
Simulating Shuffle–Exchange Networks

with P Systems

Rodica CETERCHI
Faculty of Mathematics and Computer Science

University of Bucharest
Academiei 14, RO-010014, Bucharest, Romania

E-mail: rc@funinf.cs.unibuc.ro

Mario J. PÉREZ-JIMÉNEZ
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mario.perez@cs.us.es

Abstract. We present in this paper a simulation with P systems of the parallel
architecture known as shuffle–exchange network. This will lead us to consider
a new version of P systems with communication, for which the communication
graphs are not fixed, but have a dynamic evolution, and for which different
communication rules can be associated to different communication graphs. The
simulation of the shuffle–exchange network provides a first, simple example, of
such a system.

1 Introduction

Any computer, whether sequential or parallel, operates by executing instructions on data.
An algorithm (stream instructions) tells the machine what to do at each moment, and the
input of an algorithm (stream data) is affected by the instructions of the algorithm.

A parallel machine consists of a large number of processors (each one have an arith-
metic logic unit with registers and a private memory) that be able to solve problems in
a cooperative way; that is, that machine is capable of executing several instructions at
the same time unit. Basically there are two different kinds of parallel machines according
to the possibility to execute, simultaneously, either the same instruction on different data
sets (SIMD) or different instructions on different data sets (MIMD).

In [1] one deals with some sorting parallel algorithms, based on a comparison network
model of computation, which incorporates features of parallelism, and a simulation of
these algorithms through P systems with communication is presented.

In this paper we study the perfect shuffle SIMD computer where the processors inter-
connection is based on the shuffle and exchange functions (that is, by a shuffle–exchange
network), and we analyze the possibility to simulate this parallel architecture by a cellular
computing with membranes.

117

The paper is organized as follows. In Section 2 we first give some preliminary notions
on the perfect shuffle SIMD architecture, and some interesting properties of this parallel
model are presented. In Section 3 we introduce a variant of P systems with communication
modelling perfect shuffle machines. Section 4 and Section 5 illustrate the above simulation
with parallel algorithms to sum integer numbers and to find the maximum of a finite
numbers of integer numbers. In the last section some conclusions and remarks of our
study are presented.

2 Description of the Perfect Shuffle SIMD Architecture

A form of synchronous parallelism is called SIMD (Single–Instruction–Multiple–Data).
In the SIMD paradigm, there are a number of processors arranged in a special way and
connected according to a singular architecture. Each processor has a private memory
for storing instructions and data. The model is synchronous and during a given time
unit some processors are active and execute the same instruction, but on a (eventually)
different data set.

Several different methods of connecting processors in a parallel computer have been
proposed. In this paper we will study the perfect shuffle SIMD architecture and we analyze
the possibility to consider it as a membrane system.

A shuffle–exchange network consists of k = 2n nodes, labelled 0, 1, . . . , k − 1, and two
kinds of connections.

Exchange connections link pairs of nodes whose labels differ in the least significant bit.
Thus the exchange function indicates that two adjacent nodes should be connected for
data exchange.

The following lemma characterizes exchange connections.

Lemma 2.1 Let xn−1xn−2 . . . x1x0 be the label of a node in a shuffle–exchange network,
expressed in binary. Then this node is exchange connected with the node labelled by
xn−1xn−2 . . . x1x

∗
0, where x∗0 = 1− x0.

The exchange function e : L −→ L indicates that pairs of nodes, j and e(j), for all
j ∈ L, should be connected for data exchange. The exchange function can be defined by
e(xn−1xn−2 . . . x1x0) = xn−1xn−2 . . . x1x

∗
0, with x∗0 = 1−x0, and j = xn−1xn−2 . . . x1x0 ∈ L

is the label of a node expressed in binary.
The set {(j, e(j)) | j ∈ L} of exchange connections can be considered the set of edges

of a graph, with set of vertices L (or, equivalently, the set of processors labeled by L). In
the sequel we will call this graph the exchange graph, and denote it Ge.

Note that, from x∗0 = 1−x0 follows x0
∗∗ = x0, and from this it follows that e(e(j)) = j

for all j ∈ L; thus, if (j, e(j)) is an exchange connection, then so is (e(j), j), and thus the
exchange graph is a non-oriented one.

Shuffle connections link a node labelled by i (i 6= k − 1) with a node labelled by j (in
the direction from i to j!) if and only if j ≡ 2i modulo k− 1 (excepting the node labelled
by k − 1 that is connected to itself); that is,

j =
{

2i for 0 ≤ i ≤ k/2− 1,
2i + 1− k for k/2 ≤ i ≤ k − 1.

The shuffle function s : L −→ L expresses the fact that (i, s(i)) is a shuffle connection
for all i ∈ L.

We have the following interesting property of the shuffle connection.

118

Lemma 2.2 Let xn−1xn−2 . . . x1x0 be the label of a node in a shuffle–exchange net-
work, expressed in binary. Then this node is shuffle connected with the node labelled
by xn−2xn−3 . . . x0xn−1.

That is, the shuffle function corresponds to perfectly shuffling a deck of n cards, performing
cyclic shifting to the left of the bits in xn−1xn−2 . . . x1x0 through one bit position.

The set {(i, s(i)) | i ∈ L} of shuffle connections can be considered the set of edges of a
graph, with set of vertices L (or, equivalently, the set of processors labeled by L). In the
sequel we will call this graph the shuffle graph, and denote it Gs.

Note that shuffle connections are oriented, thus the shuffle graph is an oriented graph.
The shuffle–exchange network corresponding to eight nodes is depicted in Figure 1.

The arrows (oriented edges) depict the shuffle connections, while the double-arrows (the
non-oriented edges) depict the exchange connections.

0 1 32 4 765

Figure 1: Shuffle–exchange network

Shuffle/exchange connections are used by the processors to perform shuffle/exchange
operations, which consist of transferring values of internal variables “along” a given con-
nection.

Consider a parallel architecture with processors organized by a shuffle–exchange net-
work, where we use the binary representation of the labels of the nodes. Let the processors
be loaded with k items of data a0, . . . , ak−1. After n applications of the shuffle operations,
the data return to their original positions.

Now, we consider the data items originally in pairs of adjacent processors (by shuffle
or exchange connections); that is, the corresponding binary representation differ only in
a bit (for instance, in position n− p, where 1 ≤ p ≤ n). Then, after n shuffle operations,
these data items are located in adjacent processors.

3 Simulation of the Perfect Shuffle SIMD Architecture with
P Systems

Let M be a perfect shuffle SIMD machine, with k = 2n processors, Pi (with 0 ≤ i ≤ k−1).
Then to each processors Pj we will associate a membrane, which we will still denote Pj .
Thus, similarly to tissue-like P systems, we will have a collection of elementary membranes,
no skin membrane, and the elementary membranes will be connected by certain graphs,
at certain moments of their evolution in time, as we will explain in the sequel.

The contents of each processor Pj will be codified in its associated membrane with
symbol objects. The alphabet of symbols used, V , will depend on the contents of the
processors we are simulating (see the application to sum for instance). If each processor
has to contain say r variables with positive integer values, then they can be in principle
codified with an alphabet with r letters. In the case of the applications illustrated further,

119

the sum and the maximum value, two variables are used by the perfect shuffle algorithms,
and their simulation with P systems uses accordingly an alphabet with two symbols.

We have to model:

– Patterns of communication between processors. Recall that in a perfect shuffle ar-
chitecture there exists basically two types of communication graphs:

• the shuffle graph, which we will denote Gs: the set of vertices is composed of
all membranes, the set of oriented edges is defined as in 2;

• the exchange graph, which we will denote Gi: the set of vertices is composed
of all membranes, the set of oriented edges is defined as in 2;

Although the exchange graph Gi is not oriented, as opposed to the shuffle graph, Gs,
we will consider all the edges of all graphs to have an orientation, and we will use
the usual convention on graph theory: an edge (r, s) ∈ Gi iff the edge (s, r) ∈ Gi.

– Patterns of specific internal processing in each processor; these will be modeled by
symbol rewriting rules. In order to have unity of notation, we can associate such
rules to the identity graph, GId: the set of vertices is composed of all membranes,
the set of edges is defined as {(j, j) | 0 ≤ j ≤ k}.

The P systems which we consider in the sequel, for modelling the perfect shuffle archi-
tecture, depart from the classical P systems in (at least) two respects:

– The connections between individual membranes of a P system, µ, which was a tree-
like structure of membranes (see [3]), and which in tissue-like P systems becomes a
graph structure; now, in the algorithms we will simulate these connections change
in time, and we can better think of them as a sequence of graph structures.

– The rules of a P system, usually associated to membranes, will now be associated to
communication graphs between membranes.

(a) We will simulate the internal computations performed by the processors (recall
that in the case of the SIMD architecture, we have the same internal computa-
tions inside each processor), by the action of symbol or object rewriting rules,
at work simultaneously inside each individual membrane. In order to have a
unitary formalism, we will associate such rules to the identity graph, GId.

(b) We will simulate the exchange of data performed by the processors with com-
munication rules (symport/antiport rules) between membranes. The commu-
nication rules will be associated to graphs different from the identity graph,
the graphs of different types of connections which link the processors in ev-
ery particular architecture, and, for a given architecture, in every particular
algorithm.

So, in our formalism, we will have pairs [rules, graph] which we use to describe the be-
haviour of a P system which simulates the behaviour of a given algorithm, in a particular
architecture.

We can impose the restriction of having a finite set of overall rules, say Rules,
and a finite set of overall graphs, say Graphs, from which the members of the pairs
[rules, graph] ∈ P (Rules)× P (Graphs) are picked, i.e., rules ⊆ Rules, graph ⊆ Graphs,
and P (A) = {x | x ⊆ A} represents the power set of A.

120

Furthermore, we will allow a flexible use of rules and graphs, in the sense that, for a
given graph, G, we can use pairs [R1, G] and [R2, G], with R1 6= R2 at different moments in
time. This corresponds to the fact that the same connection graph between processors can
be used (even by the same algorithm) at different moments in time to perform different
data exchange, or, when simulating the internal computations, which again are different
at different moments in time.

For the perfect shuffle architecture, we will have

Graphs = {Gs, Gi, GId}.

The set Rules, of all symbol/object rewriting rules which simulate internal computations
performed by the individual processors, will depend on the particular algorithm, used to
solve a particular problem, within the framework of a given architecture.

Since we model deterministic algorithms, each iterative step of such an algorithm will
be modeled by a finite sequence of pairs [rules, graph], each pair simulating the effect of
“an instruction”. The finite sequence of pairs [rules, graph], corresponding to an iterative
step of the algorithm, will be denoted in the sequel by Rµ, and will be applied repeatedly
(but a finite number of times) to the elementary membranes simulating the processors and
their initial configuration. Our systems will thus exhibit a periodic behaviour, and in their
presentation we will use the period Rµ, which takes the place of both rules associated to
membranes and communication graph(s).

A P system which simulates a particular algorithm in the perfect shuffle SIMD archi-
tecture will thus be a construct

Π = (V, P0, · · · , Pk−1, Rµ),

where P0, · · · , Pk−1 are elementary membranes, V is an alphabet of symbols used to codify
the contents of the membranes, and Rµ is a finite sequence of pairs [rules, graph], such
that: (i) if graph = GId then its rules are rewriting rules; (ii) if graph 6= GId then its
rules are communication rules, and all the graphs in this category belong to the shuffle–
exchange set, {Gs, Ge}, i.e., are either of type shuffle or of type exchange. We will call
such a system a P system with periodic dynamic communication.

We illustrate in the next two sections such types of P systems.

4 A Sum Algorithm with Perfect Shuffle and its Simulation

The perfect shuffle architecture can be used to compute the sum of k = 2n integers
a0, a1, · · · , ak−1. Processor Pi, labelled by i, possesses two local variables: si (initialized
by ai) and ti (initialized by 0), for all i such that 0 ≤ i ≤ k−1. In the variable ti, processor
Pi will put the data communicated for an adjacent processor.

The following procedure compute the sum a0 + a1 + · · ·+ ak−1 .

procedure sumPS(a0, a1, · · · , ak−1)
begin

for i ← 1 to log k do
for all j where 0 ≤ j ≤ k − 1 doPS-simPsys

shuffle (sj)
tj ← sj

exchange (tj)

121

sj ← sj + tj
endfor

endfor
end

Here shuffle (sj) means that processor Pr links by shuffle processor Pj , then Pr sends the
value of sr and processor Pj put this value in the variable sj . The operation exchange(tj)
means that processors Pr and Pj connected by an exchange-edge interchange the corre-
sponding values of their variables t.

The result is collected in the processor P0. In this algorithm there are log(k) iterations
and every iteration takes constant time, so this parallel algorithm works in Θ(log(k) time.

Example: Take n = 3, thus k = 8, and consider the eight positive integers a0 = 2, a1 = 3,
a2 = 1, a3 = 1, a4 = 4, a5 = 5, a6 = 3, a7 = 2, each integer ai represented as the variable
ai of the processor Pi, for 0 ≤ i ≤ k − 1.

Figure 2 shows that, after three iterations, the sum a0 + a1 + · · ·+ a7 = 21 is obtained
in the ai variable of each processor Pi, 0 ≤ i ≤ 7, and also shows the contents of each
processor in terms of the values of the ai variables.

Simulation of the Example with P systems: Consider that to each processor Pi,
0 ≤ i ≤ 7, there corresponds a membrane, still denoted Pi, 0 ≤ i ≤ 7. Let the positive
integer ai be codified as ai occurrences of a symbol a, and the positive integer bi be codified
as bi occurrences of a symbol b, different from a.

• The initial configuration: for every 0 ≤ i ≤ 7, every membrane Pi contains aai , and
no b’s.

• The shuffle graph: is denoted by Gs and contains the following set of arcs

{(0, 0), (7, 7), (1, 2), (2, 4), (4, 1), (3, 6), (6, 5), (5, 3)}.
To the shuffle graph Gs we associate the unique symport rule: (a, out).

• The exchange graph: is denoted by Ge and contains the following set of arcs

{(0, 1), (1, 0), (2, 3), (3, 2), (4, 5), (5, 4), (6, 7), (7, 6)}.
To the exchange graph Gi we associate the unique symport rule: (b, out).

• The identity graph: is denoted by GId and contains the following set of arcs

{(i, i) | 0 ≤ i ≤ 7}.
We will use the identity graph for internal computations, which in this case will be
rewritings.

Consider the following sequence of pairs [rule, graph]:

[(a, out), Gs], [a → ab,GId], [(b, out), Ge], [b → a,GId],

and apply it to the initial configuration of our eight membranes.

– action of [(a, out), Gs]: rule (a, out) is active in all membranes; “out” is relative to
the graph Gs: if an edge (i, j) ∈ Gs, then all objects a of Pi get transported into

122

21 21 21 21 21 2121 21

11

11

11

11

11

11

11

11

10

10 10

10

10

10 10

10

2 3 3 21 1 4 5

2 4 3 15 3

3 2

21

14 2 5 13

6 6 8 8 4 4 3 3

6 6 84 3 384

64 64 83 83

10 10 10 10 11 11 11 11

Figure 2: Sum Perfect–Shuffle

123

Pj “using” this edge. In our particular example, this means: membranes P0 and P7

remains with the same content of a’s, since each is connected only to itself; edges
{(1, 2), (2, 4), (4, 1)} form a cycle, thus the a’s of P1 get into P2, those of P2 into P4,
and those of P4 into P1; similarly for the edges {(3, 6), (6, 5), (5, 3)}. Each membrane
will hold after this application the following integers (represented with a’s):

P0 : aa0 , P1 : aa4 , P2 : aa1 , P3 : aa5 , P4 : aa2 , P5 : aa6 , P6 : aa3 , P7 : aa7 .

For our particular example, we get

P0 : a2, P1 : a4, P2 : a3, P3 : a5, P4 : a1, P5 : a3, P6 : a1, P7 : a2.

– action of [a → ab,GId]: this is a rewriting step taking place in each membrane, using
the rule a → ab; the graph GId plays no role, there is no communication taking place.
The effect of the rewriting rule is to produce in each membrane the same number of
b’s as the number of a’s it is already holding. For our example, after this application,
we obtain the following content:

P0 : a2b2, P1 : a4b4, P2 : a3b3, P3 : a5b5, P4 : a1b1, P5 : a3b3, P6 : a1b1, P7 : a2b2.

– action of [(b, out), Ge]: our membranes are now connected by the exchange graph
Ge; the rule in each membrane is the symport rule (b, out); since Ge contains pairs
of edges {(j, j +1), (j +1, j)} for all j = 0, 2, 4, 6, then for all such pairs the contents
of b’s of Pj and Pj+1 are swapped. For our example, after this application, we obtain
the following content:

P0 : a2b4, P1 : a4b2, P2 : a3b5, P3 : a5b3, P4 : a1b3, P5 : a3b1, P6 : a1b2, P7 : a2b1.

– action of [b → a,GId]: this is again a rewriting step, taking place in each membrane,
using the rule b → a; the graph GId plays no role, there is no communication taking
place. Rewriting b’s to a’s in a membrane has the effect of “adding” the integers
represented by the a’s and by the b’s, the result being written with a’s (and we can
think that the b’s counter is set to zero, since b’s are dissapearing): axby → ax+y.
For our example, after this application, we obtain the following content:

P0 : a2a4 = a6, P1 : a4a2 = a6, P2 : a3a5 = a8, P3 : a5a3 = a8, P4 : a1a3 = a4,

P5 : a3a1 = a4, P6 : a1a2 = a3, P7 : a2a1 = a3.

Note that this is precisely the integer content of the processors we are simulating, after
the first iteration step.

Next, we will apply again the quadruple sequence

[(a, out), Gs], [a → ab,GId], [(b, out), Ge], [b → a,GId],

of pairs [rule, graph], to the above configuration of our eight membranes. After working
out the details, as above, we obtain that our eight membranes will have the following
content of integers represented with a’s:

P0 : a10, P1 : a11, P2 : a10, P3 : a11, P4 : a10, P5 : a11, P6 : a10, P7 : a11,

124

and this is precisely the integer content of the processors we are simulating, after the
second iteration step.

Applying again the quadruple sequence

[(a, out), Gs], [a → ab,GId], [(b, out), Ge], [b → a,GId],

to the previously obtained configuration, will have the effect of the third iteration on the
processors, namely obtaining the “final” configuration,

P0 : a21, P1 : a21, P2 : a21, P3 : a21, P4 : a21, P5 : a21, P6 : a21, P7 : a21,

which contains the sum, namely 21, of the initially given integers.
In a completely similar manner to the example above, we can simulate the PS algo-

rithm for computing the sum of arbitrary k = 2n positive integers, using k membranes,
labeled from 0 to k − 1, starting from an initial configuration which codifies integer aj as
aaj in each membrane Pj , and applying n = log2(k) times the sequence

[(a, out), Gs], [a → ab,GId], [(b, out), Ge], [b → a,GId].

Theorem 4.1 For k = 2n, the P system with periodic dynamic communication

Π = ({a, b}, P0, · · · , Pk−1, Rµ = {[(a, out), Gs], [a → ab,GId], [(b, out), Ge], [b → a,GId]})

computes the sum of k positive integers {a0, · · · , ak−1}, starting from the initial configu-
ration of objects

{Pj : aaj | 0 ≤ j ≤ k − 1},
and applying the finite sequence

([(a, out), Gs], [a → ab, GId], [(b, out), Ge], [b → a,GId])n.

The sum S = Σj=0
k−1aj is obtained in each membrane, i.e., as the configuration

{Pj : aS | 0 ≤ j ≤ k − 1}.

It is obvious that, in order to add k positive integers, with 2n−1 < k ≤ 2n, (i.e., k not
necessarily a power of 2) the same system with 2n membranes can be used, letting the
extra membranes hold the value zero (i.e. no occurrences of a).

Until now we have dealt with adding only positive integers. Our model needs only a
small refinement in order to deal with both positive and negative integers. Let, as before,

• a be the symbol to codify the positive integer content of the aj field of every mem-
brane Pj ;

• b be the symbol to codify the positive integer content of the bj field of every membrane
Pj .

Let |x| denote the positive part of the integer x. Consider two supplementary symbols,
ā and b̄, to represent respectively the negative units. In other words, let

• ā be the symbol to codify the negative integer content of the aj field of every mem-
brane Pj ; if aj is negative, it will be codified as ā|aj |;

125

• b̄ be the symbol to codify the negative integer content of the bj field of every mem-
brane Pj ; if bj is negative, it will be codified as b̄|bj |.

The graphs Gs, Ge, and GId are defined as before. We only add more rules to each of
them, to ensure also the communication of negative units, and the proper addition. The
corresponding four pairs of [rules, graph] to be applied in sequence are:

• [{(a, out), (ā, out)}, Gs]

• [{a → ab, ā → āb̄}, GId]

• [{(b, out), (b̄, out)}, Ge]

• [{b → a, b̄ → ā, aā → λ}, GId]

Suppose a membrane holds a positive integer x as ax, and that, after the action of
the exchange graph, receives a negative integer y, represented as b̄|y|. At the next step,
a rewriting one, governed by [{b → a, b̄ → ā, aā → λ}, GId], the rule b̄ → ā will rewrite
all occurrences of b̄ as ā, thus we get axā|y|, and the rule aā → λ will ensure the proper
addition of the positive and the negative integer. We have thus the result:

Theorem 4.2 For k = 2n, the P system with periodic dynamic communication

Π = ({a, b, ā, b̄}, P0, · · · , Pk−1, R̄µ),

where
R̄µ = {[{(a, out), (ā, out)}, Gs], [{a → ab, ā → āb̄}GId],

[{(b, out), (b̄, out)}, Ge], [{b → a, b̄ → ā, aā → λ}, GId]}
computes the sum of k integers {a0, · · · , ak−1}, starting from the initial configuration of
objects

{Pj : aaj | 0 ≤ j ≤ k − 1, such that aj ≥ 0}, {Pj : ā|aj | | 0 ≤ j ≤ k − 1, such that aj < 0}

and applying the finite sequence R̄µ n times.
The sum S = Σj=0

k−1aj is obtained in each membrane, i.e. as the configuration

{Pj : aS | 0 ≤ j ≤ k − 1} if S ≥ 0, or {Pj : ā|S| | 0 ≤ j ≤ k − 1} if S < 0.

5 Finding the Maximum with Perfect Shuffle
and its Simulation

The perfect shuffle architecture can be also used to compute the maximum of k = 2n

integers a0, a1, · · · , ak−1. Processor Pi, labelled by i, possesses two local variables: si

(initialized by ai) and ti (initialized by 0, for all i such that 0 ≤ i ≤ k − 1). In the
variable ti, processor Pi will put the data communicated from an adjacent processor. We
suppose that in each processor Pi, a function which returns the maximum value of the
local variables si and ti can be implemented.

The following procedure computes the maximum of a0, a1, · · · , ak−1.

procedure maxPS(a0, a1, · · · , ak−1)

126

begin
for i ← 1 to log k do

for all j where 0 ≤ j ≤ k − 1 do
shuffle (sj)
tj ← sj

exchange (tj)
sj ← max(sj , tj)

endfor
endfor

end

where shuffle (sj) and exchange(tj) have the same meaning as in the sum algorithm
of Section 4. Note actually that the two algorithms differ only in the internal processing
occurring at the fourth step of each iteration, namely, instead of making the sum sj + tj
and storing it in variable sj , the present algorithm finds the maximum of the two variables,
max(sj , tj), and stores the result again in variable sj .

In this algorithm also there are log(k) iterations, and every iteration takes constant
time, so this parallel algorithm works also in Θ(log(k)) time. The result can be considered
collected in P0, it will hold the maximum of given k numbers after log(k) iterations.
Remark: In general, the perfect shuffle SIMD architecture provides an interesting tool
to solve problems with k = 2n inputs an a single output, that involves only an associative
binary operation (the sum in the example of the section 4, and the maximum in the
example of the section 5).

Example: Take as before, n = 3, thus k = 8, and consider the eight positive integers
a0 = 2, a1 = 3, a2 = 1, a3 = 1, a4 = 4, a5 = 5, a6 = 3, a7 = 2, each integer ai represented
as the variable ai of the processor Pi, for 0 ≤ i ≤ k − 1.

After three iterations, the maximum of a0, a1, · · · , a7, i.e. value 5, is obtained in the
ai variable of each processor Pi, for 0 ≤ i ≤ 7.

Simulation of the Example with P systems: This will be very similar to the simu-
lation of the sum example. As in the previous section, consider that to each processor Pi,
0 ≤ i ≤ 7, there corresponds a membrane, still denoted Pi, 0 ≤ i ≤ 7. Let the positive
integer ai be codified as ai occurrences of a symbol a, and the positive integer bi be codified
as bi occurrences of a symbol b, different from a.

• The initial configuration: for every 0 ≤ i ≤ 7, every membrane Pi contains aai , and
no b’s.

• The shuffle graph: is denoted by Gs and contains the following set of arcs

{(0, 0), (7, 7), (1, 2), (2, 4), (4, 1), (3, 6), (6, 5), (5, 3)}
To the shuffle graph Gs we associate the unique symport rule: (a, out).

• The exchange graph: is denoted by Ge and contains the following set of arcs

{(0, 1), (1, 0), (2, 3), (3, 2), (4, 5), (5, 4), (6, 7), (7, 6)}
To the exchange graph Ge we associate the unique symport rule: (b, out).

• The identity graph: is denoted by GId and contains the following set of arcs

127

{(i, i) | 0 ≤ i ≤ 7}.
We will use the identity graph for internal computations, which in this case will be
rewritings.

Consider the following sequence of pairs [rule, graph]:

Rµ
max = ([(a, out), Gs], [a → ab,GId], [(b, out), Ge], [{ab → a > b → a}, GId]).

Note that it differs from the sequence Rµ, considered in the previous Section for the
sum algorithm, only in the fourth pair, [{ab → a > b → a}, GId]. The role of this pair is
to simulate the computation of the maximum in each processor/membrane, and putting
the result in the variable codified with the a symbol. Note that it uses two rewriting rules,
ordered by a priority relation, {ab → a > b → a}.

Consider a membrane holding the values of two positive integers, x and y, and using
symbols a and b for codifying them, for instance x is represented as ax, and y is represented
as by. We have precisely min(x, y) pairs ab in our membrane, to which rewriting rule
ab → a is applicable, so they will be rewritten as a’s. If there are b’s left, i.e., if y > x,
then for every such b the second rewriting rule, b → a, is applicable, thus precisely y − x
occurrences of b are rewritten as a’s. If there are no b’s left, i.e. y ≤ x, the second rule is
not applicable (but we still have x− y occurrences of a left untouched in the membrane).
In either situation, after application of the rules, the membrane holds amax(x,y) and no b’s.

We have a result similar to Theorem 4.1.

Theorem 5.1 For k = 2n, the P system with periodic dynamic (periodic) communication
graph

Π = ({a, b}, P0, · · · , Pk−1, Rµ
max),

where

Rµ
max = ([(a, out), Gs], [a → ab,GId], [(b, out), Ge], [{ab → a > b → a}, GId]),

computes the maximum of k positive integers {a0, · · · , ak−1}, starting from the initial
configuration of objects

{Pj : aaj | 0 ≤ j ≤ k − 1},
and applying the finite sequence Rµ

max n times, i.e.,

([(a, out), Gs], [a → ab,GId], [(b, out), Ge], [{ab → a > b → a}, GId])n.

The maximum M = max{aj | 0 ≤ i ≤ k − 1} is obtained in each membrane, i.e. as the
configuration

{Pj : aM | 0 ≤ j ≤ k − 1}.

6 Final Remarks

We have explored in this paper the possibility of simulating the SIMD paradigm in
the formal framework of P systems, a formal framework naturally equipped for dealing
with parallelism. Within this paradigm, we have explored the possibilities offered by
the Shuffle–Exchange networks. This has led us to consider P systems with a tissue-like
behaviour and structure, but which depart from the tissue-like P systems considered so

128

far in the literature on the subject, in at least two respects: the underlying graph has
dynamic features, and, moreover, rules are associated to (comunication) graphs instead of
membranes.

We have illustrated the possibilities of such a concept with the simulation of two S–E
algorithms, one for computing the sum, the other for computing the maximum, of a given
number of integers.

The P systems presented here exhibit periodic behaviour with respect to finite se-
quences [rules, graph], which simulate the one-step-iteration of a algorithm. Other pat-
terns beside periodic ones are worth considering for their generative power.

Acknowledgement. The support this research through the project TIC2002-04220-
C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER funds,
is gratefully acknowledged.

References

[1] Ceterchi, R., Mart́ın–Vide, C.: P systems with Communication for Static Sorting. In
M. Cavaliere, C. Mart́ın–Vide and G. Păun (eds.), Proceedings of the Brainstorming
Week on Membrane Computing, Report GRLMC 26/03, 2003, 101–117.

[2] Păun, A., Păun, G.: The power of Communication: P Systems with Sym-
port/Antiport. New Generation Computers, 20, 3 (2002), 295–306.

[3] Păun, G.: Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998.

[4] Păun, G.: Membrane Computing. An Introduction, Springer-Verlag, Berlin, Heidel-
berg, 2002.

[5] Quinn, M.J.: Parallel Computing. Theory and Practice, McGraw–Hill Series in Com-
puter Science, 1994.

129

