
Revisiting Sevilla Carpets: A New Tool for the
P-Lingua Era

David Orellana-Mart́ın, Carmen Graciani, Miguel Ángel Mart́ınez-del-Amor,
Agust́ın Riscos-Núñez, Luis Valencia-Cabrera

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
dorelmar@gmail.com, {cgdiaz, mdelamor, ariscosn, lvalencia}@us.es

Summary. Sevilla Carpets have already been used to compare different solutions of
the Subset Sum problem: either designed in the framework of P systems with active
membranes (both in the case of membrane division and membrane creation), and also
another one in the framework of tissue-like P systems with cell division.

Recently, the degree of parallelism and other descriptive complexity details have been
found to be relevant when designing parallel simulators running on GPUs.

We present here a new way to use the information provided by Sevilla carpets, and
a script that allows to generate them automatically from P-Lingua files.

1 Introduction

P systems are massively parallel computing devices, in the sense that their evolu-
tion eventually involves a great number of symbol-objects, membranes and rules.
Furthermore, if we work with models where the number of membranes can increase
along the computation, via creation or division of membranes, then it becomes
specially difficult to describe the complexity of the computational process. Such
models have actually been investigated largely in the literature, as their ability to
generate an exponential number of membranes in polynomial time (making use
of their intrinsic parallelism) makes them powerful tools for solving NP-complete
problems. Indeed, several efficient solutions to these type of problems have been
presented (see, e.g. [6, 16, 17, 18] or [19]).

The complexity in time (number of cellular steps) of the solutions obtained in
this way is polynomial, but it is clear that time is not the unique variable that
we need to consider in order to evaluate the complexity of such processes. This
fact has been observed previously in the literature of P systems. The first paper
related to this issue was [2], where G. Ciobanu, Gh. Păun and Gh. Ştefănescu
presented a new way to describe the complexity of a computation in a P system,



282 D. Orellana-Mart́ın et al.

the so-called Sevilla Carpet, which is an extension of the notion of Szilard language
from grammars to the case when several rules are used at the same time.

In [8], the problem was revisited, introducing new parameters for the study of
the descriptive complexity of P systems. Besides, several examples of a graphical
representation were provided, and the utility of these parameters for comparing
different solutions to a given problem was discussed. In that paper two different
solutions of the Subset Sum problem, running on the same instance, were compared
by using these parameters.

Sevilla Carpets have been adapted to tissue-like models, in order to describe
the complexity of their computations (see [4]). There exists also an extension of
the definition of Sevilla carpets to a four-dimensional manifold (see [10]) which
can be used for a more verbose description of the complexity of a computation
of a P system. The graphical representation of this four-dimensional manifold is
carried out via projections on three-dimensional spaces.

Comparing two cellular designs that solve the same problem is not an easy
task, as there are many ingredients to be taken into account. Note that given
two Sevilla Carpets corresponding to P systems from different models designed
to solve a decision problem, we can obtain detailed information about two single
computations, but this is not enough to compare the efficiency of the two models
in general.

Nonetheless, the numerical parameters obtained from these two Sevilla Carpets
can give us some hints to compare the corresponding designs of solutions to the
problem.

The paper is organized as follows. First, we recall the definition of the Sevilla
carpets, together with a list of parameters associated with them. Then, we de-
scribe the tool that allows to generate Sevilla carpets automatically from P-Lingua
files. Several examples are displayed, and we conclude the paper by providing an
overview on the future directions of this ongoing work.

2 Sevilla Carpets

As pointed out in the introduction, the evolution of a P system is usually a too
complex process to be evaluated only by the classical parameters from computa-
tional complexity measure, time and space. For instance, we are often interested
in other types of descriptive complexity information: size of the alphabet, number
of membranes (initially in the system or obtained during the computation), num-
ber of rules, etc. Another interesting parameter, especially when running software
simulations, is the number of elementary operations (applications of rules) that
are performed during the computation.

A possible way to describe the complexity of the evolution of a P system is by
means of Sevilla carpets. They were presented in [2] as an extension of the Szilard
language, which consists of all strings of rule labels describing correct derivations
in a given grammar (see e.g., [11, 14] or [20]). The original framework for Szilard



Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 283

language is the Chomsky hierarchy of grammars, where only one rule is used in
each derivation step and, therefore, a derivation can be represented in a natural
way as the string of labels corresponding to the used rules (the rule labelling is
supposed to be one-to-one, we refer again to [2] for details).

Sevilla carpets are a Szilard-way to describe a computation in a P system,
capturing via a bi-dimensional writing the fact that in each evolution step a P
system can use not just a single rule, but a multiset of them. More precisely, the
(Sevilla) carpet associated with a computation of a P system is a table with the
time on the horizontal axis and the rules explicitly mentioned along the vertical
axis; then, for each rule, in each step, a piece of information is given.

Ciobanu, Păun and Ştefănescu propose five variants for the Sevilla Carpets:

1. Specifying in each time unit for each membrane whether at least one rule was
used in its region or not;

2. Specifying in each time unit for each rule whether it was used or not;
3. Mentioning in each time unit the number of applications of each rule; this is

0 when the rule is not used and can be arbitrarily large when the rules are
dealing with arbitrarily large multisets;

4. We can also distinguish three cases: that a rule cannot be used, that a rule can
be used but it is not because of the nondeterministic choice and that a rule is
actually used;

5. A further possibility is to assign a cost to each rule, and to multiply the number
of times a rule is used with its cost.

In what follows, we shall focus on the third variant (studied in [8]), that is, in
each cell of the table we specify the number of applications of the corresponding
rule in the considered step. Note that there is a huge amount of data contained
in a Sevilla carpet, describing a computation of a P system, but these data are
presented in a rough way, just a listing of which rules were applied at each step
and how many times.

In order to facilitate reading the whole table just in one glance, we can obtain
a three-dimensional representation of it in a natural way, expressing the numbers
in each cell over a third axis (see Figure 1).

However, such a three-dimensional picture may not provide significant infor-
mation by itself, specially in the case of comparing several carpets. In order to be
able to “evaluate” the massive amount of information contained in the table of
the Sevilla carpet, we need to extract some figures or statistics. The first natural
parameters related with Sevilla carpets were defined in [2]: the sum of all the cells
in the table (weight) and the total amount of cells in the table (surface). It is
clear that the values of the weight and the surface of a Sevilla carpet give a gen-
eral intuition on the complexity of the underlying computation. On one hand, the
weight measures up the total number of applications of rules along the computa-
tion, which corresponds to the intuitive notion of “cost”. On the other hand, the
surface tells us about the space× time complexity of the system that is carrying
out the computation, as the number of rows is the number of rules of the system



284 D. Orellana-Mart́ın et al.

Fig. 1. Sevilla Carpets associated with a solution to SAT using membrane division
(running on four different instances)

and the number of columns is the number of cellular steps that the computation
performs.

2.1 Parameters for the Descriptive Complexity

The following parameters have been proposed in the literature:

• Weight: It is defined in [2] as the sum of all the elements in the carpet, i.e.,
as the total number of applications of rules along the computation. The weight
measures up the total number of applications of rules along the computation,
which corresponds to the intuitive notion of “cost” of the computation.

• Surface: It is the multiplication of the number of steps by the total number
of the rules used by the P system, was also introduced in [2]. It can be con-
sidered as the potential size (space× time bounds) of the computation. From
a computational point of view we are not only interested on P systems which
halt in a small number of steps, but in P systems which use a small amount
of resources. The surface measures the resources used in the design of the P
system. Graphically, it represents the surface where the Sevilla Carpet lies on.



Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 285

• Height: Introduced in [8], the height of a Sevilla carpet captures the intuition
of a peak in the computation, and it is defined as the maximum number of
simultaneous (in one step) applications of any rule all over the computation.
Graphically, it represents the highest point reached by the Sevilla carpet.

• Average Weight: It is calculated by dividing the weight to the surface of
the Sevilla Carpet. This concept provides a relation between both parameters
which gives an index on how the P system exploits its massive parallelism. This
parameter was also introduced in [8].

• Variance: It is calculated as the sum of the squared differences between the
elements of the carpet and the average weight, divided by the surface.
This parameter was introduced in [10], and it indicates if the points are near
or far from the average. That is, a high variance value indicates that there is
a very large number of applications of rules performed in a few steps in the
computation, while in the rest of the steps the activity can be considered low
(see the peaks and valleys in Figure 1). On the other hand, a low variance value
leads to think that the work load is more balanced.

One of the motivations of this paper is to facilitate the use of the information
provided by the Sevilla carpets in the context of GPU-based simulators for P sys-
tems (see e.g. [1, 12, 13]). It has been observed that the speed-up obtained by
such parallel simulations (with respect to standard sequential simulators) highly
depends on how distributed the rule applications are during the simulated compu-
tation. Informally speaking, the underlying intuition agrees with the observation
from [9]:

a bad design of a P system consists of a P system which does not exploit
its parallelism, that is, working as a sequential machine: in each step only
one object evolve in one membrane whereas the remaining objects do not
evolve. On the other hand, a good design consists of a P system in which
a huge amount of objects are evolving simultaneously in all membranes. If
both P systems perform the same task, it is obvious that the second one is
a better design that the first one.

More precisely, the notion of GP-systems (GPU-oriented P systems) is intro-
duced in [12], and also some specific parameters related to the performance of
GPU simulations:

• Density of objects per membrane: general purpose parallel simulators
usually save threads for the whole alphabet, so the more different objects are
in the membrane, the higher thread usage.

• Rule intensity: some designs include rules associated with auxiliary objects
which are only applied once in the whole computation (e.g. counters or syn-
chronization routines). This cannot be parallelized.

• Communication among membranes: the skin is executed on the CPU,
and every time we need to communicate objects through PCI express bus, this
process slows down the process.



286 D. Orellana-Mart́ın et al.

2.2 Projections of Sevilla Carpets

The graphical representation in 3D of the Sevilla carpet of a computation provides
an intuitive representation of the computational effort associated with each rule
in each step. Nevertheless, sometimes it is better to have a more concise represen-
tation of this effort. In these cases we can consider the projections of the Sevilla
carpet. These projections are obtained in two different ways:

• By considering the whole number of applications of rules for each step. If the
application of a rule has an associated cost, this projection will give information
about the whole cost of each step.

• By considering for a given rule the whole number of steps in which it has
been applied. This provides information about the utility of a rule: if we have
designed a solution of a problem where several rules are used a low number of
times along the computation, we can consider to replace these rules by another
rule with the same function.

3 Tool description

In this paper we present a tool that automatically generates Sevilla carpets. The
script receives the description of a P system in P-Lingua syntax (a plain text file
with .pli extension, we refer to [5, 21] for details), and produces a jpg image of
a 3D representation of the Sevilla Carpet associated to (one computation of) the
given P system.

In this first version, we have used python as programming language, and gnuplot
for producing the graphical output.

The tool works as follows: first, pLinguaCore library computes a single com-
putation, then the python script parses the results and generates a matrix with
the numerical data corresponding to the points of the Carpet. Finally, gnuplot is
called and it renders the matrix to a 3D graph that represents the Sevilla carpet
associated with this computation.

Note that this represents a notable improvement from previous works, where
the process was done manually, after processing the output of simulators for P sys-
tems with active membranes written in Prolog ([3, 7]). Now it became a much
faster and simpler process, we avoid noise in data due to mistakes when manually
building the matrix, and we can cover all the models of P systems included in the
P-Lingua framework.

3.1 The algorithm

The parser is designed to work on a text file generated by pLinguaCore library
containing verbose information about a computation.

More precisely, the file describes the sequence of configurations, and a list of
which rules were applied at each step, and how many times. The format used in
such file is as follows:



Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 287

STEP k:
Rules selected for MEMBRANE ID: x, Label: y, Charge: z
n * #r q
...

where:

• k represents the current step.
• r is the label (usually a number) of the applied rule.
• q is the rule itself.
• n represents the number of times that rule r is applied in step k.

We have thus all the necessary information to generate a matrix M with the
data to be plotted.

The parser reads the whole file, paying attention to the lines that have a “Step”
statement, or an applied rule, and ignoring the rest.

Whenever a Step is found, we move to the next row of the matrix, and whenever
a rule line is read, we apply the next:

Mcurrent step−1 ,r−1 = Mcurrent step−1 ,r−1 + n

If the rule r, isn’t applied in the step k, then we can do:

Mk−1 ,r−1 = 0

From this matrix, we can successfully obtain the x axis (steps, the rows of the
matrix), the y axis (rules, columns of the matrix) and the z axis (number of times,
values of the matrix).

We can then, with gnuplot generate a graph with the data obtained, and create
the Sevilla Carpet.

STEP: 3

Rules selected for MEMBRANE ID: 1, Label: 2, Charge: 0

1 * #109 d{1}[]’2 --> [d{2}]

1 * #112 [s{1,1} --> s{1,2}]’2

Rules selected for MEMBRANE ID: 2, Label: 2, Charge: 0

1 * #109 d{1}[]’2 --> [d{2}]

1 * #113 [s{2,1} --> s{2,2}]’2

Fig. 2. A few lines extracted from a computation file

In the example shown in Figure 2, for step 3 we get the following values in the
table: (3, 109, 2), (3, 112, 1), (3, 113, 1), and (3, r, 0) for any other rule label r.



288 D. Orellana-Mart́ın et al.

4 Examples

We have done some examples, using .pli files corresponding to solutions to SAT,
KNAPSACK, PARTITION and SUBSETSUM designed by means of families of
P systems with active membranes.

Here are the results of some of the computations:

Fig. 3. SAT simulation

Fig. 4. KNAPSACK simulation



Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 289

Fig. 5. PARTITION simulation

Fig. 6. SUBSETSUM simulation



290 D. Orellana-Mart́ın et al.

5 Final Remarks and Future Work

We would like to remark that the information extracted from a Sevilla carpet
(and from its associated parameters) should always be interpreted being aware
that it only refers to one computation. Nevertheless, we still believe that it is
a useful instrument that can be used for example as a guide to find possible
refinements on the definition of the simulated P system (e.g. in order to “translate”
it into an equivalent GP system), or as an assistant for designing ad-hoc simulators
for particular families of P systems (e.g. solutions to hard problems using active
membranes)1.

The next improvement to be added in the near future is to get the values of all
parameters together with the graphical 3D representation. Some other customiza-
tion possibilities can also be considered for the script, like adding options for which
kind of Carpet is wanted.

Another interesting possibility is to plug a Sevilla carpet module (adapting the
script presented here) into the pLinguaCore library, in such a way that the matrix
can be generated on-the-fly as the computation is being simulated, thus avoiding
parsing the output file. We are also considering to bring the idea of the script
into MeCoSim as an extension. MeCoSim [15, 22] is a general purpose software
tool to model, design, simulate, analyze and verify different types of models based
on P systems (specially intended for PDP systems). It is a highly customizable
tool, allowing to easily configure ad-hoc GUIs for each case study to be modeled.
Therefore, it seems reasonable to offer a Sevilla carpet as one possible output that
the user can be interested on, together with some other descriptive complexity
details (for example, number of membranes generated during the computation).

In the case of probabilistic P systems, it might be interesting to extract sev-
eral samples of computations and then use the average values in order to generate
the Sevilla carpet and the associated parameters. Actually, MeCoSim already in-
cludes the possibility to run several computations when working with models for
ecosystems designed using PDP systems, and then uses the statistical information
gathered to plot the output graphics.

Acknowledgements

The authors acknowledge the support of the Project TIN2012-37434 of the Min-
isterio de Economı́a y Competitividad of Spain, cofinanced by FEDER funds.

1 This work direction seems to be worth studying, in the context of the PMCGPU
project [23].



Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 291

References

1. Cecilia, J.M.; Garca, J.M.; Guerrero, G.D.; Martnez-del-Amor, M.A.; Prez-Jimnez,
M.J.; Ujaldn, M. The GPU on the simulation of cellular computing models Soft
Computing, 16 (2), 2012, 231–246.

2. Ciobanu, G.; Păun, Gh.; Ştefănescu, Gh. Sevilla Carpets Associated with P Systems,
in M. Cavaliere, C. Mart́ın–Vide and Gh. Păun (eds.), Proceedings of the Brainstorm-
ing Week on Membrane Computing, Tarragona, Spain, 2003, Report RGML 26/03,
135-140.

3. Cordón-Franco, C.; Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Sancho-
Caparrini, F. A Prolog simulator for deterministic P systems with active membranes,
New Generation Computing, 22 (4), 2004, 349–363.

4. Daz Pernil, D., Gallego-Ortiz, P., Gutirrez Naranjo M.A., Prez Jimnez M.J., Riscos
Nez A. Descriptional Complexity of Tissue-like P Systems with Cell Division. In
C.S. Calude et al. (eds.) Unconventional Computation. Lecture Notes in Computer
Science, Springer-Verlag, Berlin-Heidelberg, 5715 (2009), 168-178.

5. Daz Pernil, D.; Prez–Hurtado, I.; Prez-Jimnez, M.J.; Riscos-Nez, A. A P-lingua pro-
gramming environment for Membrane Computing. Lecture Notes in Computer Sci-
ence, 5391 (2009), 187–203.

6. Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. A Fast P System
for Finding a Balanced 2-Partition, Soft Computing. Springer. To appear.

7. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, A Simula-
tor for Confluent P Systems. In M. A. Gutiérrez-Naranjo, A. Riscos-Núñez,
F. J. Romero-Campero, D. Sburlan (eds.), Third Brainstorming Week on Mem-
brane Computing Fénix Editora, Sevilla, 2005, 169–184.

8. M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, On Descriptive
Complexity of P Systems. In: G. Mauri, Gh. Păun, M. J. Pérez-Jiménez,
G. Rozenberg, A. Salomaa (eds.), Membrane Computing. LNCS 3365, Springer-
Verlag, 2005, 320–330.

9. M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. On the Degree of
Parallelism in Membrane Systems. Theoretical Computer Science, 372 (2-3), (2007)
183–195.

10. M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. Multi-dimensional
descriptional complexity of P systems. Journal of Automata, Languages and Com-
binatorics 12 (2007) 1/2, 167179. A preliminar version in Proceedings of the 7th In-
ternational Workshop on Descriptional Complexity of Formal Systems, Como, Italy,
June 30 - July 2, 2005, pp. 134-145.

11. Mäkinen, E. A Bibliography on Szilard Languages, Dept. of Computer and In-
formation Sciences, University of Tampere, http://www.cs.uta.fi/reports/

pdf/Szilard.pdf

12. Martnez-del-Amor, M. A. Accelerating Membrane Systems Simulators using High
Performance Computing with GPU (PhD Thesis), 2013.

13. Martnez-del-Amor, M. A.; Prez-Hurtado, I.; Prez-Jimnez, M.J.; Cecilia J.M.; Guer-
rero, G.D.; Garca, J.M. Simulating active membrane systems using GPUs. In Gh.
Păun et al (eds.) 10th Workshop on Membrane Computing, 369–384.

14. Mateescu, A. and Salomaa, A. Aspects of Classical Language Theory, in G. Rozenberg
and A. Salomaa (eds.), Handbook of Formal Languages (vol. 1), Springer-Verlag,
Berlin Heidelberg, 1997.



292 D. Orellana-Mart́ın et al.

15. Prez-Hurtado, I.; Valencia, L.; Prez-Jimnez, M.J.; Colomer, M.A.; Riscos-Nez, A.
MeCoSim: A general purpose software tool for simulating biological phenomena by
means of P Systems. In K. Li, Z. Tang, R. Li, A.K. Nagar, R. Thamburaj (eds.)
Proceedings 2010 IEEE Fifth International Conference on Bio-inpired Computing:
Theories and Applications (BIC-TA 2010), IEEE Press, Volume 1, September 23-26,
2010, Changsha, China, ISBN 978-1-4244-6439-5, pp. 637–643.

16. Pérez-Jiménez, M.J.; Riscos-Núñez, A. Solving the Subset Sum Problem by Active
Membranes, New Generation Computing, Vol. 23, num. 4 (2005), 367-384.

17. Pérez-Jiménez, M.J.; Riscos-Núñez, A. A Linear Solution for the Knapsack Problem
Using Active Membranes, in C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg
and A. Salomaa (eds.),Membrane Computing. Lecture Notes in Computer Science,
2933, 2004, 250–268.

18. Pérez-Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F. A Polynomial Com-
plexity Class in P systems Using Membrane Division, in E. Csuhaj–Varjú, C. Kintala,
D. Wotschke, and Gy. Vaszyl (eds.), Proceedings of the 5th Workshop on Descrip-
tional Complexity of Formal Systems, Budapest, Hungary, 2003, 284–294.

19. Pérez-Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F. Solving VALIDITY
Problem by Active Membranes with Input, in M. Cavaliere, C. Mart́ın-Vide, Gh.
Păun (eds), Proceedings of the Brainstorming Week on Membrane Computing, Tar-
ragona, Spain, 2003, Report RGML 26/03, 279–290.

20. Salomaa, A. Formal Languages, Academic Press, New York, 1973.
21. http://www.p-lingua.org

22. http://www.p-lingua.org/mecosim/

23. http://sourceforge.net/p/pmcgpu/


