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Abstract

This study proposes two methods for detecting outliers in functional time series. Both methods

take dependence in the data into account and are based on robust functional principal compo-

nent analysis. One method seeks outliers in the series of projections on the first principal com-

ponent. The other obtains uncontaminated forecasts for each data set and determines that those

observations whose residuals have an unusually high norm are considered outliers. A simulation

study shows the performance of these proposed procedures and the need to take dependence

in the time series into account. Finally, the usefulness of our methodology is illustrated in two

real datasets from the electricity market: daily curves of electricity demand and price in mainland

Spain, for the year 2012.
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1. Introduction

Functional data analysis (FDA) is a branch of Statistics that analyses data providing

information about curves, surfaces or any other mathematical object varying over a con-

tinuum. The continuum is often time, but it may also be spatial location, wavelength,

etc. These curves are defined by a functional form and are called functional data.

Over the last two decades there has been growing research on FDA and most sta-

tistical techniques have been generalized to the functional context. This includes lin-

ear regression models (Cardot, Ferraty, and Sarda, 1999; Li and Hsing, 2007; Garcı́a-

Portugués, González-Manteiga, and Febrero-Bande, 2014), nonparametric smoothing
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methods (Ferraty and Vieu, 2002; Delsol, Ferraty, and Vieu, 2011; Shang, 2014), clas-

sification (Cuevas, Febrero, and Fraiman, 2007; Baı́llo, Cuesta-Albertos, and Cuevas,

2011; Sguera, Galeano, and Lillo, 2014), dimension reduction (Boente and Fraiman,

2000; Hall, Müller, and Wang, 2006) and bootstrap methods (González-Manteiga and

Martı́nez-Calvo, 2011; Ferraty, van Keilegom, and Vieu, 2012). In addition, FDA has

been successfully applied in a wide range of fields such as climatology (Besse, Car-

dot, and Stephenson, 2000), chemometrics (Ferraty and Vieu, 2002), environmetrics

(Aneiros-Pérez et al., 2004), demography (Hyndman and Ullah, 2007), social sciences

(Ocaña, Aguilera, and Escabias, 2007) and the electricity market (Aneiros et al., 2013

and 2016). Of course, the above references form a non-exhaustive list of recent method-

ological and practical presentations related to FDA. See the monographs by Ramsay and

Silverman (2005) and Ferraty and Vieu (2006) for parametric and nonparametric meth-

ods, respectively. For a recent state of the art on FDA, see Ferraty and Romain (2011),

Horváth and Kokoszka (2012) and Cuevas (2014).

Procedures for detecting functional outliers have also been proposed over recent

years despite the fact that the functional nature of the data makes outliers hard to de-

tect. As a matter of fact, a rigorous definition of functional outlier remains to be given.

Throughout this paper, we define a functional outlier as an observation (functional da-

tum) that has been generated by a stochastic process with a distribution different from

the vast majority of the remaining observations, which are assumed to be identically

distributed (note that this is the definition given in Febrero, Galeano, and González-

Manteiga, 2008; Hyndman and Shang, 2010). The first papers that have addressed out-

lier identification in the context of functional data are Hyndman and Ullah (2007) and

Febrero, Galeano, and González-Manteiga (2007, 2008). Hyndman and Ullah (2007)

proposed a method for robust estimation of functional principal components, which is

the basis of their methodology for forecasting functional time series. As a by-product,

they constructed a method for detecting outliers based on the integrated squared error

between each functional datum and its projection into a given number of robust prin-

cipal components. The procedure in Febrero, Galeano, and González-Manteiga (2007)

(Febrero, Galeano, and González-Manteiga, 2008) performs a distance-based (depth-

based) test statistic for each curve, where the critical value is obtained with a bootstrap

method. Several procedures for detecting outliers in functional data have been proposed

from these works. They are generally based on functional principal components anal-

ysis (Hyndman and Shang, 2010; Sawant, Billor, and Shin, 2012; Yu, Zou, and Wang,

2012), functional depths (Sun and Genton, 2011; Gervini, 2012; Arribas-Gil and Romo,

2014) or random projections (Fraiman and Svarc, 2013). All of these papers deal with

independent functional data.

This paper addresses the problem of outlier detection in functional time series com-

ing from a real-valued continuous time stochastic process. Specifically, to define the

functional time series, {χi}n
i=1, which are going to be used along this paper, we consider

a real-valued continuous time stochastic process {χ(t)}t∈R. Then, we assume that such

process is seasonal with seasonal length τ and we regard that it is observed on the in-
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terval (a,b] with b = a+ nτ . We define the functional time series {χi}n
i=1 in terms of

{χ(t)}t∈R as:

χi (t) = χ(a+(i−1)τ + t) with t ∈ [0,τ) .

As in the case of finite-dimensional data, dependence affects functional outlier detec-

tion (see Raña, Aneiros, and Vilar, 2015). This is clearly illustrated in Figure 1, which

shows the sequential graph of a simulated functional time series contaminated with four

outliers (left panel) and the corresponding curves (right panel). Looking closely at the

left panel in Figure 1, one may suspect the possible presence of such four outliers; how-

ever, the same may not be said when observing the right panel in Figure 1. Local trends

induced from the dependence structure could mask the presence of outliers; so, in func-

tional time series, an observation could be an outlier despite being inside the range of

the vast majority of the data. It therefore seems reasonable to believe that this kind of

outlier cannot be detected by applying outlier detection procedures designed for inde-

pendent data. To the best of our knowledge, the only paper that has addressed outlier

detection in functional time series is Raña, Aneiros, and Vilar (2015). These authors

suggested adapting the procedure in Febrero, Galeano, and González-Manteiga (2008)

to the functional time series setting by considering bootstrap techniques that take into

account the dependence between functional data (instead of standard bootstrap).
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Figure 1: Left panel: functional time series (i denotes the temporal index) contaminated with four outliers;

the vertical dashed lines indicate the positions where the outliers emerged. Right panel: the corresponding

curves χi(t) (the black curves are the outliers).
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This article proposes two procedures for detecting outliers in functional time series.

Both methods are based on robust functional principal component analysis and use ideas

developed by Hyndman and Ullah (2007) to forecast functional time series.

The remainder of this paper is organized as follows. Section 2 presents basic ideas on

principal component analysis. The proposed methodology is described in Section 3. Its

behavior is evaluated and compared with other approaches through a simulation study in

Section 4. In Section 5 our methods are applied to electricity demand and price curves.

Finally, Section 6 concludes with a discussion.

2. Functional principal component analysis

Since our proposed procedures for detecting functional outliers will be constructed

based on functional principal component analysis (FPCA), this section presents a brief

review on this topic. The interested reader can find a more complete review in Hall

(2011). Without loss of generality, we assume that the considered functional random

variable has zero mean.

Principal component analysis (PCA) is a standard approach to explore variability in

multivariate data, X ∈ R
d . This approach specifies the d directions, {vk}d

k=1 ∈ R
d , that

maximize the variance along each component, subject to the orthonormal condition. Re-

ducing the dimension is especially important when data belong to infinite dimensional

spaces, this being the case of functional data. In this article we focus on curves observed

in [a,b] (−∞< a < b<∞) and square integrable. Then, if χ denotes a functional random

variable, the aim of FPCA is to find the functions φk : [a,b]→ R such that the variance

of

βk =
∫ b

a
φk(t)χ(t)dt (1)

is maximized subject to the constraints

∫ b

a
φ2

k(t)dt = 1 and

∫ b

a
φk(t)φ j(t)dt = 0 (k 6= j). (2)

The functional principal components φk(·) can also be defined as the orthonormal

functions verifying

∫ b

a
C(t,s)φk(s)ds = λkφk(t) (t ∈ [a,b], k = 1,2, . . . ), (3)

where C(t,s) denotes the covariance between χ(t) and χ(s). Finally, dimension reduc-

tion is performed by considering the approximation
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χ(·)≈
K∑

k=1

βkφk(·), (4)

where K < ∞ and
∑K

k=1λk is close to
∑

∞

k=1λk (we have assumed that λk > λk+1, k =
1,2, . . .). For details, see e.g. Ramsay and Silverman (2005).

Functional principal components, φk(·), depend on the unknown covariance opera-

tor C(·, ·). Assuming that one has observations {χi}n
i=1 identically distributed from the

functional random variable χ, estimates for φk(·) can be obtained by using

Ĉ(t,s) =
1

n

n∑

i=1

(χi(t)−χ(t))(χi(s)−χ(s)), where χ(t) =
1

n

n∑

i=1

χi(t),

instead of C(t,s) in (3). See Horváth and Kokoszka (2012) for the consistency of Ĉ and

of the corresponding eigenfunctions and eigenvalues, under either independent curves

or weakly dependent functional time series.

It is worth noting that, apart being used for dimension reduction, FPCA can also be

used as a tool for outlier detection. Nevertheless, as noted in the previous paragraph,

the estimation of functional principal components is based on the estimated covariance

operator Ĉ(·, ·), which is known to be sensitive to outliers. Thus, if the goal is to con-

struct an approach based on principal components to identify functional outliers, robust

FPCA should be considered. In this way, Hyndman and Ullah (2007) propose estimating

the functional principal components by means of the functions φ̂k(·) that maximize the

variance of the scores

zi,k = wi

∫ b

a
φk(t)χi(t)dt (5)

subject to the constraints (2). The weights wi are computed as

wi =

{
1 if vi < S+λ

√
S

0 otherwise

where

vi =
∫ b

a
(χi(t)−

K∑

k=1

β̃i,kφ̃k(t))
2dt (6)

with φ̃k(·) being initial (highly robust) projection-pursuit estimates of φk(·) obtained

from the RAPCA algorithm (see Hubert, Rousseeuw, and Verboven, 2002) considering

equal weights wi in (5), while β̃i,k =
∫ b

a φ̃k(t)χi(t)dt. In addition, S is the median of
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{v1, . . . ,vn} and λ > 0 is a tuning parameter to control the degree of robustness. Once

the robust estimates φ̂k(·) are obtained, the coefficients corresponding to the curve χi

are constructed as

β̂i,k =
∫ b

a
φ̂k(t)χi(t)dt. (7)

As a by-product, Hyndman and Ullah (2007) proposed an outlier detection method

(the ISE method): the curve χi is detected as outlier if wi = 0. For other FPCA-based

procedures to identify outliers, see e.g. Hyndman and Shang (2010) and Sawant, Billor,

and Shin (2012).

3. Outlier detection in functional time series

As noted in Section 1, the dynamics in the data should be taken into account to detect

outliers in functional time series. In other words, methods based only on the set of curves

and not on the dependence structure among them, cannot detect the outliers that remain

hidden among all of the curves (note that these outliers make sense in time series).

We propose two procedures to detect outliers in functional time series. Both pro-

posals are based on the suggestions of Hyndman and Ullah (2007) for obtaining robust

forecasting in functional time series. We establish our methods in the following subsec-

tions.

3.1. Method based on projections

Our first proposal detects outliers on the first K robust principal component scores and

then map the detected outliers into the functional space.

Specifically, the method based on projections proposes to detect outliers in functional

time series with the following algorithm:

• Step 1. Perform robust FPCA and construct the corresponding time series of coef-

ficients {(β̂i,1, . . . , β̂i,K)}n
i=1.

• Step 2. Identify outliers in the series constructed in Step 1 by means of a time-

series outlier detection method.

• Step 3. Establish the set of outliers as O = {χi : i ∈ I }, where I = {i : (β̂i,1, . . . ,

β̂i,K) was detected as outlier in Step 2}.

The key points in this method are the use of robust FPCA together with procedures to

detect outliers in time series. Given that the estimated functional principal components

φ̂k are not affected by the outliers, the corresponding projections β̂i,k reflect the main
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features of the datum χi. Thus, we may expect that if a curve is an outlier, its projection

on the directions of maximum variance (the first principal components) will also be an

outlier.

In practice, both a robust FPCA and a time-series outlier detection method must be

fixed to implement our proposal. On the one hand, the robust FPCA proposed in Hynd-

man and Ullah (2007) could be considered (for a brief exposition, see last paragraph in

Section 2). On the other hand, it is worth being noted that the principal component scores

β̂i,k and β̂i,l are uncorrelated for k 6= l. Thus, as suggested in Hyndman and Ullah (2007),

each univariate time series {β̂i,k}n
i=1, k = 1, . . . ,K, can be studied independently. In this

way, we propose to use some univariate time-series outlier detection method to identify

outliers in each of such scalar time series, and, in Step 2, consider that (β̂i,1, . . . , β̂i,K)

is an outlier if some of its components was detected as outlier in the univariate study

(for the univariate time-series outlier detection method based on ARIMA models used

in this paper, see Section 11.2 in Cryer and Chan, 2008). Another alternative would be

to use a multivariate time-series outlier detection method (see, for instance, Tsay, Peña,

and Pankratz, 2000).

3.2. Method based on errors

Unlike the previous method, our second procedure takes the whole of each curve into

account. Using techniques for robust forecasting in functional time series, it constructs

a non-contaminated version for each curve, which is compared with the corresponding

original curve. A curve is considered an outlier if it is substantially different from its

uncontaminated version.

Specifically, this method proposes to detect outliers in functional time series with the

following algorithm:

• Step 1. Perform robust FPCA and construct the corresponding time series of coef-

ficients {(β̂i,1, . . . , β̂i,K)}n
i=1.

• Step 2. Fit a robust model to the time series constructed in Step 1.

• Step 3. Obtain the fitted values {(β̂∗
i,1, . . . , β̂

∗
i,K)}n

i=1 from the model constructed in

Step 2.

• Step 4. Construct the residual curves {χi− χ̂i}n
i=1 and compute some kind of norm

{ui}n
i=1 for such curves. We have denoted

χ̂i =

K∑

k=1

β̂∗
i,kφ̂k.

• Step 5. Identify “abnormally high values” in {ui}n
i=1, and set the functional outliers

as O = {χi : i ∈ J }, where J = {i : ui was identified as abnormally high}.
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As in the method based on projections, robust FPCA plays a main role (together

with robust modelling of nonfunctional time series). Note that, because the fitted values

obtained in Step 3 are not contaminated by the outliers, χ̂i can be seen as the “expected

value” of the functional time series at time i when no contamination is present. Thus, an

abnormally high value for ui suggests that χi is an outlier.

Note that our proposal can be seen as an extension in different ways of the ISE

method proposed in Hyndman and Ullah (2007) (for a brief exposition, see last para-

graph in Section 2). Clearly, our main contribution is related to the dependence in the

functional time series: our procedure takes the dependence among the sample into ac-

count (see Step 3) to construct the coefficients associated to each functional data χi (β̂∗
i,k

in Step 4 above), while the method in Hyndman and Ullah (2007) does not do so (see

β̃i,k in (6)). As it will be clearly shown in the simulation study to be presented in the

next Section 4, this seemingly minor modification will greatly improve the performance

of the method when applied on functional time series.

In practice, several choices must be done to implement our algorithm. As in the

method based on projections, we suggest to consider the robust FPCA proposed in

Hyndman and Ullah (2007) and construct univariate models instead of multivariate

ones (see Section 3.1). Specifically, we suggest to fit, for each series {β̂1,k, . . . , β̂n,k},

k = 1, . . . ,K, the univariate robust ARIMA models studied in Cryer and Chan (2008)

(for details, see Section 11.2 in the cited reference). As for the norm to be used to con-

struct the set {ui}n
i=1 in Step 4, one might consider, for instance, the L1-norm or the

L2-norm (or even the squared of the L2-norm, as in Hyndman and Ullah, 2007). Fi-

nally, we suggest to consider that ui is high enough to be considered as abnormally high

if ui > q0.75 + 1.32(q0.75 − q0.25)} (qp denotes the quantile of order p of {u1, . . . ,un}).

Actually, this is the rule given by the classical boxplot; that is, under normality, the prob-

ability of detecting no outliers is 0.993, when no outliers are actually present (note that

the usual constant factor 1.5 was changed to 1.32 because low values are not considered

outliers).

3.3. Tuning parameter

As common to all FDA procedures using FPCA, the proposed methods depend on the

number of principal components considered, K. In practice, the value of K must be

specified. Hyndman and Ullah (2007) suggest choosing K to minimize the integrated

squared forecast error (ISFE), while Hyndman and Booth (2008) find that the forecasts

are insensitive to the choice of K, provided K is large enough. Then, Hyndman and

Booth (2008) recommend using a value K that is apparently larger than actually required

by the components. In the cited works of Hyndman and Ullah (2007) and Hyndman and

Booth (2008), and also in Liebl (2013), in the study of different applications using this

technique they use a value of K which explains, at least, 98% of the variability.

We have carried out sensitivity studies for the values of K in our methods, using the

dependent simulated data considered in the next section (Models 1, 2 and 3). On the
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one hand, our findings agree with the general suggestion given in Hyndman and Booth

(2008): to consider a larger than necessary value K (for instance, a value explaining at

least 98% of the variability). On the other hand, to detect “shape outliers” (that arise

when they are within the range of the rest of the data but differ from them in shape;

see Hyndman and Shang, 2010) by means of the method based on projections (PB), the

recommendation is to select a value K even higher (for instance, explaining at least the

99.9% of variability). To justify this very high value we argue that (i) the PB method

only uses scores (and not the whole of the curve), (ii) the first scores inform about the

possible presence of “magnitude outliers” (that arise when they lie outside the range of

the majority of the data; see Hyndman and Shang, 2010) and (iii) the scores of higher

order inform about the possible presence of shape outliers.

4. Simulation study

A simulation study was conducted to compare the performance of our methods with

other methods available in the statistical literature.

On the one hand, three main models were constructed to generate functional time

series. They are the superposition of a deterministic signal and random noise. Noise

in main Models 1, 2, and 3 was the superposition of a scalar AR(1) process and func-

tional AR(1)-, MA(1)- and ARMA(1,1)-type processes, respectively. On the other hand,

another main model (Main Model 0) was constructed in the same way, but consider-

ing independent noise instead of dependent one. Note that main Models 1, 2 and 3

are favourable to methods that take dependence in the sample into account, while Main

Model 0 is favourable to methods designed for independent data. From each main model,

two contaminated models were constructed by randomly adding either three magnitude

outliers or three shape outliers.

More specifically, we considered the following main models:

• Main Model 0:

ζi(t) = cos(πt)(1− c)+ai(t) if −n+1 ≤ i ≤ n.

• Main Model 1:

ζi(t) =

{
cos(πt) if i =−n+1

cos(πt)(1− c)+ρζi−1(t)+ai(t)+bi if −n+1 < i ≤ n.

• Main Model 2:

ζi(t) = cos(πt)(1− c)+ θai−1(t)+ai(t)+bi if −n+1 ≤ i ≤ n.



330 Using robust FPCA to identify outliers in functional time series, with applications...

• Main Model 3:

ζi(t)=

{
cos(πt) if i =−n+1

cos(πt)(1− c)+ρζi−1(t)+ θai−1(t)+ai(t)+bi if −n+1 < i ≤ n.

In the processes above we have denoted ai(t) = Xi sin(πt) with Xi being i.i.d. Gaussian

variables with mean 0 and standard deviation 0.3, while {bi} is a scalar Gaussian AR(1)

process with correlation coefficient d = 0.8 and standard deviation (1−d2)−1/2. c = 0.8
and t ∈ [−0.5,1.5] were considered.

Values ρ and θ manage the dependence strength in the functional time series. We

consider two options, one with low dependence (LD, ρ = 0.5 and θ = −0.5) and other

with high dependence (HD, ρ= 0.8 and θ = 0.8).

Then, given each main model, ζi, methods were applied on the following contami-

nated models to detect outliers:

• Contaminated model with magnitude outliers:

χi(t) = ζi(t)+ k1{i∈{I j}}, 1 ≤ i ≤ n.

• Contaminated model with shape outliers:

χi(t) = ζi(t)+ k cos(3πt)1{i∈{I j}}, 1 ≤ i ≤ n.

Note that k is a contamination size while 1{·} and I j denote the indicator function and

i.i.d. random variables with discrete uniform distribution on {1, . . . ,n}, respectively. The

curves χi were discretized on a grid {t j} of 30 equispaced points in [−0.5,1.5]. Note

also that in the simulation process we generate curves corresponding to the double of

the sample size n. That is, we simulate the curves {ζi(t)}, where −n+ 1 ≤ i ≤ n, but

we use only the last half of the curves, {ζi(t) : 1 ≤ i ≤ n}, for the contaminated models.

The first n realizations are not used in order to avoid the impact of the initial values. The

number of outliers introduced in the models was j = 0.02n (that is, 2% of the curves).

Value of k was 0.75 for Contaminated Model 0, in which dependence does not affect,

and 5 for contaminated Models 1, 2 and 3. It is worth noting here that the contamination

size, k, considered in this study is low compared with other existing simulation studies

(see, e.g. Sun and Genton, 2011).

Figure 2 shows curves simulated from these four contaminated models. First row

corresponds to the Model 0 (no dependence), and the other three rows to the Models 1,

2 and 3 (functional time series), respectively. Last three models are shown for the HD

case. We can see in the figure the difference between the data simulated from Model 0

and from Models 1, 2 and 3: in the case of functional time series, outliers are almost

always hidden within the rest of the curves.
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Figure 2: Left panels: from top to bottom, curves (χi(t)) generated from contaminated Models 0, 1, 2 and

3, respectively (the black curves are magnitude outliers). Right panels: from top to bottom, curves (χi(t))

generated from contaminated Models 0, 1, 2 and 3, respectively (the black curves are shape outliers).

We applied the following four procedures on each generated sample in addition to

the proposed projections-based (PB) and errors-based (EB) methods.

• Functional highest density region boxplot (HDR). This graphical method is based

on the bivariate HDR boxplot (Hyndman, 1996) applied to the first two robust prin-

cipal component scores (for details, see Hyndman and Shang 2010). The coverage

probability (1−α0) of the outer region must be prespecified.
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• Integrated squared error (ISE). This is the method proposed in Hyndman and Ullah

(2007) (for a brief exposition, see last paragraph in Section 2). Both the parameter

that controls the degree of robustness (λ) and the quantity of principal components

(K) need to be prespecified.

• Depth-based trimming (DBT). Performs a test statistic. A curve is considered an

outlier if its depth is lower than a cutoff. The cutoff is determined by a boot-

strap method based on trimming the sample (for details, see Febrero, Galeano, and

González-Manteiga, 2008). The functional depth, the signification level (α1), the

proportion of potential outliers (α2), the parameter used to obtain smoothed boot-

strap samples (γ) and the number of bootstrap samples (B) must be prespecified.

• DBT for dependent data. Adapts the DBT procedure to the functional time se-

ries setting. For that, to determine the cutoff, bootstrap techniques for dependent

data are used instead of standard bootstrap. In addition, the functional boxplot of

Sun and Genton (2011) is used to trim the sample in the first stage (for details,

see Raña, Aneiros, and Vilar, 2015). The functional depth, the signification level

(α1), the bootstrap technique and the number of bootstrap samples (B) need to be

prespecified.

Note that the methods HDR, ISE and DBT are designed to detect outliers in samples of

independent curves, even if they were also applied to functional time series. Meanwhile,

DBT-MBB, PB and EB are specifically address to deal with the problem of outlier de-

tection in the context of functional time series. Along this simulation study, we will

compare the performance of the cited methods in situations of both independent and

dependent data.

M = 500 simulations were run for each model. The percentage of correctly identified

outliers pc (100 times the number of correctly identified outliers over the number of

outliers in the sample, or sensitivity) and the percentage of false positives p f (100 times

the number of wrongly identified outliers over the number of non-outlying curves in the

sample, or false detection percentage) were computed for each simulation and for each

method considered.

Routines fboxplot and foutliers, available in the R package rainbow, were used to

detect outliers from the HDR and ISE procedures, respectively. α0 = 0.01 was consid-

ered in the HDR method while values for λ and K in the ISE approach were chosen

following the suggestion given in Hyndman and Ullah (2007): λ = 3.29 and K being

the value minimizing the ISFE. The method DBT is implemented in the routine Out-

liers.fdata, available in the R package fda.usc. We considered α1 = α2 = 0.01, γ = 0.05

and B = 200, while the functional depth was the h-modal depth (Cuevas, Febrero, and

Fraiman, 2006), as recommended in Febrero, Galeano, and González-Manteiga (2008).

Moving blocks bootstrap (Künsch, 1989) was used in the DBT-for-dependent-data pro-

cedure (DBT-MBB) while α1 and B took the same values as in the DBT method. The

functional h-modal depth was also considered in this case.
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The choices related to the procedures PB and EB were done following the recom-

mendations given in Section 3.1 and 3.2, respectively. The tuning parameter K was cho-

sen as suggested in Section 3.3. Specifically, we chose K = 1 for magnitude outliers

(for both methods PB and EB). In the case of shape outliers, we chose K = 3 for the PB

method and K = 1 for the EB. This election explains more than 98% of the variability (in

some cases, even with only the first component, it explains around 99.5%), increasing

until 99.9% when we use PB method to detect shape outliers. This choice agrees with

the guidelines given in Section 3.3 about the requirement of more components when

dealing with shape outlier detection and the PB method. In the case of Model 0, due to

the simplest performance of the data, it is enough to take K = 1 for the EB and K = 2

for the PB method and both kind of outliers. The signification level used to detect scalar

outliers in the PB method (Step 2) was α3 = 0.01. In the case of the norm to be used in

Step 4 of the EB procedure, both the L1-norm and the L2-norm were considered. Because

similar results were obtained, we only show the corresponding ones to the L2-norm.

Our first simulation study employs n = 200 and the results are reported in tables

1, 2 and 3. These tables show the mean and standard deviation of the values of both

pc and p f obtained from the two proposed procedures (PB and EB) and the other four

considered methods (HDR, ISE, DBT and DBT-MBB) when they are applied to the

different contaminated models. In Table 1 the Model 0 is considered (independent data),

which is contaminated with magnitude or shape outliers. In Tables 2 and 3, the Models

1, 2 and 3 (dependent data) and the two cases of dependence (low and high dependence)

are considered (see Table 2 for contamination with magnitude outliers and Table 3 for

the case of shape outliers).

Table 1: Mean and standard deviation (in parentheses) of the percentage of correctly and falsely identified

outliers in Model 0 contaminated with magnitude or shape outliers.

Model 0

Magnitude outliers Shape outliers

Method p̂c p̂ f p̂c p̂ f

HDR 40.60 (14.21) 0.19 (0.29) 40.50 (14.24) 0.19 (0.29)

ISE 100.00 (0.00) 0.00 (0.02) 100.00 (0.00) 0.00 (0.00)

DBT 87.00 (26.12) 0.64 (0.48) 84.15 (27.46) 0.61 (0.47)

DBT-MBB 99.80 (4.47) 2.83 (1.44) 99.80 (4.47) 2.83 (1.44)

PB 95.40 (10.44) 0.02 (0.10) 95.15 (10.98) 0.02 (0.10)

EB 100.00 (0.00) 2.14 (1.23) 95.75 (15.61) 2.10 (1.22)
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Table 2: Mean and standard deviation (in parentheses) of the percentage of correctly and falsely identified

outliers in Models 1, 2 and 3 (with low or high dependence) contaminated with magnitude outliers.

Model 1

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 16.50 (15.91) 0.68 (0.32) 9.85 (14.04) 0.82 (0.29)

ISE 22.00 (22.01) 15.33 (2.69) 25.25 (22.74) 21.07 (3.65)

DBT 26.30 (23.28) 1.19 (0.87) 10.55 (15.67) 1.14 (1.17)

DBT-MBB 30.45 (24.04) 2.07 (1.78) 13.10 (16.93) 2.38 (2.24)

PB 70.65 (35.95) 0.31 (0.45) 62.05 (38.65) 0.56 (0.59)

EB 88.55 (17.12) 3.71 (1.24) 84.10 (20.81) 4.07 (1.26)

Model 2

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 28.25 (16.92) 0.44 (0.35) 30.25 (17.08) 0.40 (0.35)

ISE 24.30 (23.73) 14.60 (2.51) 27.00 (23.39) 16.64 (2.79)

DBT 66.75 (25.49) 0.81 (0.69) 67.60 (24.83) 0.76 (0.69)

DBT-MBB 73.15 (24.58) 1.60 (1.17) 73.40 (24.00) 1.55 (1.24)

PB 67.60 (37.26) 0.07 (0.20) 68.40 (37.24) 0.07 (0.18)

EB 91.60 (14.83) 3.17 (1.29) 91.60 (15.08) 3.23 (1.28)

Model 3

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 14.70 (15.31) 0.72 (0.31) 10.75 (14.27) 0.80 (0.29)

ISE 19.60 (21.78) 13.31 (2.72) 30.65 (24.04) 28.96 (3.40)

DBT 26.30 (23.55) 1.20 (0.86) 10.65 (15.44) 1.13 (1.15)

DBT-MBB 30.30 (24.35) 2.08 (1.67) 12.85 (16.78) 2.35 (2.03)

PB 69.30 (36.30) 0.33 (0.47) 60.95 (38.36) 0.61 (0.64)

EB 88.45 (16.76) 3.63 (1.24) 84.20 (20.28) 3.81 (1.17)
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Table 3: Mean and standard deviation (in parentheses) of the percentage of correctly and falsely identified

outliers in Models 1, 2 and 3 (with low or high dependence) contaminated with shape outliers.

Model 1

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 16.15 (19.20) 0.69 (0.39) 13.90 (18.77) 0.74 (0.38)

ISE 100.00 (0.00) 14.58 (2.74) 100.00 (0.00) 20.15 (3.59)

DBT 95.75 (16.47) 0.21 (0.41) 64.25 (38.55) 0.61 (0.91)

DBT-MBB 99.40 (6.69) 0.70 (1.16) 56.05 (37.45) 0.58 (1.06)

PB 95.20 (10.71) 0.04 (0.17) 95.00 (11.19) 0.04 (0.24)

EB 100.00 (0.00) 2.58 (1.26) 100.00 (0.00) 2.59 (1.29)

Model 2

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 10.75 (15.20) 0.80 (0.31) 9.10 (14.23) 0.83 (0.23)

ISE 100.00 (0.00) 13.85 (2.51) 100.00 (0.00) 15.95 (2.67)

DBT 96.40 (15.57) 0.38 (0.45) 98.30 (11.06) 0.33 (0.42)

DBT-MBB 100.00 (0.00) 1.81 (1.36) 100.00 (0.00) 1.67 (1.35)

PB 95.20 (10.71) 0.03 (0.16) 95.15 (10.63) 0.04 (0.16)

EB 100.00 (0.00) 2.61 (1.38) 100.00 (0.00) 2.64 (1.34)

Model 3

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 17.35 (19.26) 0.67 (0.39) 4.65 (11.40) 0.93 (0.23)

ISE 100.00 (0.00) 12.52 (2.62) 100.00 (0.00) 27.86 (3.23)

DBT 94.40 (19.15) 0.22 (0.42) 49.60 (38.54) 0.79 (1.04)

DBT-MBB 99.40 (6.69) 0.47 (1.23) 41.80 (34.50) 0.94 (1.32)

PB 95.05 (10.82) 0.05 (0.20) 94.95 (11.45) 0.14 (0.31)

EB 100.00 (0.00) 2.51 (1.26) 100.00 (0.00) 2.06 (1.19)
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Several conclusions can be drawn from these results. First of all, we look at Con-

taminated Model 0 in Table 1, which considers independent data. Under that situation,

ISE method gets the best result for both kind of outliers. On the contrary, HDR presents

poor results with the lowest sensitivity, but also its false detection rate is low. Looking

at the pair of DBT and DBT-MBB method, we can see an improvement with the second

option, even if dependence is not affecting this data. pc is much better for the DBT-MBB

method, compared to the DBT, but also the p f is higher. Note that DBT-MBB not only

adapts DBT to work with functional time series (by taking dependence into account),

but also improves the method itself by changing some other aspects. This is why we can

see different results even when they are applied to independent data. Our both proposals,

PB and EB, are very competitive in this situation, even compared to methods designed

to work with independent data. They maintain high and low values for pc and p f , re-

spectively. Their sensitivity is greater than 95% and there is no big difference between

magnitude and shape outliers. We can see that PB detects less outliers than EB but also

its false detection rate is lower.

Now, we focus on the simulated models that include dependence structure; that is,

contaminated Models 1, 2 and 3. The role of this analysis is two-fold: to illustrate the

performance of the two proposed procedures and to show the need to take into account

the dependence in the functional time series. We restrict first to the magnitude outliers

under both situations of low dependence (LD) and high dependence (HD), which results

are given in Table 2. In general we do not observe major differences in the behaviour

of the proposed methods (PB and EB) when the dependence scenario changes (LD or

HD), and we can see that the best results are achieved by the methods that take into

account dependence (DBT-MBB, PB and EB). Results are analysed below in a deeper

way. HDR and ISE methods lose their effectiveness in detecting outliers when dealing

with dependent data. We may highlight the large p f (around 20%) of the ISE method,

indicating a high volatility in its behaviour. We look now at the pair DBT and DBT-

MBB methods (remember that DBT-MBB adapts DBT to work with functional time

series). It is true that DBT-MBB gets always higher pc, which clearly indicates that

taking dependence in the data into account is outstanding. Both methods are also better

than HDR and ISE in most of the cases. Despite of getting worse pc than ISE when

dealing with Models 1 and 3 under high dependence, they get significantly lower p f .

Both methods (DBT and DBT-MBB) also show a sharp difference between dependence

scenarios for the Models 1 and 3, in which the outlier detection rate decreases as the

dependence structure becomes more relevant.

All the methods analysed above are overcome by our two proposals PB and EB.

Both options achieve high sensitivity, greater than DBT-MBB (excepting Model 2 in

which DBT-MBB overcomes PB) and far away from the other considered methods that

not take into account dependence. PB method holds lower sensitivity than EB, but also

lower false detection rate. To obtain a trade-off between high sensitivity and low false

detection rate, in general, the proposed EB seems to be a good choice for magnitude

outlier detection under the considered dependence scenarios.
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Table 3 shows the results when the models are contaminated with shape outliers.

HDR still performance very similar to the magnitude outliers case, however ISE meth-

ods shows an improvement by detecting all the shape outliers (at the expense of a large

false detection rate). DBT and DBT-MBB behaves also similarly to the magnitude out-

liers case, with a remarkable difference in the levels of pc. They achieve now very high

sensitivity with low dependence (around 95− 100%) but under high dependence they

provide low values, around 40−60% for Models 1 and 3.

Proposed methods PB and EB show high sensitivity (95% and 100%, respectively)

and low false detection rate (0.05% and 2.5%), being very stable for the three simulated

models. As in Table 2 for magnitude outliers, also with shape outliers there is no ma-

jor differences between both dependence scenarios (LD and HD). In summary, even if

both methods obtain very good results for shape outlier detection under dependence, EB

seems to be a better choice due its great success detecting all the outliers.

A second simulation study is developed in order to study the influence of the sample

size (n) over the analysed methods for outlier detection. In this case we restrict to Mod-

els 1, 2 and 3 (simulated functional time series) contaminated with magnitude outliers.

Table 4 shows the mean of the percentage of correctly and falsely identified outliers (pc

and p f , respectively) when the sample size varies within the values n = 100,200,300

and 400. These results are obtained under the scenario of high dependence (HD) and

the number of outliers introduced in each sample follows the same rule as the previous

results (including j = 0.02n outliers; that is, 2% of the curves).

Results given by the two proposed methods (PB and EB) in Table 4 clearly overcome

the rest of the methods included in the comparison (HDR, ISE, DBT and DBT-MBB) in

almost all the situations (except when one considers n = 100 in Model 2). That is, for

the three contaminated models and the different values of the sample size n (except the

combination Model 2, n = 100), PB and EB get the best performing. On the one hand,

HDR, ISE, DBT and DBT-MBB show poor results with very low pc and also, in the

case of ISE method, very high false detection rate. DBT-MBB gets always better results

than DBT, showing again the importance of taking dependence in the data into account.

Actually, both DBT and DBT-MBB are very competitive for the Model 2, specially with

the lowest sample size n = 100, but they are overcome by PB and EB as n increases.

On the other hand, also HDR, ISE, DBT and DBT-MBB remains stable when the

sample size varies. Indeed, we can see a slight decrease in the pc and increase in p f as

long as the sample size n increases. On the opposite, for the three contaminated models,

proposed methods PB and EB clearly improve the sensitivity (pc) meanwhile the false

detection rate (p f ) decreases slightly as n increases. The reason for this is that PB and EB

methods are based on fitting univariate time series (of the coefficients given by FPCA)

as a previous step to the outlier detection. Therefore, by increasing the sample size n the

fit of the univariate time series is improved and, accordingly, also the outlier detection

with PB and EB methods improves.
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Table 4: Mean of the percentage of correctly and falsely identified outliers in Models 1, 2 and 3, with high

dependence, contaminated with magnitude outliers and for n = 100,200,300 and 400.

Model 1

n=100 n=200 n=300 n=400

Method p̂c p̂ f p̂c p̂ f p̂c p̂ f p̂c p̂ f

HDR 12.30 0.77 9.85 0.82 7.43 0.87 7.28 0.87

ISE 26.10 22.44 25.25 21.07 22.57 21.10 23.13 20.94

DBT 12.10 0.34 10.55 1.14 9.23 1.60 9.63 1.86

DBT-MBB 12.80 1.13 13.10 2.38 11.80 2.99 12.03 2.98

PB 29.20 0.56 62.05 0.56 80.23 0.42 87.90 0.28

EB 58.80 4.52 84.10 4.07 90.83 3.99 93.60 4.00

Model 2

n=100 n=200 n=300 n=400

Method p̂c p̂ f p̂c p̂ f p̂c p̂ f p̂c p̂ f

HDR 34.20 0.33 30.25 0.40 28.57 0.44 26.50 0.48

ISE 32.60 17.10 27.00 16.64 22.50 16.51 21.50 16.45

DBT 63.70 0.47 67.60 0.76 68.63 0.90 68.87 1.01

DBT-MBB 73.60 1.66 73.40 1.55 72.30 1.52 72.08 1.54

PB 34.50 0.10 68.40 0.07 84.93 0.04 89.43 0.04

EB 73.70 3.60 91.60 3.23 95.70 3.35 96.25 3.27

Model 3

n=100 n=200 n=300 n=400

Method p̂c p̂ f p̂c p̂ f p̂c p̂ f p̂c p̂ f

HDR 15.80 0.70 10.75 0.80 8.70 0.84 8.40 0.85

ISE 31.90 29.08 30.65 28.96 30.10 28.74 29.80 28.84

DBT 12.00 0.32 10.65 1.13 9.37 1.61 9.58 1.85

DBT-MBB 12.70 1.18 12.85 2.35 11.17 2.78 11.40 2.77

PB 29.80 0.60 60.95 0.61 81.10 0.40 87.00 0.29

EB 54.90 3.68 84.20 3.81 90.67 3.78 93.18 3.81
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5. Applications in the electricity market

Nowadays, in many countries all over the world, the production and sale of electricity

is traded under competitive rules in free markets. The agents involved in this market

(namely, system operators, regulatory agencies, producers and consumers) are greatly

interested in the study of electricity load and price. Since electricity cannot be stored,

the demand must be satisfied instantaneously and producers need to anticipate future

demands to avoid overproduction. So good forecasting of electricity demand is very

important for the agents in the market. On the other hand, if reliable predictions of elec-

tricity price are available to producers and consumers, they can develop their bidding

strategies and establish a pool-bidding technique to achieve a maximum benefit. Conse-

quently, the prediction of electricity demand and price pose significant concerns to this

sector. In recent years, these concerns have been addressed from a functional perspec-

tive. Regression models with functional covariates (and even functional response) have

been used to forecast electricity demand and price. Some related papers are Antoniadis,

Paparoditis, and Sapatinas (2006), Antoch et al. (2010), Vilar, Cao, and Aneiros (2012),

Cho et al. (2013), Lielb (2013) and Aneiros et al. (2016). It is well known that the pres-

ence of outliers affects the accuracy of forecasts obtained from regression models. Thus,

outlier detection represents a first step in any descriptive analysis of a dataset, prior to

any type of modelling or prediction method. In that sense, depending on the objective

of the study, one of the following strategies can be used once the outliers are identified:

if outliers come from gross errors, they are subsequently removed from the sample. In

another case, robust prediction methods or complex models that take into account the

existence of outliers (for instance, introducing dummy variables) can be used.

In the next two sections, the proposed methods for detecting outliers in functional

time series, projections-based (PB) and errors-based (EB) methods, are applied on daily

curves of electricity demand and price. The corresponding tuning parameters were se-

lected in a similar way as in the simulation study.

5.1. Case study: electricity demand

We are interested in outlier detection in time series of electricity demand curves. Data

collect hourly electricity demand in the Spanish mainland electricity market on Mon-

days, . . . , Fridays in the year 2012. They are available at http://www.omie.es, the official

website of Operador del Mercado Ibérico de Energı́a. These hourly data present a trend.

Thus, by subtracting the trend (estimated by means of a kernel regression) we obtained

the corresponding detrended hourly series. The functional dataset under analysis is com-

posed of the n = 261 daily demand curves obtained from this detrended hourly series,

measured in Megawatt-hour (MWh). The quantity of functional principal components

considered was K = 9. These K principal components explained, at least, 98% of the

variance.
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Figure 3: Left panel: time series of electricity demand. Right panel: daily electricity demand curves.

The functional time series and the corresponding daily curves are shown in Figure 3.

Higher demands are observed in the interval 10:00h–22:00h while lower ones corre-

spond to the interval 3:00h–5:00h.

The outliers identified from the proposed procedures PB and EB are listed in Table 5.

Methods PB and EB detect 11 and 15 outliers, respectively, resulting in 20 different

curves.

We can find possible causes for most of these abnormal curves. For example, April

16 and 19, November 1 and 2 and also December 24 correspond to days with zero price

hours. During some hours in these days, the overproduction of wind power decreases

the electricity price fixed by daily market. This have to do with the different taxations

of this “green energies” because, as the wind power production increases, the electricity

price decreases. As a result, if the wind power production covers and abnormally high

percentage of the electricity demand, the price can drop even until zero during a period

of time (this being the case of the cited days). We find also as outliers some previous

or posterior days to these “zero price days”, such as April 24 and 26, which are also

affected by the disturbance in the price. Some of the outliers correspond to nonworking

days in which the people usually behaves in a different way than the rest of the regular

days (simply because most of the economical and industrial activities stop during these

days), affecting the electrical consumption and, as a consequence, also the demand.

This is the case of May 1 (Labour Day), August 15 (Assumption Day), October 12
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Table 5: Outliers detected in the demand data from proposed procedures PB and EB.

Method Method

Day PB EB Day PB EB

February 14 X November 2 X

April 16 X X November 7 X

April 19 X X November 14 X X

April 24 X December 3 X

April 26 X December 6 X X

May 1 X X December 10 X

May 4 X December 21 X

August 15 X X December 24 X

October 12 X December 25 X

November 1 X December 28 X

(National holiday in Spain), November 1 (All Saints Day), December 6 (Constitution

Day in Spain) and 25 (Christmas). December 24 (Christmas Eve) is also a special day,

even if it is not officially a holiday. Friday, November 2, besides being a zero-price day,

is situated also in the middle of a long weekend caused by All Saints Day, in which a lot

of people take some holidays. Finally, November 14 was a strike day in Spain, which

clearly affects electrical consumption as it can be considered in some sense as a holiday.

Finally, it is worth pointing out that electricity demand curves observed at days April

16, November 14 and December 6 are detected as outliers simultaneously with the two

proposed methods, but no one of these curves is identified as an outlier from either the

HDR or DBT procedures (remember that neither HDR nor DBT take dependence in the

data into account). Actually, as can be seen in Figure 4, these three curves have features

that can, to say the least, be considered suspicious: demand curve observed at April

16 takes high values throughout the first hours (possibly because the electricity price

at 3:00h–6:00h was zero); demand curve corresponding to November 14 (strike day)

maintains low values from 7:00h, this being the typical behaviour of demand curves

corresponding to nonworking days; December 6 is a holiday.

5.2. Case study: electricity price

A similar study is conducted in this section for electricity price. Prices were available

for the same period as demands, and they were obtained from the same source. The units

were cents (euro) per kilowatt-hour (cents/kWh). Unlike the previous case, there was no
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Figure 4: Outliers simultaneously detected in the demand curves with both of the proposed procedures,

but not detected when a method designed for independent data is applied.

trend. The number of functional principal components considered was K = 8. These K

principal components explained, at least, 98% of the variance.

Figure 5 displays the functional time series of electricity prices and the associated

daily curves. Note that periods of low and high prices roughly correspond with periods

of low and high demand, respectively. Greater variability is observed in the time series

of prices, taking into account the different scale with respect to the electricity demand. It

is easy to distinguish some of the zero-price days present in some points along the year,

caused by the overproduction of wind power, and also in the daily curves (specially

between 3:00h–6:00h).

The outliers identified by the proposed procedures PB and EB are listed in Table 5.

Note that a total of 20 observations are detected as abnormal curves (13 from the PB

method and 15 from the EB method). In addition, 7 of the 20 days corresponding to

such outliers were days when demand curves were also identified as outliers (compare

Tables 4 and 5). Following the classical rules of any kind of market, it is usual that

demand and price are very interconnected, this being also the case of electricity markets

and the reason why some of the outlying curves in demand are repeated as outliers in

the electricity price. As in the previous application, one can argue causes for most of

the abnormal curves of electricity price, being most of them already cited in the study

of outliers in electricity demand. Some of the outliers correspond to zero-price days, as
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Figure 5: Left panel: time series of electricity price. Right panel: daily electricity demand curves.

Table 6: Outliers detected in the price data from proposed procedures PB and EB.

Method Method

Day PB EB Day PB EB

February 13 X August 15 X X

February 21 X August 16 X

April 6 X September 24 X

April 10 X X October 1 X

April 11 X X October 24 X

April 19 X November 1 X X

April 25 X X November 2 X

May 1 X X December 14 X

May 8 X December 24 X X

June 11 X December 25 X X

April 19 and 25, September 24, November 1 and 2 or December 24 or days with a

period close to zero price (February 13). Holidays have also some kind of influence

over electricity prices, as April 6 (Good Friday) or May 1, August 15, November 1 and
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Figure 6: Outliers in the price curves simultaneously detected using both proposed procedures, but not

detected when applying a method designed for independent data.

December 25. Finally, we find also some special days related to other holidays or linked

to holidays, this being the case of February 21 (Carnival, holiday in part of Spain), Au-

gust 16 (posterior to a nonworking day), November 2 (in the middle of a long weekend)

or December 24 (Christmas Eve).

Finally, again as in the case of the demand, three price curves are detected as outliers

simultaneously by the two proposed methods, but none of these curves is identified as

an outlier with either the HDR or DBT procedure; we refer to the curves corresponding

to April 10 and 11, and August 15, see Figure 6. It seems to make sense to consider

them as outliers: the price was very low in the second half of the day on April 10 and

the first half of the following day, April 11; August 15 is a holiday, and the pattern of

the corresponding price curve of this day is different from the working days pattern.

6. Conclusions

This article proposes two methods to detect outliers in functional time series, the pro-

jections-based (PB) and the errors-based (EB) methods. These methods take dependence

in the data into account and use robust functional principal component analysis (FPCA).

Our simulation studies have shown that the proposed methods present good per-

formance when they are applied either on independent curves or dependent curves.
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However, procedures designed for independent data, such as the functional HDR box-

plot (Hyndman and Shang, 2010), the depth-based trimming (Febrero, Galeano, and

González-Manteiga, 2008) or the integrated squared error (Hyndman and Ullah, 2007)

methods, fail to detect outliers in functional time series. Thus, it has also been shown

the need to take dependence in the time series into account. The PB method has very

low false detection rate (p f ) while the sensitivity (pc) of the EB approach is very high.

Although in our simulation study small contamination sizes have been considered, both

methods show acceptable trade-off between pc and p f . In fact, they improve the trade-

off corresponding to the DBT for dependent data (Raña, Aneiros, and Vilar, 2015), this

being (to the best of our knowledge) the only method in the statistical literature that

includes the effect of dependence in the detection of outliers. Both PB and EB have also

shown good performance in different situations, considering the kind of outlier (magni-

tude or shape outliers) and also de dependence scenario (low or high dependence). Their

output is generally better than the other methods included in the comparison. Regarding

sensitivity (pc), EB seems to be the best option for both magnitude or shape outliers.

Furthermore, PB is also very accurate and, although its pc is lower than the EB, its false

detection rate is the lowest of all the methods. We have also shown that both proposals

improve their results as long as the sample size increases. The practical usefulness of our

methodology has been illustrated on the daily curves of electricity demand and price.

Finally, it is worth pointing out that, as in all procedures based on FPCA, the pro-

posed methods depend on the quantity of principal components considered, K. In this

article, K was selected by imposing a lower bound to the cumulative percentage of vari-

ance explained from the first K principal components (cumulative percentage variance

(CVA) approach). As in Hyndman and Booth (2008), we find that a general recommen-

dation is to use a larger than necessary K (for instance, a K explaining at least 98%

or, even, 99.9% of the variability). Alternatives to the CVA approach are, for instance,

methods based on the cross-validation score (Yao, Müller, and Wang, 2005a) or the

Akaike information criterion (Yao, Müller, and Wang, 2005b).
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