
P Colonies of Capacity One and Modularity

Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

Institute of Computer Science, Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova, miroslav.langer}@fpf.slu.cz

Summary. We continue the investigation of P colonies introduced in [8], a class of
abstract computing devices composed of independent agents, acting and evolving in a
shared environment. The first part is devoted to the P colonies of the capacity one. We
present improved allready presented results concerning the computional power of the
P colonies. The second part is devoted to the modularity of the P colonies. We deal with
dividing the agents into modules.

1 Introduction

P colonies were introduced in the paper [7] as formal models of a computing
device inspired by membrane systems and formal grammars called colonies. This
model is inspired by structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents or cells. Each
agent is represented by a collection of objects embedded in a membrane.

The number of objects inside each agent is the same and constant during
computation.

The environment contains several copies of the basic environmental object de-
noted by e. The number of the copies of e in the environment is sufficient.

With each agent a set of programs is associated. The program, which deter-
mines the activity of the agent, is very simple and depends on content of the agent
and on multiset of objects placed in the environment. Agent can change content
of the environment by programs and through the environment it can affect the be-
havior of other agents.

This influence between agents is a key factor in functioning of the P colony. In
each moment each object inside the agent is affected by executing the program.

For more information about P systems see [12] or [13].

72 L. Cienciala, L. Ciencialová, M. Langer

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics of the
formal language theory.

We use NRE to denote the family of the recursively enumerable sets of natural
numbers. Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ (includ-
ing the empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and
the number of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects
V is denoted by V ◦. The set V ′ is called the support of M and is denoted by
supp(M) if for all x ∈ V ′ f(x) 6= 0 holds. The cardinality of M , denoted by
|M |, is defined by |M | =

∑
a∈V f(a). Each multiset of objects M with the set of

objects V ′ = {a1, . . . an} can be represented as a string w over alphabet V ′, where
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters represent the same multiset M . The ε represents the empty multiset.

2.1 P colonies

We briefly recall the notion of P colonies. A P colony consists of agents and an
environment. Both the agents and the environment contain objects. With each
agent a set of programs is associated. There are two types of rules in the programs.
The first type of rules, called the evolution rules, are of the form a → b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The second
type of rules, called the communication rules, are of the form c ↔ d. When the
comunication rule is performed, the object c inside the agent and the object d
outside the agent swap their places. Thus after execution of the rule, the object d
appears inside the agent and the object c is placed outside the agent.

In [7] the set of programs was extended by the checking rules. These rules give
an opportunity to the agents to opt between two possibilities. The rules are in the
form r1/r2. If the checking rule is performed, then the rule r1 has higher priority
to be executed over the rule r2. It means that the agent checks whether the rule
r1 is applicable. If the rule can be executed, then the agent is compulsory to use
it. If the rule r1 cannot be applied, then the agent uses the rule r2.

Definition 1. The P colony of the capacity k is a construct
Π = (A, e, f, VE , B1, . . . , Bn), where

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic object of the colony,
• f ∈ A is the final object of the colony,
• VE is a multiset over A− {e},
• Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi), where

P Colonies of Capacity One and Modularity 73

– Oi is a multiset over A, it determines the initial state (content) of the agent,
|Oi| = k,

– Pi = {pi,1, . . . , pi,ki
} is a finite multiset of programs, where each program

contains exactly k rules, which are in one of the following forms each:
· a→ b, called the evolution rule,
· c↔ d, called the communication rule,
· r1/r2, called the checking rule; r1, r2 are the evolution rules or the com-

munication rules.

An initial configuration of the P colony is an (n+ 1)-tuple of strings of objects
present in the P colony at the beginning of the computation. It is given by the
multiset Oi for 1 ≤ i ≤ n and by the set VE . Formally, the configuration of the P
colony Π is given by (w1, . . . , wn, wE), where |wi| = k, 1 ≤ i ≤ n, wi represents
all the objects placed inside the i-th agent, and wE ∈ (A−{e})◦ represents all the
objects in the environment different from the object e.

In the paper parallel model of P colonies will be studied. At each step of the
parallel computation each agent tries to find one usable program. If the number
of applicable programs are higher than one, then the agent chooses one of the rule
nondeterministically. At one step of the computation the maximal possible number
of agents are active.

Let the programs of each Pi be labeled in a one-to-one manner by labels in a
set lab (Pi) in such a way that lab (Pi) ∩ lab (Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.

To express derivation step formally, we introduce following four functions for
the agent using the rule r of program p ∈ P with objects w in the environment:

For the rule r which is a → b, c ↔ d and c ↔ d/c′ ↔ d′ respectively, and for
multiset w ∈ V ◦ we define:

left (a→ b, w) = a
right (a→ b, w) = b
export (a→ b, w) = ε
import (a→ b, w) = ε

left (c↔ d,w) = ε
right (c↔ d,w) = ε
export (c↔ d,w) = c
import (c↔ d,w) = d

left (c↔ d/c′ ↔ d′, w) = ε
right (c↔ d/c′ ↔ d′, w) = ε
export (c↔ d/c′ ↔ d′, w) = c
import (c↔ d/c′ ↔ d′, w) = d

}
for |w|d ≥ 1

export (c↔ d/c′ ↔ d′, w) = c′

import (c↔ d/c′ ↔ d′, w) = d′

}
for |w|d = 0 and |w|d′ ≥ 1

For a program p and any α ∈ {left, right, export, import}, let be
α (p, w) = ∪r∈pα (r, w).

A transition from a configuration to another is denoted as
(w1, . . . , wn;wE)⇒ (w′1, . . . , w

′
n;w′E) , where the following conditions

are satisfied:

74 L. Cienciala, L. Ciencialová, M. Langer

• There is a set of program labels P with |P | ≤ n such that
– p, p′ ∈ P , p 6= p′, p ∈ lab (Pj) implies p′ /∈ lab (Pj),
– for each p ∈ P , p ∈ lab (Pj), left (p, wE) ∪ export (p, wE) = wj , and⋃

p∈P

import (p, wE) ⊆ wE .

• Furthermore, the chosen set P is maximal, i.e. if any other program r ∈
∪1≤i≤nlab (Pi), r /∈ P is added to P , then the conditions listed above are
not satisfied.

Now, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab (Pj),
let be w′j = right (p, wE) ∪ import (p, wE) . If there is no p ∈ P with p ∈ lab (Pj)
for some j, 1 ≤ j ≤ n, then let be w′j = wj and moreover, let be

w′E = wE −
⋃

p∈P

import (p, wE) ∪
⋃

p∈P

export (p, wE) .

A configuration is halting if the set of program labels P satisfying the conditions
above cannot vary from the empty set. A set of all possible halting configurations
is denoted by H. A halting computation can be associated with the result of the
computation. It is given by the number of copies of the special symbol f present
in the environment. The set of numbers computed by a P colony Π is defined as

N (Π) =
{
|vE |f | (w1, . . . , wn, VE)⇒∗ (v1, . . . , vn, vE) ∈ H

}
,

where (w1, . . . , wn, VE) is the initial configuration, (v1, . . . , vn, vE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Consider a P colony Π = (A, e, f, VE , B1, . . . , Bn). The maximal number
of programs associated with the agents in the P colony Π are called the height
of the P colony Π. The degree of the P colony Π is the number of agents in it.
The third parameter characterizing the P colony is the capacity of the P colony
Π describing the number of the objects inside each agent.

Let us use the following notations:
NPCOLpar(k, n, h) for the family of all sets of numbers computed by the P
colonies working in a parallel, using no checking rules and with:

- the capacity at most k,
- the degree at most n and
- the height at most h.

If we allow the checking rules, then the family of all sets of numbers computed by
the P colonies is denoted by NPCOLparK. If the P colonies are restricted, we use
the notation NPCOLparR, respectively NPCOLparKR.

2.2 Register machines

The aim of the paper is to characterize the size of the families NPCOLpar(k, n, h)
comparing them with the recursively enumerable sets of numbers. To meet the
target, we use the notion of a register machine.

P Colonies of Capacity One and Modularity 75

Definition 2. [9] A register machine is the construct M = (m,H, l0, lh, P) where:
- m is the number of registers,
- H is the set of instruction labels,
- l0 is the start label, lh is the final label,
- P is a finite set of instructions injectively labeled with the elements

from the set H.

The instructions of the register machine are of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the

instruction (labeled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores the value different from zero, then

subtract 1 from its content and go to instruction l2, other-
wise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this
instruction.

Without loss of generality, it can be assumed that in each ADD-instruction
l1 : (ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3),
the labels l1, l2, l3 are mutually distinct.

The register machine M computes a set N(M) of numbers in the following
way: the computation starts with all registers empty (hence storing the number
zero) and with the instruction labeled l0. The computation proceeds by applying
the instructions indicated by the labels (and the content of registers allows its
application). If it reaches the halt instruction, then the number stored at that
time in the register 1 is said to be computed by M and hence it is introduced
in N(M). (Because of the nondeterminism in choosing the continuation of the
computation in the case of ADD-instructions, N(M) can be an infinite set.) It is
known (see e.g.[9]) that in this way we can compute all sets of numbers which are
Turing computable.

Moreover, we call a register machine partially blind [6] if we interpret a subtract
instruction in the following way: l1 : (SUB(r); l2; l3) - if there is a value different
from zero in the register r, then subtract one from its contents and go to instruction
l2 or to instruction l3; if there is stored zero in the register r when attempting to
decrement the register r, then the program ends without yielding a result.

When the register machine reaches the final state, the result obtained in the
first register is only taken into account if the remaining registers store value zero.
The family of sets of non-negative integers generated by partially blind register
machines is denoted by NRMpb. The partially blind register machine accepts a
proper subset of NRE.

3 P colonies with one object inside the agent

In this Section we analyze the behavior of P colonies with only one object inside
each agent of P colonies. It means that each program is formed by only one rule,

76 L. Cienciala, L. Ciencialová, M. Langer

either the evolution rule or the communication rule. If all agents have their pro-
grams with the evolution rules, the agents ”live only for themselves” and do not
communicate with the environment.

Following results were proved:
– NPCOLparK(1, ∗, 7) = NRE in [1],
– NPCOLparK(1, 4, ∗) = NRE in [2],
– NPCOLpar(1, 2, ∗) = NPBRM in [2].

Theorem 1. NPCOLpar(1, 4, ∗) = NRE

Proof. We construct a P colony simulating the computation of the register ma-
chine. Because there are only copies of e in the environment and inside the agents,
we have to initialize a computation by generating the initial label l0. After gen-
erating the symbol l0, the agent stops. It can continue its activity only by using
a program with the communication rule. Two agents will cooperate in order to
simulate the ADD and SUB instructions. Let us consider an m-register machine
M = (m,H, l0, lh, P) and present the content of the register i by the number
of copies of a specific object ai in the environment. We construct the P colony

Π = (A, e, f, ∅, B1, . . . , B4) with:
– alphabet A = {li, Li, li©, li , Li ,mi,m

′
i, mi©, mi , yi, ni, | 0 ≤ i ≤ |H|}∪

∪ {ai|1 ≤ i ≤ m} ∪ {Ai
r | for every li : (SUB(r), lj , lk) ∈ H}∪

∪ {e, d, C},
– f = a1,
– Bi = (e, Pi), 1 ≤ i ≤ 4.

(1) To initialize simulation of computation of M we define the agent B1 = (e, P1)
with a set of programs:

P1 :
1 : 〈e→ l0〉 ;

(2) We need an additional agent to generate a special object d. This agent will be
working during whole computation. In each pair of steps the agent B2 places a copy
of d to the environment. This agent stops working when it consumes the symbol
which is generated by the simulation of the instruction lh from the environment.

P2 :
2 : 〈e→ d〉 , 3 : 〈d↔ e〉 , 4 : 〈d↔ lh〉 ;
The P colony Π starts its computation in the initial configuration (e, e, e, e, ε).

In the first subsequence of steps of the P colony Π only agents B1, B2 can apply
their programs.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. e e e e 1 2
2. l0 d e e 3
3. l0 e e e d 2

P Colonies of Capacity One and Modularity 77

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3), we define two agents
B3 and B4 in the P colony Π. These agents help each other to add a copy of
the object ar and the object l2 or l3 into the environment.
P1 P1 P3 P3

5 : 〈l1 ↔ D1〉 , 9 :
〈

l1 → L1

〉
, 13 : 〈e↔ D1〉 , 16 : 〈e↔ l1©〉 ,

6 : 〈D1 ↔ d〉 , 10 :
〈

L1 → L1

〉
, 14 :

〈
D1 → l1

〉
, 17 : 〈 l1©→ ar〉 ,

7 : 〈d→ l1©〉 , 11 : 〈L1 → l2〉 , 15 :
〈

l1 ↔ e
〉
, 18 : 〈ar ↔ e〉 ,

8 :
〈

l1©↔ l1

〉
, 12 : 〈L1 → l3〉 ,

This pair of agents generate two objects. One object increments value of the
particular register and the second one defines of which instruction will simulation
continue. One agent is not able to generate both objects corresponding to the sim-
ulation of one instruction, because at the moment of placing all of its content into
the environment via the communication rules, it does not know which instruction
it simulates. It nondeterministically chooses one of the possible instructions. Now
it is necessary to check whether the agent has chosen the right instruction. For this
purpose the second agent slightly changes first generated object. The first agent
swaps this changed object for the new one generated only if it belongs to the same
instruction. If this is not done succesfully, the computation never stops because of
absence of the halting object for the agent B2.

An instruction l1 : (ADD(r), l2, l3) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. l1 d e e au
rd

v 5 3
2. D1 e e e au

rd
v+1 6 2

3. d d e e D1a
u
rd

v 7 3 13
4. l1© e D1 e au

rd
v+1 2 14

5. l1© d l1 e au
rd

v+1 3 15
6. l1© e e e l1 au

rd
v+2 8 2

7. l1 d e e l1©au
rd

v+2 9 3 16
8. L1 e l1© e au

rd
v+3 10 2 17

9. L1 d ar e au
rd

v+3 11 or 12 3 18
10. l2 e e e au+1

r dv+4

(4) For each SUB-instruction l1 : (SUB(r), l2, l3) , the following programs are
introduced in the sets P1, P3 and in the set P4:

78 L. Cienciala, L. Ciencialová, M. Langer

P1 P1 P3 P3

19 : 〈l1 → D1〉 , 28 :
〈
l′1 → n1

〉
, 36 : 〈e↔ D1〉 , 45 :

〈
e↔ y1

〉
,

20 : 〈D1 ↔ d〉 , 29 :
〈
n1 ↔ m1

〉
, 37 :

〈
D1 → l1

〉
, 46 :

〈
y1 → l2

〉
,

21 : 〈d→ l1©〉 , 30 : 〈m1 → m′1〉 , 38 :
〈

l1 ↔ e
〉
, 47 : 〈l2 ↔ e〉 ,

22 :
〈

l1©↔ l1

〉
, 31 : 〈m′1 → m′′1〉 , 39 : 〈e↔ l1©〉 , 48 :

〈
e↔ n1

〉
,

23 :
〈

l1 → A1
r

〉
, 32 : 〈m′′1 → m1©〉 , 40 : 〈 l1©→ l′1〉 , 49 : 〈n1 → l3〉 ,

24 :
〈
A1

r ↔ ar

〉
, 33 : 〈m1©↔ l2〉 , 41 : 〈l′1 ↔ e〉 , 50 : 〈l3 ↔ e〉 ,

25 :
〈
A1

r ↔ l′1
〉
, 34 :

〈
m1©→ m1

〉
, 42 :

〈
e↔ A1

r

〉
,

26 :
〈
ar → y1

〉
, 35 :

〈
m1 ↔ l3

〉
, 43 :

〈
A1

r → m1

〉
,

27 :
〈
y1 ↔ m1

〉
, 44 : 〈m1 ↔ e〉 ,

Agents B1, B3 and B4 collectively check the state of particular register and
generate label of following instruction. Part of the simulation is devoted to purify
the environment from redundant objects.
P4

51 : 〈e↔ m1©〉 , 54 : 〈l′1 → e〉 ,
52 : 〈m1©→ d〉 , 55 :

〈
e↔ m1

〉
,

53 : 〈d↔ l′1〉 , 56 :
〈

m1 → e
〉
,

The instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of
steps. If the value in counter r is zero:

P Colonies of Capacity One and Modularity 79

configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. l1 d e e dv 19 3
2. D1 e e e dv+1 20 2
3. d d e e D1d

v 21 3 36
4. l1© e D1 e dv+1 2 37
5. l1© d l1 e dv+1 3 38
6. l1© e e e l1 dv+2 22 2
7. l1 d e e l1©dv+2 23 3 39
8. A1

r e l1© e dv+3 2 40
9. A1

r d l′1 e dv+3 3 41
10. A1

r e e e l′1d
v+4 25 2

11. l′1 d e e A1
rd

v+4 28 3 42
12. n1 e A1

r e dv+5 2 43
13. n1 d m1 e dv+5 3 44
14. n1 e e e m1d

v+6 29 2
15. m1 d e e n1d

v+6 30 3 48
16. m′1 e n1 e dv+7 31 2 49
17. m′′1 d l3 e dv+7 32 3 50
18. m1© e e e l3d

v+8 34 2
19. m1 d e e l3d

v+8 35 3
20. l3 e e e m1 dv+9 2 55
21. l3 d e m1 dv+9 3 56
22. l3 e e e dv+10 2

If the register r stores a value different from zero:

configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. l1 d e e au
rd

v 19 3
2. D1 e e e au

rd
v+1 20 2

3. d d e e D1a
u
rd

v 21 3 36
4. l1© e D1 e au

rd
v+1 2 37

5. l1© d l1 e au
rd

v+1 3 38
6. l1© e e e l1 au

rd
v+2 22 2

7. l1 d e e l1©au
rd

v+2 23 3 39

80 L. Cienciala, L. Ciencialová, M. Langer

configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

8. A1
r e 1© e au

rd
v+3 24 2 40

9. ar d l′1 e A1
ra

u−1
r dv+3 26 3 41

10. y1 e e e l′1A
1
ra

u−1
r dv+4 2 42

11. y1 d A1
r e l′1a

u−1
r dv+4 28 3 43

12. y1 e m1 e l′1a
u−1
r dv+5 2 44

13. y1 d e e m1l
′
1a

u−1
r dv+5 27 3

14. m1 e e e y1l
′
1a

u−1
r dv+6 30 2 45

15. m′1 d y1 e l′1a
u−1
r dv+6 31 3 46

16. m′′1 e l2 e l′1a
u−1
r dv+7 32 2 47

17. m1© d e e l2l
′
1a

u−1
r dv+7 33 3

18. l2 e e e m1©l′1a
u−1
r dv+8 2 51

19. l2 d e m1© l′1a
u−1
r dv+8 3 52

20. l2 e e d l′1a
u−1
r dv+9 2 53

21. l2 d e l′1 au−1
r dv+10 3 54

22. l2 e e e au−1
r dv+11 2

(5) The halting instruction lh is simulated by the agent B1 with a subset of pro-
grams:

P1

57 : 〈lh ↔ d〉 .
The agent places the object lh into the environment, from where it can be

consumed by the agent B2 and by this the agent B2 stops its activity.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. lh e e e dv 57 2
2. d e d e lhd

v 4
3. d lh e e dv+1

The P colony Π correctly simulates computation of the register machine
M . The computation of Π starts with no object ar placed in the environment
in the same way as the computation of M starts with zeros in all registers.
The computation of Π stops if the symbol lh is placed inside the agent B2

in the same way as M stops by executing the halting instruction labeled lh. Conse-
quently, N(M) = N(Π) and because the number of agents equals four, the proof
is complete. ut

Theorem 2. NPCOLpar(1, ∗, 8) = NRE

Proof. We construct a P colony simulating the computation of the register ma-
chine. Because there are only copies of e in the environment and inside the agents,
we have to initialize a computation by generating the initial label l0. After gen-
erating the symbol l0 this agent stops and it can start its activity only by using

P Colonies of Capacity One and Modularity 81

a program with the communication rule. Two agents will cooperate in order to
simulate the ADD and SUB instructions.

Let us consider an m-register machine M = (m,H, l0, lh, P) and present
the content of the register i by the number of copies of a specific object ai in the en-
vironment. We construct the P colony

Π = (A, e, f, ∅, B1, . . . , Bn), n = |H|+ 2 where:
– alphabet A = {li, l′i, i′, i′′, i©, i , Di, li|0 ≤ i ≤ |H|}∪

∪ {ai|1 ≤ i ≤ m} ∪ {e, d},
– f = a1,
– Bi = (e, Pi), 1 ≤ i ≤ 4.

(1) To initialize simulation of computation of M , we define the agent B1 = (e, P1)
with a set of programs:

P1 :
1 : 〈e→ l0〉 , 2 : 〈l0 ↔ d〉 ;

(2) We need an additional agent to generate a special object d. This agent will
be working during whole computation. In each pair of steps the agent B2 places a
copy of d to the environment..

P2 :
3 : 〈e→ d〉 , 4 : 〈d↔ e〉 , 5 : 〈d↔ lh〉 ;
The P colony Π starts its computation in the initial configuration (e, e, e, e, ε).

In the first subsequence of steps of the P colony Π, only the agents B1 and B2

can apply their programs.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. e e e e 1 3
2. l0 d e e 4
3. l0 e e e d 2 3
4. d e e d 4

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3), there are two agents
Bl11

and Bl21
in the P colony Π. These agents help each other to add one copy of

the object ar and the object l2 or l3 to the environment.
Pl11

Pl11
Pl21

6 : 〈e↔ l1〉 , 10 : 〈d→ l3〉 , 13 : 〈e↔ D1〉 ,
7 : 〈l1 → D1〉 , 11 : 〈l2 ↔ e〉 , 14 : 〈D1 → ar〉 ,
8 : 〈D1 ↔ d〉 , 12 : 〈l3 ↔ e〉 , 15 : 〈ar ↔ e〉 ,
9 : 〈d→ l2〉 ,

The instruction l1 : (ADD(r), l2, l3) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.

82 L. Cienciala, L. Ciencialová, M. Langer

configuration of Π
step B2 Bl11

Bl21
Env P2 P3 P4

1. d e e l1a
u
rd

v 3 6
2. e l1 e au

rd
v+1 2 7

3. d D1 e au
rd

v+1 3 8
4. e d e D1a

u
rd

v+1 2 9 or 10 13
5. d l2 D1 au

rd
v+1 3 11 14

6. e e ar l2a
u
rd

v+2 2 15
7. d e e l2a

u+1
r dv+2 3

(4) For each SUB-instruction l1 : (SUB(r), l2, l3) , the below mentioned programs
are introduced in the sets Pl11

, Pl21
, Pl31

, Pl41
and in the set Pl51

:

Pl11
Pl11

Pl21
Pl51

16 : 〈e↔ l1〉 , 19 :
〈
d→ 1

〉
, 21 : 〈e↔ D1〉 , 32 : 〈e↔ 1©〉 ,

17 : 〈l1 → D1〉 , 20 :
〈

1 ↔ e
〉
, 22 : 〈D1 → 1©〉 , 33 : 〈 1©→ 1′′〉 ,

18 : 〈D1 ↔ d〉 , 23 : 〈 1©↔ e〉 , 34 : 〈1′′ ↔ e〉 ,
Pl31

Pl31
Pl51

Pl51

24 :
〈
e↔ 1

〉
, 28 : 〈l2 ↔ e〉 , 35 : 〈e↔ 1′〉 , 39 : 〈1′′ → e〉 ,

25 :
〈

1 → 1′
〉
, 29 : 〈1′ ↔ 1′′〉 , 36 : 〈1′ → d〉 , 40 :

〈
l3 → l3

〉
,

26 : 〈1′ ↔ ar〉 , 30 :
〈
1′′ → l3

〉
, 37 : 〈d↔ 1′′〉 , 41 : 〈l3 ↔ e〉 ,

27 : 〈ar → l2〉 , 31 :
〈
l3 ↔ e

〉
, 38 :

〈
d↔ l3

〉
,

The instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of
steps.

If the register r stores a value different from zero, then the computation pro-
ceeds as follows (we do not consider the number of copies of the object d in the
environment):

configuration of Π applicable programs
step Bl11

Bl21
Bl31

Bl41
Bl51

Env Pl11
Pl21

Pl31
Pl41

Pl51

1. e e e e e l1a
u
rd

v 16
2. l1 e e e e au

rd
v 17

3. D1 e e e e au
rd

v 18
4. d e e e e D1a

u
rd

v−1 19 21
5. 1 D1 e e e au

rd
v−1 20 22

6. e 1© e e e 1 au
rd

v−1 23 24
7. e e 1 e e 1©au

rd
v−1 25 32

8. e e 1′ 1© e au
rd

v−1 26 33
9. e e ar 1′′ e 1′au−1

r dv−1 27 34 35
10. e e l2 e 1′ 1′′au−1

r dv−1 28 36
11. e e e e d l21′′au−1

r dv−1 37
12. e e e e 1′′ l2a

u−1
r dv 39

13. e e e e e l2a
u−1
r dv

P Colonies of Capacity One and Modularity 83

From the 12th step the agent Bl12
starts to work and consumes the object l2.

We do not notice this fact in the table.
When the value in the counter r is zero:

configuration of Π applicable programs
step Bl11

Bl21
Bl31

Bl41
Bl51

Env Pl11
Pl21

Pl31
Pl41

Pl41

1. e e e e e l1d
v 16

2. l1 e e e e dv 17
3. D1 e e e e dv 18
4. d e e e e D1d

v−1 19 21
5. 1 D1 e e e dv−1 20 22
6. e 1© e e e 1 dv−1 23 24
7. e e 1 e e 1©dv−1 25 32
8. e e 1′ 1© e dv−1 33
9. e e 1′ 1′′ e dv−1 34
10. e e 1′ e e 1′′dv−1 29
11. e e 1′′ e e 1′dv−1 30 35
12. e e l3 e 1′ dv−1 31 36
13. e e e e d l3d

v−1 38
14. e e e e l3 dv 40
15. e e e e l3 dv 41
16. e e e e e l3d

v

(5) The halting instruction lh is simulated by agent B2 which consumes the object
lh and that stops the computation.

The P colony Π correctly simulates the computation of the register machine
M . The computation of the Π starts with no object ar, which indicates the content
of the register r, placed in the environment, in the same way as the computation in
the register machine M starts with zeros in all registers. Then the agents simulate
the computation by simulating ADD and SUB instructions. The computation of
the P colony Π stops if the symbol lh is placed inside the corresponding agent as
well as the register machine M stops by executing the halting instruction labeled
lh. Consequently, N(M) = N(Π) and because the number of agents equals four,
the proof is complete.

ut

4 Modularity in the terms of P colonies

During the evolution unicellular organisms have evolved into multicellular. Some
cells specialized their activities for the particular function and have to cooperate
with other specialized cells to be alive. In that way the organs have evolved and
living organisms have become more complex. But the cooperating organs and
more complex living organisms are more sophisticated, live longer and their life is
improving.

84 L. Cienciala, L. Ciencialová, M. Langer

From the previous section we can observe that some agents in the P colonies are
providing the same function during the computation. This inspired us to introduce
the modules in the P colonies. We have defined five modules, where each of them is
providing one specific function. These modules are the module for the duplication,
the module for the addition, the module for the subtraction, the balance-wheel
module, the control module (see Fig. 1). Definition of each module’s function is
given in the proof of following theorem.

Controlmodule

Watch balance

Duplication module

Subtractionmodule

Additionmodule registers

Fig. 1. Modular P colony

Theorem 3. NPCOLpar(1, 8, ∗) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
the P colony Π = (A, e, f, VE , B1, B2) simulating a computation of the register
machine M with:

- A = {J, J ′, V,Q} ∪ {li, l′i, l′′i , Li, L
′
i, L
′′
i , Ei | li ∈ H} ∪ {ar | 1 ≤ r ≤ m},

- f = a1,
- Bi = (Oi, Pi), Oi = {e}, i = 1, 2

We can group the agents of the P colony into five modules. Each module needs
for its work an imput and requires some objects. The result of its computation is
an output:
(1) module for the duplication (uses 2 agents):

P Colonies of Capacity One and Modularity 85

P1 : P2 :

1 : 〈e→ Di〉 , 8 :
〈
e↔ Di

〉
,

2 :
〈
Di → Di

〉
, 9 :

〈
Di → i′

〉
,

3 :
〈

Di ↔ d
〉
, 10 : 〈i′ ↔ e〉 ,

4 :
〈
d→ i

〉
, 11 :

〈
e↔ i

〉
,

5 :
〈

i ↔ i′
〉
, 12 :

〈
i → i©〉

,
6 : 〈i′ → i〉 , 13 : 〈 i©↔ e〉 .
7 : 〈i↔ e〉 ,
Duplicating module is activated when the object Di appears in the environment.
This object carries a message ”Duplicate object i.”.

input: one object Di

output: one object i after 10 steps and one object i© after 11 steps
requirements: one object d

configuration of Π

B1 B2 Env P1 P2

1. e e dDi 1 −
2. Di e d 2 −
3. Di e d 3 −
4. d e Di 4 8
5. i Di − 9
6. i i′ − 10
7. i e i′ 5 −
8. i′ e i 6 11
9. i i 7 12
10. e i© i − 13
11. e e i©i − −

Duplicating module duplicates requested object.
(2) module for the addition (uses 1 agent):

P1 :
1 : 〈e↔ Ar〉 ,
2 : 〈Ar → ar〉 ,
3 : 〈ar ↔ e〉 .
input: one object Ar

output: one object ar after 4 steps
requirements: ∅

configuration of Π

B1 Env P1

1. e Ar 1
2. Ar 2
3. ar 3
4. e ar −

86 L. Cienciala, L. Ciencialová, M. Langer

Module for the addition adds one symbol into the environment.
(3) module for the subtraction (uses 3 agents):

P1 : P2 : P3 :
1 : 〈e↔ Sr〉 , 11 : 〈e↔ Br©〉 , 19 : 〈e↔ y′〉 ,
2 : 〈Sr → DBr

〉 , 12 : 〈Br©→ B′
r©〉 , 20 : 〈y′ → y〉 ,

3 : 〈DBr ↔ d〉 , 13 : 〈B′
r©↔ ar〉 21 : 〈y ↔ B′r〉 ,

4 : 〈d↔ Br〉 , 14 : 〈B′
r©↔ B′r〉 22 : 〈B′r → e〉 ,

P1 : P2 : P3 :
5 : 〈Br → Br〉 , 15 : 〈ar → y′〉
6 :

〈
Br → Br

〉
, 16 : 〈B′r → n〉

7 :
〈
Br → B′r

〉
, 17 : 〈y′ ↔ e〉

8 : 〈B′r ↔ d〉 , 18 : 〈n↔ e〉
9 : 〈d↔ B′

r©〉 ,
10 : 〈B′

r©→ e〉 ,
input: one object Br

output: one object y after 23 steps or one object n after 22 steps
requirements: two objects d, object ar (if there is at least one in the en-

vironment)
uses: duplication module

configuration of Π

B1 B2 B3 Env P1 P2 P3

1. e e e Srard 1 − −
2. Sr e e ard 2 − −
3. DBr

e e ard 3 − −
4. d e e arDBr

− − −
waiting for objects from duplication unit

14. d e e arBr 4 − −
15. Br e e ar Br© 5 11 −
16. Br Br© e ar 6 12 −
17. Br B′

r© e ar 7 13 −
18. B′r ar e B′

r© 8 15 −
19. d y′ e B′

r©B′r 9 17 −
20. B′

r© e e y′B′r 10 − 19
21. e e y′ B′r − − 20
22. e e y B′r − − 21
23. e e B′r y − − 22
24. e e e y − − −

P Colonies of Capacity One and Modularity 87

configuration of Π

B1 B2 B3 Env P1 P2 P3

1. e e e Srd 1 − −
2. Sr e e d 2 − −
3. DBr e e d 3 − −
4. d e e DBr

− − −
waiting for objects from duplication unit

14. d e e Br 4 − −
15. Br e e Br© 5 11 −
16. Br Br© e 6 12 −
17. Br B′

r© e 7 − −
18. B′r B′

r© e 8 − −
19. d B′

r© e B′r − 14 −
20. d B′r e B′

r© 9 16 −
21. B′

r© n e 10 − −
22. e e e n − − −

Module for the subtraction removes requested object from the environment.
(4) Balance-wheel module (uses 1 agent):
P1 :
1 : 〈e→ d〉
2 : 〈d↔ e〉
3 : 〈d↔ f©〉
The balance-wheel module ”keeps the computation alive”. It inserts the objects

d into the environment until it consumes a special symbol f© from the environ-
ment. This action makes it stop working. The object f© gets into the environment
from the duplicating module which is activated by the simulation of the halt in-
struction by the control module.

(5) Control module (uses 2 agents):
a) initialization:
P1 :
1 : 〈e→ l0〉
First agent in this module generates label of the first instruction of the register

machine.
b) adding instruction l1 : (ADD(r), l2, l3):
P1 : notes
1 : 〈l1 → D1〉 ,
2 : 〈D1 ↔ d〉 , −→ Duplication module
3 : 〈d↔ 1〉 , ←− Duplication module
4 : 〈1→ Br〉 ,

5 : 〈Br ↔ 1©〉 , ←− Duplication module
−→ Addition module

6 : 〈 1©→ l2〉 ,
7 : 〈 1©→ l3〉 ,

88 L. Cienciala, L. Ciencialová, M. Langer

configuration of Π

B1 B2 Env P1 P2

1. l1 e d 1 −
2. D1 e d 2 −
3. d e D1 − −

waiting for response of duplication unit
13. d e 1 3 −
14. 1 e d 1© 4 −
15. Br e d 1© 5 −
16. 1© e Br 6 or 7 −
17. l2 e d − −

c) subtracting instruction l1 : (SUB(r), l2, l3):
P1 : notes P2 :
1 : 〈l1 → D1〉 , 16 : 〈e↔ L1〉 ,
2 : 〈D1 ↔ d〉 , −→ Duplication module 17 :

〈
L1 → L1

〉
,

3 : 〈d↔ 1〉 , ←− Duplication module 18 :
〈

L1 ↔ e
〉
,

4 : 〈1→ Sr〉 , 19 : 〈e↔ L′1〉 ,

5 : 〈Sr ↔ 1©〉 , ←− Duplication module
−→ Subtraction module 20 : 〈 e↔ L′′1〉 ,

6 : 〈 1©→ L1〉 , 21 : 〈L′1 → l2〉 ,
7 : 〈L1 ↔ y〉 , ←− Subtraction module 22 : 〈L′′1 → l3〉 ,
8 : 〈L1 ↔ n〉 , ←− Subtraction module 23 : 〈l2 ↔ e〉 ,
9 : 〈y → L′1〉 , 24 : 〈l3 ↔ e〉 ,
10 : 〈n→ L′′1〉 ,
11 :

〈
L′1 ↔ L1

〉
,

12 :
〈
L′′1 ↔ L1

〉
,

13 :
〈

L1 → d
〉
,

14 : 〈d↔ l2〉 ,
15 : 〈d↔ l3〉 ,

configuration of Π

B1 B2 Env P1 P2

1. l1 e d 1 −
2. D1 e d 2 −
3. d e D1 − −

waiting for response of duplication module
13. d e 1 3 −
14. 1 e d 1© 4 −
15. Sr e d 1© 5 −
16. 1© e Sr 6 −
17. L1 e d − −

waiting for response of subtraction module

P Colonies of Capacity One and Modularity 89

If subtraction module generates y
configuration of Π

B1 B2 Env P1 P2

49. L1 e y 7 −
50. y e L1 9 16
51. L′1 L1 − 17
52. L′1 L1 − 18
53. L′1 e L1 11 −
54. L1 e L′1 13 19
55. d L′1 − 21
56. d l2 − 23
57. d e l2 14 −
58. l2 e d − −

If subtraction module generates n
configuration of Π

B1 B2 Env P1 P2

48. L1 e n 8 −
49. n e L1 10 16
50. L′′1 L1 − 17
51. L′′1 L1 − 18
52. L′′1 e L1 12 −
53. L1 e L′′1 13 20
54. d L′′1 − 22
55. d l3 − 24
56. d e l3 15 −
57. l3 e d − −

d) halting instruction lh:
P1 :
1 : 〈lf → Df 〉
2 : 〈Df ↔ d〉 −→ Duplication module
3 : 〈d↔ f〉 ←− Duplication module
Control module controls all the computation. It sends necessary objects into

the environment for the work of the other modules.
The P colony Π correctly simulates any computation of the register machine

M . ut

5 Conclusion

We have proved that the P colonies with capacity k = 2 and without checking
programs with height at most 2 are computationally complete. In Section 3 we
have shown that the P colonies with capacity k = 1 and with checking/evolution
programs and 4 agents are computationally complete.

90 L. Cienciala, L. Ciencialová, M. Langer

We have also verified that partially blind register machines can be simulated
by P colonies with capacity k = 1 without checking programs with two agents.
The generative power of NPCOLparK(1, n, ∗) for n = 2, 3 remains open.

In Section 4 we have studied P colonies with capacity k = 2 without checking
programs. Two agents guarantee the computational completeness in this case.

Remark 1. This work has been supported by the Grant Agency of the Czech Re-
public grants No. 201/06/0567 and SGS/5/2010.

References

1. Ciencialová, L., Cienciala, L.: Variations on the theme: P Colonies, Proceedings of the
1st International workshop WFM’06 (Kolář, D., Meduna, A., eds.), Ostrava, 2006, pp.
27–34.

2. Ciencialová, L. Cienciala, L., Kelemenová, A.: On the number of agents in P colonies,
In G. Eleftherakis, P. Kefalas, and G. Paun (eds.), Proceedings of the 8th Workshop
on Membrane Computing (WMC’07), June 25-28, Thessaloniki, Greece, 2007, pp. 227–
242.

3. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in en-
vironment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006, pp.
201–215.

4. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P Colonies with a bounded number
of cells and programs. Pre-Proceedings of the 7th Workshop on Membrane Computing
(H. J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), Leiden, The Netherlands, 2006,
pp. 311–322.

5. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the se-
quential mode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005,
pp. 49–56.

6. Greibach, S. A.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7(1), 1978, pp. 311–324.

7. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of compu-
tation. Proc. of the 6th International Symposium of Hungarian Researchers on Com-
putational Intelligence, Budapest TECH, Hungary, 2005, pp. 40–56.

8. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically in-
spired computing model. Workshop and Tutorial Proceedings, Ninth International Con-
ference on the Simulation and Synthesis of Living Systems, ALIFE IX (M. Bedau at
al., eds.) Boston, Mass., 2004, pp. 82–86.

9. Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-wood
Cliffs, NJ, 1967.

10. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61, 2000, pp. 108–143.

11. Păun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
12. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2009.
13. P systems web page: http://psystems.disco.unimib.it

