string objects can have interesting appli-
cations in natural language processing; we refer only to [1], but researches of the
same group should be followed in this respect.

In what follows, we assume that the reader is familiar with basic facts in mem-
brane computing, including definitions of the main classes of P systems: cell-like P
systems with symbol objects (called here transition P systems, P systems with ac-
tive membranes, symport-antiport P systems, spiking neural P systems (in short,
SN P systems). Details can be found in [23], [31], and at [38]. We also assume some
familiarity with basic elements of formal language theory, e.g., from [34]. Some no-
tations will be also given below; we only mention now thatREG,LIN,CF,CS,RE
denote the families of regular, linear, context-free, context-sensitive, and recur-
sively enumerable languages, respectively, and that V ∗ is the set of all strings over
the alphabet V , the empty string, λ, included.

Informal presentations of the four classes of P systems are given below, in order
to facilitate the understanding of the subsequent sections.

A transition P system uses rules of the form u → v, where u and v are strings
over a given alphabet O of objects, representing multisets; the intuition is that the
objects in the multiset (represented by) u are consumed and those in v are pro-
duced, like in a (bio)chemical reaction. The objects in v can have associated target
indications, in the forms (a, here), (a, in), (a, out); the meaning is that the object a
produced by applying the rule remains in the same compartment of the membrane
structure if here is associated with it, it goes to a membrane immediately inside
the compartment where the rule is used, or it goes outside this compartment, in
the surrounding compartment, if the indications in or out are associated, respec-
tively. Note that the objects are processed inside compartments, by local rules,
but they can travel across membranes, due to the target indications. In particular,
an object (a, out) produced in the external membrane of a P system (also called
skin membrane) leaves the system and it “gets lost” in the environment.

Rules of the general form u → v are called cooperative. If u consists of a single
object, then the rule is said to be non-cooperative. The intermediate case of rules
ca → cv, where a and c are objects, with c taken from a distinguished subset C of
O, is the catalytic case.

In P systems with active membranes, the membranes themselves are part of
rules and can evolve during a computation. The objects can evolve inside com-
partments (by cooperative, catalytic or non-cooperative rules) and can pass across
membranes, while membranes can get divided, dissolved, separated, etc.

In P systems with symport-antiport rules the objects pass across membranes
by rules of the forms (u, in), (u, out) (symport rules), and (u, out; v, in) (antiport
rules), where u, v are strings in O∗ (representing multisets of objects). The rules
are associated with the membranes, the objects are never modified, they are just
moved from a compartment to another one.

Starting from an initial configuration (the membrane membrane structure and
the multisets placed in its compartments), and using the rules in a specified way
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(synchronously or unsynchronously, in the maximally parallel way, sequentially,
etc.), we get transitions among configurations; a sequence of transitions forms a
computation; a computation which reaches a configuration where no rule can be
applied is said to be halting. In all the previous cases, the most natural result of
a computation is a number, for instance, of objects present in the halting config-
uration in a specified membrane.

In what follows, always the P systems work in the maximally parallel manner.

Finally, an SN P system consists of a set of neurons placed in the nodes of a
directed graph and sending signals (spikes, denoted in what follows by the symbol
a) along synapses (arcs of the graph). The objects evolve by means of spiking
rules, which are of the form E/ac → a; d, where E is a regular expression over
{a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron
containing k spikes such that ak ∈ L(E), k ≥ c, can consume c spikes and produce
one spike, after a delay of d steps. This spike is sent to all neurons to which a
synapse exists outgoing from the neuron where the rule was applied. There also
are forgetting rules, of the form as → λ, with the meaning that s ≥ 1 spikes are
forgotten, provided that the neuron contains exactly s spikes. If rules can produce
more than one spike, i.e., they are of the form E/ac → ap; d, with E, c, d as above
and 1 ≤ p ≤ c, then the system is said to be extended. (Note that the number p
of produced spikes cannot be greater than the number c of consumed spikes.) In
the initial configuration, each neuron contains a given number (it can be zero) of
spikes.

The system works in a synchronized manner, i.e., in each time unit, the rule to
be applied in each neuron is non-deterministically chosen, each neuron which can
use a rule should do it, but the work of the system is sequential in each neuron:
only (at most) one rule is used in each neuron. One of the neurons is considered to
be the output neuron, and its spikes are also sent to the environment. The moments
of time when a spike is emitted by the output neuron are marked with 1, the other
moments are marked with 0. This binary sequence is called the spike train of the
system – it might be infinite if the computation does not stop. The result of a
computation can be the spike train itself (a binary string if the computation halts,
or an infinite sequence otherwise) or a number (e.g., the distance between the first
two spikes sent into the environment by the output neuron of the system).

If a spiking rule E/ac → a ∗ p has L(E) = ac, then we write it in the simpler
form ac → ap (and we call it finite).

Four ways to associate a language with a P system were considered so far:

1. external output,
2. using a P system in the accepting mode,
3. following the trace of a distinguished object through the membrane structure,
4. control words.

We shortly present them below, with some details in the case of control words,
and then we propose some ideas for further research.
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It should be noted that the references we give here are not meant to be complete
or to indicate the first place where a notion was introduced, but only to offer a
good introduction to this research area.

A general research topic can already be formulated here: consider systematically
the 4 × 4 combinations of (basic) types of P systems and ways to associate a
language with a P system. Not all of these 16 possibilities were explored (but we
cannot say in advance that any of them is of no interest). In particular, equivalences
between some of the 16 combinations would be nice to be found.

2 External Output

Introduced already in [30], for transition P systems, the idea is simple: because
objects can exit a P system (of any type), we (the user, the observer) can “wait in
the environment” and arrange the symbols which leave the system in a sequence.
If the computation halts, then we obtain a string, if not, we obtain an infinite
sequence. An important detail: we have to decide what to do in the case when
several objects leave the system at the same time. In [30] and several subsequent
papers, all permutations of the symbols are allowed, hence several strings are
associated with the same computation. An interesting possibility is to disregard
certain symbols and/or to associate a single symbol to a multiset (by means of a
given “interpretation mapping”), like in [12].

Somewhat surprisingly, in spite of its simple definition, defining a language in
the external output manner was not too much investigated – at least not until
last years, when a systematic study was started in [3], [4], mainly for transition P
systems with non-cooperative rules (and no further ingredients; in [30], catalytic
rules and membrane dissolution rules are used, as well a priority relation among
them). The obtained family lies in between REG and CS and has interesting
(combinatorial) properties.

The spike train of an SN P system can also be considered as the result of a
computation defined in the external mode, but, having only one object, we have
to assign different symbols to the time units when (at least) a spike exits the
system and to the time units when no spike is emitted. In this way, a binary string
(or sequence, when the computation does not stop) is obtained. There are several
papers in the SN P systems area dealing with such languages.

The external output is not very much investigated for symport-antiport sys-
tems, and we know no paper of this kind dealing with P systems with active
membranes. Also, as far as we know, the case when only computations which send
out at most one object in each step was not investigated (this condition imposes a
restriction on the accepted computations, hence the computing power of P systems
can be altered in this way).
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3 P Automata

This is indeed a much investigated topic in membrane computing – but mainly for
the symport-antiport case. The idea is simple (symmetric to the external output):
we arrange in a sequence the symbols which enter a P system, again with the two
possibilities, to consider all permutations of symbols which enter in the same step
(see [21] and its bibliography), or to consider an encoding of multisets by symbols
(see a survey and references in [12]).

For symport-antiport P systems the “reading” of symbols from the environment
is naturally defined by means of symport and antiport rules associated with the
skin membrane. This is also provided by rules with active membranes, but we
know no study about this issue for such systems. For transition P systems and
for SN P systems we have to input symbols in an “external manner” (an external
user provides a string, symbol by symbol, according to its wish). In most cases,
a string is accepted if the computation halts (there are also other ways to define
successful computations, such as local halting, reaching final configurations, but
we do not discuss them here).

This way of using P systems is also related to the use of P systems to solve
decidability problems, were an input is introduced in the system and the problem
(an instance of it) has a positive answer if the computation halts (and a special
object is sent to the environment), however, in this case the input (an encoding
of the instance of the problem) is introduced in the form of a multiset, placed in
a distinguished membrane. Details can be found in [32].

A recent variant of P automata was introduced in [26], called dP automata: sev-
eral (symport-antiport) systems are connected to each other by means of antiport-
like rules; they read separately strings from the environment, process them, also
communicating, and if the computation halts, then the concatenation of the input
strings is accepted. This is a way to introduce more distribution in P systems,
making explicit the splitting of a problem among the components of the dP au-
tomaton. There are several papers devoted to this topic, see, e.g., [27], [28], [37].
The idea was extended also to SN P systems, in [19]; in this context, also a dual of
spiking rules is introduced, in the form of request rules (depending on the contents
of a neuron, spikes can be brought in from the environment, that is, the spikes
come in by request, not introduced by an external user).

4 Traces

The idea was introduced in [18] for symport-antiport P systems, investigated in
a couple of papers (see [17] and its bibliography), and extended to SN P systems
in [7]: distinguish an object and follow its path across membranes; the sequence
of membrane labels visited by that object provides a string (in the case of SN
P systems, one single spike is distinguished, it it always used by a spiking rule
applied in the neuron where the marked spike resides and one of the produced
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spikes become marked). We know no paper dealing with traces in transition P
systems and in P systems with active membranes.

5 Control Words

Finally, the fourth way to associate a string with a computation is to consider
control words, as sequences of labels of rules used in the steps of a computation.

This is a well investigated topic in formal language theory, especially for Chom-
sky grammars, because in each step such grammars use only one rule. Each deriva-
tion produces a control word; the set of all control words associated with all ter-
minal derivations in a grammar is called the Szilard language associated with
(generated by) the grammar. The things become more complicated in the case of
parallel computing devices, when several rules are used simultaneously.

This is the case also in membrane computing, and probably this is the reason
why control words were, up to our knowledge, never considered in this area (until
the special case proposed in [33]). However, a sort of bidimensional control word
was introduced already in [10], under the name of Sevilla carpet, as a way to
describe the rules used in a computation and their multiplicity in each step, but
not as a way to define a control language associated with the computations in a
P system.

A possible solution to the above difficulty is to consider a sequence of multisets
of labels, those labels associated with all rules applied in a given step. Then, a
string of symbols can be obtained following the ideas also used for accepting P
systems: take a function from multisets to strings and build the string(s) obtained
by concatenating the strings associated with the multisets. For instance, all per-
mutations of the labels in a multiset can be considered, as in [21], or only one
specific string (maybe a symbol) associated with the multiset, like in [12].

Another idea was recently introduced in [33], starting from the following re-
striction: all rules used in a computation step should have the same label, or they
can also be labeled with λ.

The definition in [33] is given for SN P systems, but it works for any type of P
systems.

Indeed, let us consider a P systemΠ, of any type, with the total set of rules (the
union of all sets of rules associated with compartments, membranes, neurons – as
it is the case) denoted with R. Consider a labeling mapping l : R → B∪{λ}, where
B is an alphabet. We consider only transitions s =⇒b s′, between configurations
s, s′ of Π, which use only rules with the same label b and rules labeled with λ.
We say that such a transition is label restricted. With a label restricted transition
we associate the symbol b if at least one rule with label b is used; if all used
rules have the label λ, then we associate λ to this transition. Thus, with any
computation in Π starting from the initial configuration and proceeding through
label restricted transitions we associate a (control) word. The language of control
words associated with all label restricted halting computations in Π is denoted
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by Szλ(Π). The subscript indicates the fact that λ steps are permitted; in the
opposite case, we write Sz(Π) (the label restricted transitions which cannot use
only rules with label λ are called λ-label restricted).

We give here two results for symport-antiport P systems. The family of lan-
guages Sz(Π) associated with symport-antiport P systems with at most m mem-
branes is denoted with SzSAPm; when λ moves are allowed, we write SzλSAPm,
and if the number of membranes is not bounded, then the subscript m is replaced
with ∗.

In what follows we need the characterizations of regular languages by means of
regular grammars. Such a device is a construct G = (N,T, S, P ), where N,T are
disjoint alphabets (the nonterminal and the terminal one, respectively), S ∈ N
(the axiom), and P is a finite set of rewriting rules of the forms A → aB,A → a,
where A,B ∈ N and a ∈ T ; a rule S → λ can be added, if we also want to
generated the empty word. The language generated by G is denoted with L(G).
Without any loss of generality we may assume that the grammar is reduced: each
A ∈ N can be reached from S and can derive a terminal string.

When comparing two language generating or accepting devices G1, G2, the
empty string is ignored, that is, L(G1) is considered equal to L(G2) as soon as
L(G1)−{λ} = L(G2)−{λ}. Thus, no λ-rule is necessary in our regular grammars.

Theorem 1. REG ⊂ SzSAP1.

Proof. The inclusion is easy to prove: for a regular grammar G = (N,T, S, P )
with N = {A1 = S,A2, . . . , An}, we consider the antiport rules b : (Ai, out;Aj , in)
associated with Ai → bAj ∈ P and the symport rules b : (Ai, out) associated with
Ai → b ∈ P . Initially, the single membrane of the system contains the object A1.
Clearly, each terminal derivation in G corresponds to a halting computation in the
system we have constructed, and conversely.

The inclusion is strict; actually, we have a stronger result: SzSAP1 −CF ̸= ∅.
A P system proving this assertion is

Π = (O, [ ]
1
, e, O,R1), where:

O = {a1, a2, e, f, g, h},
R1 = {a : (e, out; ea1a2, in), a : (e, out; fa1a2, in),

b : (fa1, out; f, in), b : (fa1, out; g, in),

c : (ga2, out; g, in), c : (ga1, out;h, in),

d : (ha1, out;ha1, in), d : (ha2, out;ha2, in)}.

The “carrier” e bring inside n ≥ 1 copies of a1 and a2, then f and g remove copies
of a1 and a2, respectively. Eventually, the object h is introduced in the system.
If any copy of a1 or a2 is still present in the system, then the computation never
halts, because the rules with label d can be used forever. Therefore, the control
words associated with terminal computations are of the form anbncn, for some
n ≥ 1, hence Sz(Π) is not context-free. ⊓⊔
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If steps when only rules with label λ are allowed, then all one-letter recursively
enumerable languages can be generated.

Theorem 2. If L ⊆ a∗, L ∈ RE, then L ∈ SzλSAP1.

Proof. A language L ∈ a∗ is in RE if and only if its length set is a recursively
enumerable set of numbers. Symport-antiport P systems with one membrane (and
rules with no restricted complexity) can generate all recursively enumerable sets
of numbers, [31]. Take such a system Π, namely, one which simulates a register
machine M = (n,H, l0, lh, I) (the number of registers, the set of instruction labels,
the label of the initial instruction, the label of the halt instruction, the set of
instructions, labeled with elements of H; simulating register machines is the usual
way to prove the universality of symport-antiport P systems, so the reader is
assumed to be familiar with such proofs). In the halting configuration, the system
contains k copies of a symbol a1, which encodes the contents of register 1 of M ,
the one where the number is generated, as well as the object lh, for k ∈ N(M).
Assume that all rules of Π are labeled with λ, and add the following rules a :
(lha1, out; lh, in). This rule must be used for each copy of a1 present in the system,
hence the control word of the computation in the augmented system – let us
denote it by Π ′ – is ak. The halting label lh is introduced only in the last step of
a computation in Π. Consequently, L = Szλ(Π

′). ⊓⊔

In the previous results we have imposed no restriction on the length of the
symport and antiport rules; if such restriction are considered, then a larger number
of membranes is expected to be necessary.

The control words associated with transition P systems and with systems with
active membranes remain to be investigated. In what follows we consider the case
of SN P systems.

6 Control Words for SN P Systems

The fact that λ steps increase the power of systems is also confirmed for the
control words associated with SN P systems, a case which is investigated in [33]. Let
SzSNPm, SzλSNPm be the families of all languages Sz(Π), Szλ(Π), respectively,
associated with SN P systems Π (with extended rules) with at most m neurons;
if the number of neurons is not restricted, then we replace the subscript m by ∗.
In [33] it is proved that SzλSNP∗ = RE, but SzSNP∗ ⊂ CS, strict inclusion (an
example of a language not in SzSNP∗ is the linear language {xxR | x ∈ V ∗}, where
V is an alphabet with at least two symbols and xR is the reversal/mirror image
of the string x). Moreover, a theorem in given in [33] stating that each regular
languages L is the λ-label restricted Szilard language of an SN P system Π – with
the mentioning that the system Π uses extended rules of the form E/ac → ap

without the restriction p ≤ c and it has arbitrarily many neurons. This result will
be improved in the next theorem.
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We give first an example, also improving a result from [33], where it is shown
that SzSNP6 contains non-context-free languages. We prove that four neurons
suffice.

Consider the SN P system (with four neurons, σ1, σ2, σ3, σ4)

Π = ({a}, σ1, σ2, σ3, σ4, syn), where:

σ1 = σ2 = (2, {r1 : a2 → a2, r2 : a2 → a}),
σ3 = (1, {r2 : (a4)+a/a → a, r3 : (a4)+a2/a4 → a},
σ4 = (1, {r2 : (a4)+a/a → a, r4 : (a4)+a2/a4 → a},

syn = {(1, 2), (2, 1), (1, 3), (1, 4), (2, 3), (2, 4)}.

The system is given in a graphical form in Figure 1. Each neuron contains
initially one or two spikes, but only σ1 and σ2 can fire. If the rules r2 are used in
σ1 and σ2 (not also in σ3, σ4, because we do not have here enough spikes), then
the computation halts. Let us assume that for a number n of steps we use the rule
r1 in σ1 and σ2. Neurons 1 and 2 exchange spikes to each other and, together, they
send four spikes to each of σ3, σ4. These neurons cannot use the rules r3, r4 until
getting inside an even number of spikes, and this means that the rules r2 in σ3, σ4

were used. This however supposes that also σ1, σ2 use the rules r2 (these rules are
applicable, hence they must be applied), and this ends the work of these neurons.
After using the rules r2, neurons 3 and 4 can fire nondeterministically, but not
both at the same time: they have to use the rules r3 and r4, which have different
labels. After using the rules r2, each of σ3 and σ4 contains the same number of
spikes, namely 4n+ 2, hence, besides the string r2, Sz(Π) contains strings of the
form rn1 r2w, with w ∈ {r3, r4}∗ containing the same number of r3 and r4. This
language is not context-free, hence SzSNP4 − CF ̸= ∅.
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Fig. 1. An SN P system whose Szilard language is not context-free.
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We give now the improvement of the mentioned result from [33].

Theorem 3. REG ⊂ SzSNP4.

Proof. In view of the previous example, it is enough to prove the inclusion REG ⊆
SzSNP . To this aim, let us consider a regular language L generated by a reduced
regular grammar G = (N,T, S, P ) with N = {S = A1, A2, . . . , An} and the rules
in P of the forms Ai → bAj , Ai → b, for some Ai, Aj ∈ N and b ∈ T . Let us
denote J = {1, 2, . . . , n}.

We construct the following SN P system of degree 4 (together with the rules
we also specify their labels):

Π = ({a}, (a2n+1, R12), (0, R12), (a
2n+1, R34), (0, R34), syn),

R12 = {b : a2n+i → aj | Ai → bAj ∈ R, i, j ∈ J}
∪ {b : a2n+i → a2n | Ai → b ∈ R, i ∈ J},

R34 = {a2n+k → a2n | k ∈ J},
syn = {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2), (3, 4), (4, 3)}.

The system is also given in a graphical form in Figure 2. Note that it is finite
and uses no forgetting rule.
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λ : a2n+j → a2n, j ∈ J

Fig. 2. An SN P system whose control language is a given regular language

In the first step, neurons 1 and 3 can fire; in the next step, neurons 2 and 4
fire – and the computation proceeds in steps which alternate the previous pairs of
neurons. When a pair of neurons fires, then no spike remains inside these neurons,
but the other pair receives spikes. This means that in each step a rule with a
label b ∈ T and one with the label λ are used (hence the computation is λ-label
restricted).
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With each nonterminal Ai, 1 ≤ i ≤ n, we have associated 2n+i spikes; initially,
we have in neurons 1 and 3 spikes which identify the nonterminal S = A1.

Assume that either σ1, σ3, or σ2, σ4 contain spikes, namely 2n+ i in σ1, σ2, for
a rule Ai → bAj ∈ R, and 2n + k in σ3, σ4, for some k ∈ J . The rule Ai → bAj

is simulated by using the rule (with label b) a2n+i → aj in σ1, σ2, simultaneously
with using the rule (with label λ) a2n+k → a2n in σ3, σ4. The symbol b is added
to the control word, and the process is continued with the simulation of a rule
Aj → u ∈ R, u ∈ T ∪ TN .

In the moment when a (terminal) rule Ai → b ∈ R is simulated, the active σ1

or σ2 introduces 2n spikes, at the same time with 2n spikes produced by the paired
neuron σ3, σ4. Two neurons are empty, the other two contains 4n spikes, hence no
rule can be applied in any neuron. The computation halts, having as its control
word the word generated by the derivation in G. Consequently, Sz(Π) = L(G),
which concludes the proof. ⊓⊔

We do not know whether the number of neurons in the previous theorem can
be decreased.

7 Controlled P Systems

In the previous sections, the control words were collected in order to have a new
way of producing a language starting from a P system. The computations can-
not proceed freely, but they should be label restricted or λ-label restricted. This
restriction has an influence on the computing power of P systems, considered as
number computing devices. Indeed, let us consider the following systems:

Π1 = ({a, b}, [ ]
1
, a, {r1 : a → aa, r2 : a → b}, 1),

Π2 = ({a, b}, [ ]
1
, a, {a, b}, {r1 : (a, out; aa, in), r2 : (a, out; b, in)}, 1).

When only label restricted transitions are allowed, the two rules of each system can-
not be used at the same time, hence we obtain Nlr(Π1) = Nlr(Π2) = {2n | n ≥ 0}
(we have added the subscript lr in order to indicate that only label restricted
computations are allowed). This set of numbers cannot be generated by non-
cooperative transition P systems, neither by symport-antiport P systems of this
complexity (one membrane, two rules) with non-restricted computations.

A more general case is the one when a pair (Π,C) is considered, where Π
is a P system of any type, with the rules labeled by elements of an alphabet H
and C ⊆ H∗ is a given language. This language is used in order to restrict the
computations in Π: only label restricted computations are allowed whose control
words are in C. (This corresponds to controlled context-free grammars in regulated
rewriting.)

The study of controlled P systems remains to be done (combining classes of P
systems with types of control languages, as already done for Chomsky controlled
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grammars). It is expected that a control language provides a powerful way to
“program” the work of a P system.

8 Final Remarks

Many research topics were mentioned in the previous sections, many others remain
to be explored. For instance, we have said nothing about tissue-like P systems – is
anything interesting in this case from the language computing point of view? How
this case compares with the four types of P systems considered above?

Another direction of investigation concerns sets of infinite sequences (also called
ω-languages). Some results were reported in [15] for symport-antiport P systems,
and in [29] and [14] for SN P systems.

A related issue was considered in [35]: handling languages over infinite alpha-
bets.

Besides the previous ways to associate a language with a P system, also are
other ideas were preliminarily explored. One of them is to encode a string in
the membrane structure itself, and then handling the membrane structure means
processing the string; see [5] for some details.

For all families of languages which are not equal to RE it makes sense to
consider the classic problems investigated in formal language theory: closure prop-
erties, decidability, representation theorems, semilinearity, and so on. Also, the
membership complexity is of interest (an issue considered already in [2]). In view
of possible applications in modeling aspects related to natural languages, it would
be of interest to find ways to generate mildly context-sensitive languages (semilin-
ear, parsable in polynomial time, powerful enough to cover some non-context-free
constructions in natural languages).

A related research direction concerns the translation of languages. Some at-
tempts were reported in [11] and [25].

We can conclude with the observation that many things were done in membrane
computing in handling languages by means of P systems with symbol objects, but
a lot of work still remains to be carried out
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Riscos-Núñez, eds.), 116–128.

2. A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin: Membrane systems languages
are polynomial-time parsable. Computer Science Journal of Moldova, 18, 2 (2010),
139–148.



Languages and P Systems: Recent Developments 73

3. A. Alhazov, C. Ciubotaru, S. Ivanov, Y. Rogozhin: The family of languages generated
by non-cooperative membrane systems. Membrane Computing. 11th International
Conference, CMC11, Jena, Germany, August 24-27, 2010. Revised, Selected, and
Invited Papers (M. Gheorghe et al., eds.), LNCS 6501, Springer, Berlin, 2010, 65–79.

4. A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The membrane systems language
class. Proc. Eighth Brainstorming Week on Membrane Computing, Sevilla, 2010, 23–
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22. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci., 61 (2000), 108–143

(see also TUCS Report 208, November 1998 (www.tucs.fi).
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