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Abstract. The P systems are a class of distributed parallel computing devices
of a biochemical type. In this paper, a new definition of separation rules in
P systems with active membranes is given. Under the new definition, the
efficiency and universality of P systems with active membranes and separation
rules instead of division are investigated.

1 Introduction

The P systems are a class of distributed parallel computing devices of a biochemical
type, introduced in [7], which can be seen as a general computing architecture where
various types of objects can be processed by various operations. The area starts from
the observation that certain processes which take place in the complex structure of living
organisms can be considered as computations. For a motivation and detailed description
of various P system models we refer to [7], [9].

Informally speaking, in P systems with active membranes one uses six types of rules:
(a) multiset rewriting rules, (b) rules for introducing objects into membranes, (c) rules
for sending objects out of membranes, (d) rules for dissolving membranes, (e) rules for
dividing elementary membranes, and (f) rules for dividing non-elementary membranes.

Membrane division – inspired from cell division well-known in biology – is the most
investigated way for obtaining an exponential working space in a linear time, and solving
on this basis hard problems, typically NP-complete problems, in polynomial (often, linear)
time. Details can be found in [8, 9, 10]. Recently, also PSPACE-complete problems were
attacked in this way (see [13, 2]).

Separation is also a well known phenomenon of cell biology. Many macromolecules
are too large to be transported through membranes by means of vesicle formation. This
process can transport packages of chemicals out of the cell.
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By division, the two new membranes have exactly the same objects except for at most
a pair of different objects; it is also possible that the two new membranes have different
charges. However, in the biological phenomenon of separation, the two new membranes
evolved from a membrane can have much difference, such as the number of objects. In
[1], separation rules are introduced to P systems with active membranes, where for each
separation rule, a different subset U of objects is defined to activate the membrane to
separate, and by U objects are put into the two new membranes. In this paper, we give a
new definition of separation rules. In the new definition, for each separation rule one object
is used to activate separation; for all separation rules a uniform subset O1 of objects is used
to denote which membrane objects should go. From this point of view, the new definition
is an improvement of the definition in [1]. Under the new definition, the efficiency and
universality of P systems with active membranes and separation rules instead of division
are investigated.

2 P Systems with Active Membranes

We assume the reader to be familiar with basic elements of complexity theory and formal
language theory, for instance, from [6, 12, 11], as well as with the basic knowledge of
membrane computing, for instance, from [9] (details and recent results from membrane
computing can be found at the web address http://psystems.disco.unimib.it). We
only mention that RE denote the family of recursively enumerable languages, and that for
a family of languages FL, by PsFL we denote the family of Parikh sets of languages in
FL; as usual, the Parikh mapping associated with an alphabet V is denoted by ΨV .

A P system with active membranes (and electrical charges) is a construct

Π = (O, H, µ, w1, . . . , wm, R),

where:

1. m ≥ 1 (the initial degree of the system);

2. O is the alphabet of objects, where O = O1 ∪O2, O1, O2 6= ∅, O1 ∩O2 = ∅;
3. H is a finite set of labels for membranes;

4. µ is a membrane structure, consisting of m membranes, labeled (not necessarily in a
one-to-one manner) with elements of H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the m
regions of µ;

6. R is a finite set of developmental rules, of the following forms:

(a) [ a → v]eh,
for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the label
and the charge of the membranes, but not directly involving the membranes,
in the sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);
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(b) a[ ]e1

h → [ b]e2

h ,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is introduced in the membrane, possibly modi-
fied during this process; also the polarization of the membrane can be modified,
but not its label);

(c) [ a ]e1

h → [ ]e2

h b,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly modified
during this process; also the polarization of the membrane can be modified, but
not its label);

(d) [ a ]eh → b,
for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e) [ a ]e1

h → [ b ]e2

h [ c ]e3

h ,
for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with the same label, possibly of different
polarizations; the object specified in the rule is replaced in the two new mem-
branes by possibly new objects);

(f) [ [ ]α1

h1
. . . [ ]α1

hk
[ ]α2

hk+1
. . . [ ]α2

hn
]α0

h0

→ [ [ ]α3

h1
. . . [ ]α3

hk
]α5

h0
[ [ ]α4

hk+1
. . . [ ]α4

hn
]α6

h0
,

for k ≥ 1, n > k, hi ∈ H, 0 ≤ i ≤ n, and α0, . . . , α6 ∈ {+,−, 0} with
{α1, α2} = {+,−}; if the membrane with the label h0 contains other mem-
branes than those with the labels h1, . . . , hn specified above, then they must
have neutral charges in order to make this rule applicable; these membranes are
duplicated and then are part of the contents of both new copies of the mem-
brane h0

(division of non-elementary membranes; this is possible only if a membrane
contains two immediately lower membranes of opposite polarization, + and −;
the membranes of opposite polarizations are separated in the two new mem-
branes, but their polarization can change; always, all membranes of opposite
polarizations are separated by applying this rule).

(Note that, in order to simplify the writing, in contrast to the style customary in the
literature, we have omitted the label of the left parenthesis from a pair of parentheses which
identifies a membrane.) The rules of type (a) are applied in the parallel way (all objects
which can evolve by such a rule should do it), while the rules of types (b), (c), (d), (e), (f)
are used sequentially, in the sense that one membrane can be used by at most one rule
of these types at a time. In total, the rules are used in the non-deterministic maximally
parallel manner: all objects and all membranes which can evolve, should evolve. Only
halting computations give a result, non-halting computations give no output.

The separation rules introduced in [1] are of the following form (without polarizations):

(h0) [ O]h → [ U ]h[ O − U ]h, for h ∈ H, U ⊂ O.

If polarization is considered, they will be of the form:

(h) [ O]e1

h → [ U ]e2

h [ O − U ]e3

h , for h ∈ H,U ⊂ O.
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Here, we introduce a new definition of separation rules.

(g) [ a]e1

h → [ O1]
e2

h [ O2]
e3

h ,
for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a ∈ O
(separation rules for elementary membranes; in reaction with an object, the
membrane is separated into two membranes with the same label, possibly dif-
ferent polarization; at the same time, the object a can evolve; the objects from
O1 are placed in the first membrane, those from O2 are placed in the second
membrane).

As the rules of types (b), (c), (d), (e), and (f), the rules of type (g) are used sequentially,
in the sense that one membrane can be used by at most one rule of these types at a time.
If at the same time a membrane h is separated, and there are objects in this membrane
which evolve by means of rules of type (a), then in the two new membranes we introduce
the result of evolution; that is, we suppose that first the evolution rules of type (a) are
used, changing the objects, then separation is produced. Of course, this process takes one
step.

Note the difference between division rule and separation rule. In division rule, except
for the object specified in the rule is replaced by two possibly different new objects, the two
new membranes have the same copy of objects. But in separation rule, the new objects are
placed into the two new membranes according to O1 and O2, these two new membranes
can have much difference, such as the number of objects.

For the difference between the definitions of (g) and (h), see the introduction.
To understand what it means solving a problem in a uniform and confluent way, here

we briefly recall some related notions. Given a decision problem X, we say that it can be
solved in polynomial (linear) time by recognizing P systems in a uniform way, if, informally
speaking, we can construct in polynomial time a family of recognizing P systems Πn, n ∈ N,
associated with the sizes n of instances X(n) of the problem, such that the system will
always stop in a polynomial (linear, respectively) number of steps, sending out the object
yes if the instance X(n) has a positive answer and the object no if the instance X(n) has
a negative answer. If the computation of a P system is nondeterministic, but all branches
of a computation eventually reach a unique configuration, then we say that the system is
confluent.

In the next section, we will show that P systems with separation rules instead of
division rules can solve the SAT problem in linear time in a uniform and deterministic way.

3 Solving SAT by P Systems with Separation Rules

Theorem 3.1 P systems with rules of types (a), (b), (c), and (g) can solve SAT in linear
time in a uniform and deterministic way.

Proof. Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β (to which the size (m,n) is associated) is encoded as a multiset over

V (〈n,m〉) = {xi,j , x̄i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
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The object xi,j represents the variable xj appearing in the clause Ci without negation,
and object x̄i,j represents the variable xj appearing in the clause Ci with negation. Thus,
the input multiset is

w = {xi,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {x̄i,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

For given (n,m) ∈ N2, we construct a recognizing P system (Π(〈n,m〉), V (〈n, m〉), 2) with:

Π(〈n,m〉) = (O(〈n,m〉),H, µ, w1, w2, R),
O(〈n,m〉) = O1 ∪O2,

O1 = {xi,j , x̄i,j , | 0 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {ci | 1 ≤ i ≤ m + 2}
∪ {di | 1 ≤ i ≤ 2n + 2m + 2} ∪ {ri,j | 0 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {e, t, λ, yes, no},

O2 = {x′i,j , x̄′i,j , | 0 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {d′i | 1 ≤ i ≤ n}
∪ {ri,j | 0 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {e′},

µ = [ [ ]2]1,
w1 = λ, w2 = d1,

H = {1, 2},

and the following rules (we also give explanations about the use of these rules):

1. [ di]
0
2 → [ O1]

+
2 [ O2]

−
2 , 1 ≤ i ≤ n.

In membrane with label 2, when it is “electrically neutral”, object di causes the
membrane to separate and to choose for a variable xi, 1 ≤ i ≤ n, both values true
and false, in form of charges + and − of the two created membranes with the label
2. These rules allow us to have 2n internal membranes, in n steps.

2. [ xi,j → xi,jx
′
i,j ]

0
2, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

[ x̄i,j → x̄i,j x̄
′
i,j ]

0
2, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

[ di → di+1ed
′
i+1e

′]02, 1 ≤ i ≤ n− 1.
At the same time with using the rule of type (1), the objects evolve by rules of type
(2).

3. [ xi,1 → ri,1]
+
2 , 1 ≤ i ≤ m.

[ x̄i,1 → λ]+2 , 1 ≤ i ≤ m.
[ x′i,1 → λ]−2 , 1 ≤ i ≤ m.
[ x̄′i,1 → r′i,1]

−
2 , 1 ≤ i ≤ m.

The rules of type (3) try to implement a process allowing the internal membranes
to encode the assignment of a variable and, simultaneously, to check the value of all
clauses by this assignment, in such a way that, if the clause is true, then an object
ri,1 or r′i,1 will appear in the membrane. In other case, the object encoding the
variable will disappear.

4. [ xi,j → xi,j−1]
+
2 , 1 ≤ i ≤ m, 2 ≤ j ≤ n.

[ x̄i,j → x̄i,j−1]
+
2 , 1 ≤ i ≤ m, 2 ≤ j ≤ n.

[ x′i,j → xi,j−1]
−
2 , 1 ≤ i ≤ m, 2 ≤ j ≤ n.
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[ x̄′i,j → x̄i,j−1]
−
2 , 1 ≤ i ≤ m, 2 ≤ j ≤ n.

The check process described in the rules of type (3) is always made with respect to
the first variable appearing in the internal membrane. Hence, the rules of type (4)
take charge of making a cyclic path through all the variables to get that, initially,
the first variable is x1, then x2, and so on.

5. [ e]+1 → [ ]01e.
[ e′]−1 → [ ]01e.
[ d′i → di]

−
2 , 1 ≤ i ≤ n.

The auxiliary objects e and e′ exit the membrane changing the polarizations to
neutral and the object d′i in the membrane with negative charge evolves to the
object di (for the use of the rules of type (1) and the third rules of type (2)), so that
the above described generating process of the assignments and the encoding of the
satisfied clauses can cycle.

6. [ ri,k → ri,k+1r
′
i,k+1]

0
2, for 1 ≤ i ≤ m, 1 ≤ k ≤ n− 1.

[ r′i,k → ri,k+1r
′
i,k+1]

0
2, for 1 ≤ i ≤ m, 1 ≤ k ≤ n− 1.

These rules are designed to denote the fact: if clause Ci is satisfied by the assignment
encoded by a membrane, then the new membranes obtained from it by separation
also satisfy the clause Ci. The second subscript of ri,k or r′i,k is used for synchro-
nization, which is necessary, because of the use of objects ri,n and r′i,n in the rules
of types (11), (12), and (13).

7. [ di → di+1]
0
2, for n ≤ i ≤ 2n− 2.

[ d2n−2 → d2n−1c1]
0
2.

Through the counter objects di, the rules of type (7) control the process of synchro-
nization of the objects ri,k and r′i,k in the internal membranes.

8. [ d2n−1]
0
2 → [ ]+2 d2n−1.

The application of the rules of type (8) will show that the system is ready to check
which clauses are true by the assignment encoded by an internal membrane.

9. [ di → di+1]
0
1, 2n− 1 ≤ i ≤ 2n + 2m + 1.

The rules of type (9) supply counter objects di in the skin, in such a way that, if
objects d2n+2m−1 appear, then they show the end of the checking of the clauses.
The objects di, with 2n + 2m ≤ i ≤ 2n + 2m + 2, will control the final stage of the
computation.

10. [ r1,n]+2 → [ ]−2 r1,n.
[ r′1,n]+2 → [ ]−2 r1,n.
For all 2n internal membranes, we check whether r1,n or r′1,n is present in each
membrane. If this is the case, then r1,n or r′1,n is sent out of the membrane where it
is present (one copy of r1,n or r′1,n exits the membrane where it is present, the other
copies will evolve to r0,n or r′0,n by the rules of type (10), which will never evolve
again), changing in this way the polarization of that membrane, to negative. The
membranes which do not contain the object r1,n or r′1,n remain positive and they
will no longer evolve, as no further rule can be applied to them.

11. [ ri,n → ri−1,n]−2 , for 1 ≤ i ≤ n.
[ r′i,n → r′i−1,n]−2 , for 1 ≤ i ≤ n.
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The rules of type (10) always work with respect to the objects r1,n or r′1,n, The
relabel in the rules of type (11) takes charge of making a cyclic path through all ri,n

and r′i,n, and evolves the objects r1,n or r′1,n to r0,n or r′0,n (which will never evolve
again).

12. r1,n[ ]−2 → [ r0,n]+2 .
The objects r1,n from the skin membrane return to internal membranes with negative
charge, changing to r0,n, and returning the polarization of the membrane to positive.
This makes possible the use of rules of type (10).

Note that in the skin membrane the number of copies of r1,n is equal to the number
of membranes with negative charge; thus, because of parallelism, each membrane
which previously contained objects r1,n or r′1,n will now contain an object r0,n.

13. [ ci → ci+1]
−
2 , 1 ≤ i ≤ m.

The presence of object ci (with 2 ≤ i ≤ m+1) in the internal membrane shows that
the assignment makes the first i− 1 clauses true.

14. [ cm+1]
+
2 → [ ]+2 cm+1.

The presence of the object cm+1 shows that all clauses are satisfied by the assignment
encoded by an internal membrane. The rule of type (14) sends to the skin the objects
cm+1 appearing in the internal membranes.

15. [ cm+1 → cm+2t]
0
1.

The objects cm+1 in the skin evolve to objects cm+2t. The objects t in the skin are
produced simultaneously with the appearance of the objects d2n+2m+1 in the skin,
and they will be used to output the computing result.

16. [ t]01 → [ ]+1 t.
The rule of type (16) sends out of the system an object t changing the polarization
of the skin to positive, then objects t remaining in the skin are not able to evolve.
Then by rule of type (17), the object cm+2 can exit the skin producing an object
yes, telling us that the formula is satisfiable, and the computation halts.

17. [ cm+2]
+
1 → [ ]−1 yes.

The application of the rule of type (17) changes the polarization in the skin mem-
brane to negative in order that the objects cm+2 remaining in it are not able to
continue evolving.

18. [ d2n+2m+2]
0
1 → [ ]+1 no.

By the rule (18) the object d2n+2m+2 only evolves when the skin has neutral charge
(this is the case when the formula is not satisfiable). Then the system will evolve
sending out to the environment an object no and changing the polarization of the
skin to positive, in order that objects d2n+2m+2 remaining in the skin, do not evolve.

From the previous explanation of the use of rules, one can easily see how this P
system works. It is clear that the object yes is sent to the environment if and only
if the formula β is satisfiable. This is achieved in 3n + 2m + 4 steps: in 2n steps we
create 2n internal membranes (as well as the 2n different truth-assignments), then n steps
for synchronization; it takes 2m steps to check whether all clauses are satisfied by an
assignment; further 4 steps are necessary to output the computing result yes. If formula
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β is not satisfiable, then at step 3n + 2m + 4 the system sends the object no to the
environment. Therefore, the family of membrane systems we have constructed is sound,
confluent, and linearly efficient.

To prove that the family is uniform, we have to show that for a given size, the con-
struction of P systems described in the proof can be done in polynomial time by a Turing
machine. We omit the detailed construction due to the fact that it is straightforward but
cumbersome as explained in the proof of Theorem 7.2.3 in [9] (although P systems in [9]
are semi-uniform). So SAT problem was decided in linear time (3n+2m+2) by recognizing
active P systems with separation rule in a uniform way, and this concludes the proof. 2

4 Removing Polarizations

Following the idea in [3, 4], let us consider now rules of types (a) − (e) and (g) without
polarizations. They are of the following forms (because “no polarization” means “neutral
polarization”, we add the subscript 0 to the previous letters identifying the six types of
rules; as above, O = O1 ∪ O2 is the alphabet of objects and H is the set of labels of
membranes):

(a0) [ a → v]h, where a ∈ O, v ∈ O∗, and h ∈ H,

(b0) a[ ]h → [ b]h, where a, b ∈ O and h ∈ H,

(c0) [ a]h → [ ]hb, where a, b ∈ O and h ∈ H,

(d0) [ a]h → b, where a, b ∈ O and h ∈ H,

(e0) [ a]h → [ b]h[ c]h, where a, b, c ∈ O and h ∈ H,

(g0) [ a]h → [ O1]h[ O2]h, for h ∈ H, a ∈ O.

Rules of types (b), (c), (e), (g) in Section 2 were introduced without the capability of
changing the label of membranes they involve (this makes no sense for dissolving rules),
but in [9] one already considers rules of type (e) which can change both the label and the
polarization of membranes. Such rules are of the form

[ a]e1

h1
→ [ b]e2

h2
[ c]e3

h3
, with a, b, c ∈ O, e1, e2, e3 ∈ {+,−, 0}, and h1, h2, h3 ∈ H,

and they have been called of type (e′). We extend this idea and this notation to rules of
types (b0), (c0), (e0), (g0): their primed versions indicate the fact that the labels can be
changed. Specifically, these rules are of the following forms:

(b′0) a[ ]h1
→ [ b]h2

, where a, b ∈ O and h1, h2 ∈ H,

(c′0) [ a]h1
→ [ ]h2

b, where a, b ∈ O and h1, h2 ∈ H,

(e′0) [ a]h1
→ [ b]h2

[ c]h3
, where a, b, c ∈ O and h1, h2, h3 ∈ H,

(g′0) [ a]h1
→ [ O1]h2

[ O2]h3
, for h1, h2, h3 ∈ H, a ∈ O.

In the following, we consider the efficiency and universality of active P systems without
polarization with separation rules instead of division.
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4.1 Efficiency

Theorem 4.1 P systems with rules of types (a0), (b0), (c0), (g′0) can solve SAT in linear
time in a uniform and confluent way.

Proof. Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β (to which the size (m,n) is associated) is encoded as a multiset over

V (〈n,m〉) = {xi,j , x̄i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The object xi,j represents the variable xj appearing in the clause Ci without negation,
and object x̄i,j represents the variable xj appearing in the clause Ci with negation. Thus,
the input multiset is

w = {xi,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {x̄i,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

For given (n,m) ∈ N2, we construct a recognizing P system (Π(〈n,m〉), V (〈n, m〉), 2) with:

Π(〈n,m〉) = (O(〈n,m〉), H, µ, w1, w2, w7, R),
O(〈n,m〉) = O1 ∪O2,

O1 = {xi,j , x̄i,j | 1 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {di | 0 ≤ i ≤ 2n + 2m + 6}
∪ {ci | 1 ≤ i ≤ m} ∪ {λ, e, f0, f1, yes, no},

O2 = {x′i,j , x̄′i,j | 1 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {d′i | 0 ≤ i ≤ n− 1}
∪ {c′i | 1 ≤ i ≤ m},

µ = [ [ ]2[ ]7]1,
w1 = λ, w2 = w7 = d0,

H = {0, 1, 2, 3, 4, 5, 6, 7},

and the following rules (we also give explanations about the use of these rules):

Generation phase

G1 [ di]2 → [ O1]3[ O2]4, 0 ≤ i < n.
[ di → did

′
i]2, 0 ≤ i < n.

G2 [ di]3 → [ O1]2[ O2]0, 0 ≤ i < n.
[ di → di+1d

′
0]3, 0 ≤ i < n.

G3 [ d′i]4 → [ O1]2[ O2]0, 0 ≤ i < n.
[ d′i → di+1d

′
0]4, 0 ≤ i < n.

G4 [ dn]2 → [ O1]5[ O2]0.
[ dn → d0d

′
0]2.
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The objects di and d′i are used to control the generation process. In 2n + 1 steps, 2n

membranes with label 5 are created, corresponding to the truth assignments of the vari-
ables x1, · · · , xn. During this process, the object di inside the membrane with label 3
corresponds to the true value of variable xi+1, and the object d′i inside the membrane with
label 4 corresponds to the false value of variable xi+1. The created membranes with label
0 are dummy membranes: no rules can be applied to them, which allow us to change the
membrane labels during the computation.

G5 [ xi,j → xi,j−1x
′
i,j−1]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

[ x̄i,j → x̄i,j−1x̄
′
i,j−1]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

G6 [ xi,0 → ci]3, 1 ≤ i ≤ m.
[ x̄i,0 → λ]3, 1 ≤ i ≤ m.

G7 [ x̄′i,0 → ci]4, 1 ≤ i ≤ m.
[ x′i,0 → λ]4, 1 ≤ i ≤ m.

G8 [ x′i,j → xi,j ]4, 1 ≤ i ≤ m, 1 ≤ i ≤ n− 1.

G9 [ ci → cic
′
i]2, 1 ≤ i ≤ m.

G10 [ c′i → ci]4, 1 ≤ i ≤ m.

The labels of the created membranes toggles between 2 at even steps and 3 or 4 at odd
steps. Every object xi,j of the input evolves to xi,0 or x′i,0 in 2j− 1 steps. Then, it evolves
to ci in membranes where true value was chosen for xj (recall that xi,j = true satisfies
clause Ci) and is erased in membranes where false value was chosen for xj . Similarly, x̄i,j

changes to ci if xj = false and is erased if xj = true. After 2n + 1 steps, the membranes
with label 5 will represent all possible truth assignments of the variables in β. Every such
membrane will contain d0 and the objects representing the clauses satisfied by the present
truth assignment.

Checking phase

C1 [ c1]5 → [ O1]6[ O2]0.
[ c1 → c0d

′
0]5.

[ c0 → λ]5.

C2 [ ci → ci−1]6, 1 ≤ i ≤ m,

C3 [ di]6 → [ O1]5[ O2]0.
[ di → di+1d

′
0]6.

C4 [ dm → ef0]5.

A membrane with label 5 where object c1 appears will change the label to 6 (recall that
no rule is ever applied in membranes with label 0 created by separation). In a membrane
with label 6, the subscripts of all objects cj are decremented by one, and at the same time
the subscript of di is incremented by one and the label of membrane changes back to 5.

If in the beginning of the checking phase c1, · · · , ci are present (1 ≤ i ≤ m − 1), but
ci+1 is absent, then the evolution of the membrane finishes after 2i steps with label 5,
with di and without c1. If all objects ci, 1 ≤ i ≤ m, are present in the beginning of the
checking phase, then after 2m steps they will all be rewritten into c0, then removed, and
d0 will evolve into dm (and into ef0 in one more step).

C5 [ e]5 → [ ]5e.
[ f0 → f1]5.
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C6 e[ ]7 → [ e]7.
[ f1]5 → [ O1]6[ O2]0.
[ f1 → d2m+2n+4d

′
0]5.

C7 e[ ]6 → [ e]6.

If β has solutions (suppose β has s solutions, 1 ≤ s ≤ 2n), then at step 2n+2m+3, every
membrane corresponding to a solution of β ejects e in the skin region, and at the same
time f0 changes to f1. At step 2n+2m+4, one copy of e enters the membrane with label
7, and s membranes change label from 5 to 6 by the separation rule [ f1]5 → [ O1]6[ O2]0.
At step 2n + 2m + 5, s− 1 copies of e enter in s− 1 membranes of the s + 1 membranes
with labels 6 and 7. If β has no solution, then no object e enters the membrane labeled 7.

Output phase

O1 [ di → di+1]7, 0 ≤ i ≤ 2m + 2n + 5.

O2 [ e]7 → [ O1]6[ O2]0.
[ e → yesd′0]7.

O3 [ yes]6 → [ ]6yes.

O4 [ yes]1 → [ ]1yes.

O5 [ di → λ]6, i ∈ {2n + 2m + 5, 2n + 2m + 6}.
O6 [ d2n+2m+6]7 → [ ]7no.

O7 [ no]1 → [ ]1no.

If β has solutions, then at step 2n + 2m + 4 the membrane with label 7 receives a copy of
e by the rule C6. In this case, the rule O2 will be applied either at step 2n + 2m + 5 or at
step 2n+2m+6 (this can happen if s > 1 and the rule C6 is applied at step 2n+2m+5),
changing the label of the membrane from 7 to 6. It will take two more steps to eject
object yes in the skin and then into the environment. If β has no solutions, then after
step 2n + 2m + 6 the membrane with label 7 remains with label 7 and then the rule O6 is
applied, ejecting object no into the skin and then into the environment. 2

If β has at least two solutions, then the behavior of this system is not deterministic: at
step 2n + 2m + 5 either one of the rules C6 and O2 can be applied to the membrane with
label 7 (applying C6 at step 2n + 2m + 5 results in one extra copy of e in membrane with
label 7 and one copy of e missing in some membrane with label 6). However, the system
is confluent: in either case mentioned above, after at most three further steps, the system
produces the output yes and halts in the same configuration (the membrane with label 7
changes its label to 6 and the counter d2n+2m+5 or d2n+2m+6 is erased). From this point
of view, using rules of type (c′0) allows to obtain a stronger result:

Theorem 4.2 P systems with rules of types (a0), (c′0), (g0) can solve SAT in linear time
in a uniform and deterministic way.

Proof. Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.
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The instance β is encoded as a multiset w over Σ(〈n,m〉) in the same way as in the previous
proof. For given (n,m) ∈ N2, we construct a recognizing P system (Π(〈n,m〉), V (〈n,m〉),
2), with

Π(〈n,m〉) = (O(〈n,m〉), H, µ, w1, w2, R),
O(〈n,m〉) = O1 ∪O2,

O1 = {xi,j , x̄i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {di | 0 ≤ i ≤ 4n + 2m + 2}
∪ {ei, ēi | 0 ≤ i ≤ n− 1} ∪ {ci,0, ci,1, ci,2 | 0 ≤ i ≤ m}
∪ {a, u, ū, v, v̄, t, λ, yes, no},

O2 = {x′i,j , x̄′i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {ē′i | 0 ≤ i ≤ n− 1}
∪ {f, ū′, v̄′},

µ = [ [ ]2]1,
w1 = w2 = d0,

H = {1, 2, 3, 4, 5, 6, 7},

and the following rules:

Generation phase

G1 [ di → eiau]2, 0 ≤ i ≤ n− 2.
[ dn−1 → en−1av]2.

G2 [ a]2 → [ O1]2[ O2]2.
[ a → tf ]2.
[ ei → ēiē

′
i]2, 0 ≤ i ≤ n− 1.

[ u → ūū′]2.
[ v → v̄v̄′]2.

G3 [ t]2 → [ ]3λ,
[ f ]2 → [ ]4λ,

G4 [ ēi → di+1]3, 0 ≤ i ≤ n− 2.
[ ē′i → di+1]4, 0 ≤ i ≤ n− 2.
[ ēn−1 → d0u]3.
[ ē′n−1 → d0u]4.

G5 [ ū]3 → [ ]2λ.
[ ū′]4 → [ ]2λ.
[ v̄]3 → [ ]5λ.
[ v̄′]4 → [ ]5λ.

In 4n steps, 2n membranes are created, corresponding to the truth assignments of the
variables x1, · · · , xn. During this process, object di inside the membrane with label 3
corresponds to the true value of variable xi+1, and object di inside the membrane with
label 4 corresponds to the false value of variable xi+1. Object a is used to choose the truth
assignment of variables, and objects u and u′ are used to change the membrane label back
to 2. At step 4n, the labels 3 and 4 of internal membranes are changed to 5 by the objects
v and v′. The membranes with label 5 represent all possible truth assignments of the
variables in β. Every such membrane will contain d0, u, and the objects representing the
clauses satisfied.
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G6 [ xi,j → xi,jx
′
i,j ]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

[ x̄i,j → x̄i,j x̄
′
i,j ]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

G7 [ xi,1 → ci,0]3, 1 ≤ i ≤ m.
[ x̄i,1 → λ]3, 1 ≤ i ≤ m.

G8 [ x̄′i,1 → ci,0]4, 1 ≤ i ≤ m.
[ x′i,1 → λ]4, 1 ≤ i ≤ m.

G9 [ xi,j → xi,j−1]3, 1 ≤ i ≤ m, 2 ≤ i ≤ n.
[ x̄i,j → x̄i,j−1]3, 1 ≤ i ≤ m, 2 ≤ i ≤ n.
[ x′i,j → xi,j−1]4, 1 ≤ i ≤ m, 2 ≤ i ≤ n.
[ x̄′i,j → x̄i,j−1]4, 1 ≤ i ≤ m, 2 ≤ i ≤ n.

The label of the created membranes is 2 and then changes to 3 or 4 at steps 4i+3, 0 ≤ i < n.
Every object xi,j of the input evolves to xi,1 or x′i,1 in 4(i − 1) steps. Then, it evolves
to ci,0 in membranes where true value was chosen for xj (recall that xi,j = true satisfies
clause Ci) and is erased in membranes where false value was chosen for xj . Similarly, x̄i,j

changes to ci,0 if xj = false, and is erased if xj = true.

G10 [ ci,0 → ci,1]2, 1 ≤ i ≤ m.

G11 [ ci,1 → ci,2c
′
i,2]2, 1 ≤ i ≤ m.

G12 [ ci,2 → ci,0]3, 1 ≤ i ≤ m.
[ c′i,2 → ci,0]4, 1 ≤ i ≤ m.

The rules of types (G10), (G11), and (G12) are representing the fact that if the clause Ci

is satisfied in an internal membrane, then in the new created membranes from it Ci is also
satisfied.

Checking phase

C1 [ ci,0 → ci−1,0]5, 1 ≤ i ≤ m,

C2 [ u]5 → [ ]6λ,

C3 [ c0,0]6 → [ ]5λ,

C4 [ di → di+1u]6, 0 ≤ i < m− 1,

C5 [ dm−1 → dm]6.

By expelling object u, membrane changes label from 5 to 6. At the same time the subscripts
of all objects cj,0 are decremented by one. A membrane with label 6 where object c0,0

appears will change the label back to 5. At the same time the subscript of di is incremented
by one and u is reproduced (except for i = m− 1).

If in the beginning of the checking phase c1,0, · · · , ci,0 are present (1 ≤ i < m), but
ci+1,0 is absent, then after 2i + 1 steps rule C3 will no longer be applicable and the
membrane will have label 6, no object c0,0 and will never change the label again. After
m+ i+1 steps from the beginning of the checking phase the membrane will stop evolving.
If all objects ci,0, 1 ≤ i ≤ m, are present in the beginning of the checking phase, then after
2m steps they will all be erased, d0 will evolve into dm and the membrane label will be 5.

Output phase

O1 [ dm]5 → [ ]5yes,
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O2 [ yes]1 → [ ]7yes,

O3 [ di → di+1]1, 0 ≤ i ≤ 4n + 2m + 1,

O4 [ d4n+2m+2]1 → [ ]1no.

At step 4n + 2m + 1, every membrane corresponding to a solution of β expels yes in the
skin region, and in the next step one copy of yes (if any) is ejected into the environment,
changing the label of the skin from 1 to 7. If β has no solutions, then after step 4n+2m+2
the skin membrane remains with label 1 and then rule O4 is applied, ejecting the object
no into the environment. 2

4.2 Universality

Because the notion of a matrix grammar will be used below, here we introduce it.
A matrix grammar with appearance checking is a construct G = (N, T, S,M, F ), where

N, T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the form (A1 → x1,
. . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with Ai ∈ N,xi ∈ (N ∪ T )∗, in all
cases), and F is a set of occurrences of rules in M (N is the nonterminal alphabet, T is
the terminal alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) in
M and the strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all
1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T )∗, or wi = wi+1,

Ai does not appear in wi, and the rule Ai → xi appears in F . (The rules of a matrix are
applied in order, possibly skipping the rules in F if they cannot be applied – therefore we
say that these rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The family
of languages of this form is denoted by MATac. It is known that MATac = RE.

A matrix grammar G = (N,T, S, M,F ) is said to be in the binary normal form if
N = N1 ∪N2 ∪{S, #}, with these three sets mutually disjoint, and the matrices in M are
in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,

3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,

4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in the form
(S → XinitAinit), in order to fix the symbols X,A present in it), and F consists exactly
of all rules A → # appearing in matrices of type 3; # is a trap-symbol, because once
introduced, it is never removed. A matrix of type 4 is used only once, in the last step of
a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary normal
form. Details can be found in [5].

The following theorem shows that by using membrane separation rule to change the
labels of the membranes, the universality can be reached. Here Ps(Π) denotes the set of
vectors of natural numbers describing the multiplicity of objects expelled into the envi-
ronment by the various halting computations in system Π; by PsOP (a0, c0, g

′
0) we denote

the family of sets Ps(Π) computed by P systems using the types of rules a0, c0, and g′0.
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Theorem 4.3 PsOP (a0, c0, g
′
0) = PsRE.

Proof. Consider a matrix grammar G = (N,T, S, M, F ) with appearance checking,
in the binary normal form, hence with N = N1 ∪ N2 ∪ {S, #} and with the matrices of
the four forms introduced above. Assume that all matrices are injectively labeled with
elements of a set B. Replace the rule X → λ from matrices of type 4 by X → f , where f
is a new symbol.

We construct the P system of degree 2

Π = (O, H, [ [ ]Xinit
]1, w1 = λ,wXinit = c0Ainit, R),

O = O1 ∪O2,

O1 = T ∪N2 ∪ {Am | A ∈ N2,m ∈ B} ∪ {c, c0, c1, c2, #},
O2 = {d},
H = N1 ∪ {Xm | X ∈ N1, m ∈ B} ∪ {0, 1, f},

and the set R containing the following rules.
The simulation of a matrix m : (X → Y, A → x), with X ∈ N1, Y ∈ N1 ∪ {f}, is done

in three steps, using the next rules:

1. [ A]X → [ O1]Ym
[ O2]0.

[ A → Amd]X .

2. [ Am → xc]Ym
.

3. [ c]Ym
→ [ O1]Y [ O2]0.

[ c → d]Ym
.

4. [ c1 → c2]Ym
.

[ c2 → c0]Ym
.

The first rule of the matrix is simulated by the change of the label of the inner membrane
(the “dummy” object d and membrane 0 play no further role). Note that if X ∈ N1 also
appears in a matrix of type 3, then when A activates separation, c0 can evolve to c1d by
the second rule of type (5), then to c2 and c0 by the rules of type (4). The correctness
of the simulation is obvious, because one cannot simulate one rule of the matrix without
simulating the other rule.

The simulation of a matrix m : (X → Y, A → #), with X, Y ∈ N1 and A ∈ N2, is
done also in three steps, using the next rules:

5. [ c0]X → [ O1]Ym
[ O2]0.

[ c0 → c1d]X .

6. [ c1 → c2]Ym
.

[ A → #]Ym
.

7. [ c2]Ym
→ [ O1]Y [ O2]0.

[ c2 → c0d]Ym
.

While the membrane with label X is used by object c0, no other rule can be used. In
the next step, if any copy of A is present, then it introduces the trap-object # and the
computation never stops. If no A is present, then the objects cj evolve, returning the label
of the membrane to Y and introducing the auxiliary object c0, for iterating the procedure.

We also consider the following rules:
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8. [ A → #]f , for all A ∈ N2.

9. [ # → #]h, for all h ∈ H.

10. [ a]f → [ ]fa.

11. [ a]1 → [ ]1a, for all a ∈ T .

The equality ΨT (L(G)) = Ps(Π) easily follows from the above explanations. 2

Remark 4.1 In the above proof, the rules of type (c0) are only used for sending the result
of a computation out of the system. Therefore, rules of types (a0) and (g′0) are sufficient
to reach universality for membrane systems with internal output.

5 Final Remark

In this paper, separation is introduced into active P systems, and the efficiency and uni-
versality of active P systems with separation rules instead of division are investigated.
The universality result is obtained by a direct proof. It still remains open using P systems
with separation rules to simulate P systems with division rules.
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[13] P. Sośık, Solving a PSPACE-Complete Problem by P Systems with Active Mem-
branes, Proceedings of the Brainstorming Week on Membrane Computing (M. Cava-
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