
P Systems with Replicator Dynamics: A Proposal

Matteo Cavaliere1, Miguel A. Gutiérrez-Naranjo2

1 Spanish National Biotechnology Centre
(CNB-CSIC), Madrid 28049, Spain
mcavaliere@cnb.csic.es

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es

Summary. This short note proposes some ideas for considering evolutionary game the-
ory in the area of membrane computing.

1 Introduction

Evolutionary game theory is a field started by J. Maynard Smith [4] with the
aim of modelling the evolution of animal behavior by using game theory. Repli-
cator dynamics [2] is a specific type of evolutionary dynamics where individuals,
called replicators, exist in several different types. Each type of individual uses
a pre-programmed strategy and passes this behavior to its descendants without
modification. Replicator dynamics is one of the is one of most used approach to
define the evolutionary dynamics of a population.

The main idea of the mechanism the following one. One assumes a population of
players (individuals/organisms) interacting in a game composed by several possible
strategies. Individuals have fixed strategies. The players randomly interact with
other individuals (if space is considered, then the interactions are done according
to the defined structure). Each of these encounters produces a payoff for the two
individuals that depend on their strategies and on the payoff matrix that defines
the game. The payoff of all these encounters are added up. Payoff is interpreted as
fitness (reproductive success). Strategies that do well reproduce faster. Strategies
that do poorly are outcompeted.

In this note we propose the possibilities of consider replicator dynamics in the
framework of Membrane Computing (P Systems), [3].

We imagine two possibilities. The first one is using replication dynamics as
“evolution” rules of a membrane system. A second possibility consists in “simu-
lating” replication dynamics by using the tools and the notions provided by the
membrane computing paradigms.

64 M. Cavaliere, M.A. Gutiérrez-Naranjo

We believe that both possibilities could be sources of new kinds of problems
for the area.

2 Using Replicator Dynamics in P Systems

As a simple example of replication dynamics let us consider the following payoff
matrix of a well-known game, the prisoner’s dilemma, [2].

cooperate defect
cooperate 4, 4 1, 5

defect 5, 1 2, 2

This is read in the following way. When a cooperator meets another cooperator,
they both gets 4. If a cooperator meets a defector, the cooperator gets 1 and the
defector 5. If two defectors meet, they both gets 2. If we have a population of
n individuals, k of them being cooperators (symbol c) and n − k being defectors
(symbol d) then the population is updated in the following manner (one step of
the evolutionary dynamics).

Each object c receives a payoff that is the sum of all the payoffs obtained by
considering the meetings with all other players. In this case the payoff accumulated
by each single c is: 4(k − 1) + 1(n − k). In the same manner, each d receives
2(n − k − 1) + 5k. The replication dynamics impose that each object (c or d)
replicates (produce off-springs) with a rate function of the obtained payoff (in
other words, the payoff is interpreted as fitness, [4]).

The simplest approach could then assume that each object c divides in 4(k −
1) + 1(n− k) copies (off-springs), while each d divides in 2(n− k− 1) + 5k copies.
This means that each c produces 4(k−1)+1(n−k) copies of c and each d produces
2(n− k − 1) + 5k copies of d.

Moreover, one can also assume that, at each step, a certain number of objects is
removed from the population. The simplest scenario is to assume a death/removal
rate that indicates the number of objects (constant) removed at each step. In a
more complex scenario, the removal, as the replication, could depend on the accu-
mulated payoff (e.g., the players with worst fitness are removed). Many variants
have been considered [2].

In P systems, there is the notion of compartment that has been shown to be
relevant for the evolutionary dynamics of a population [2]. In this respect, there
are many examples that show that the evolutionary dynamics can be very different
when observed in structured populations and in homogeneous populations (e.g.,
[2]). One could then consider a P system where the objects in the compartments
represent the individuals (players) of a population. Each object indicates (is asso-
ciated to) the strategy of a certain chosen game (for instance, in the case of the
prisoner’s dilemma (PD), we have objects c and d).

The population (e.g, a multiset over the alphabet c and d in the PD game)
evolves, in parallel, in the compartments, according to the replicator dynamics.

P Systems with Replicator Dynamics: A Proposal 65

Specifically, the payoff matrix is used to calculate the payoff for each individual
object (as described above), by considering all other objects present in the same
compartment. Then, based on these obtained payoffs, one decides which objects
to replicate and which objects to remove. For instance, this could be done us-
ing thresholds (e.g., if payoff > ..then replicates, if payoff < ..then the object is
removed). Each object is then replicated (e.g., a c creates more copies of c, a d
creates more copies of d) or is removed based on such threshold and on its obtained
payoff. Target indications could be used to move the created objects across com-
partments. The number of objects in a certain compartment could be naturally
interpreted as output produced. However, the programmability of such device re-
mains an open issue. In fact, notice that, differently from standard P systems, the
rules here cannot be programmed – they are “naturally” assigned by the evolu-
tionary dynamics.

3 Simulating Replicator Dynamics

The second possibility is to program the replication dynamics using the tools
available in the membrane computing area. The task is non-trivial, in particular
to implement the payoff-based replication that is naturally present in the replicator
dynamics.

We propose a first solution where any individual produces a new set of individ-
uals identical to the original, at each time unit according to a discrete global clock.
The number of off-spring depends on the number of encounters with defectors and
cooperators and their corresponding payoffs.

We suggest a family of P systems for dealing with prisoner’s dilemmas in its
most general form (however, the approach proposed here can be generalized to
different games). The family of P systems considers the following initial situation:
A population of n individuals, k of them being cooperators (c) and n − k being
defectors (d). Let us consider four non negative integers R, S, T and P and the
following general payoff matrix for the prisoner’s dilemma.

cooperate defect
cooperate R,R S,T

defect T ,S P ,P

As standard in the area, [2], we use the terms R, reward, P, punishment, T,
temptation and S, sucker’s payoff. Hence, the 4-uple PD ≡ 〈R, S, T, P 〉 can encode
the game.

We assume the simplest replication mechanism where each individual c or d is
substituted in the next stage (by using mitosis or whatever replication mode) by
as many objects of the same type as its payoff. In other words, if cn and dn is the
number of individuals of type c and d in the stage n, then

66 M. Cavaliere, M.A. Gutiérrez-Naranjo

c0 = k
d0 = n− k

cn+1 = R (cn − 1) + S dn

dn+1 = T cn + P (dn − 1)

In the membrane computing framework one can consider rules of type c → cα

and d → dβ . This reproduces the idea of replication of the original individuals.
The drawback is, of course, than α and β depends on the number of individuals
of the current configuration. This idea leads us to consider a set of rules c → cα1 ,
c → cα2 , c → cα3 , . . . , but even in case of having an oracle which decides the right
rule in each configuration, we will need a potentially infinite amount of rules.

We propose an alternative solution that uses a P systems family (a P system
for each 4-uple 〈R,S, T, P 〉 in the framework of P systems with active membranes,
[3], that computes {cn, dn}n∈N). The proposed systems have been checked with
the SCPS simulator [1]. As usual in this P system model, each membrane can be
crossed out by a unique object (at most) in each computation step. This feature
will be used to control the flow of objects between regions.

Given a 4-uple PD ≡ 〈R, S, T, P 〉 encoding a prisoner’s dilemma, let us consider
the following P system

ΠPD = 〈Γ, H, EC, µ, we, ws, R〉

where

• The alphabet of objects is Γ = {c, c∗, ca, c1, c2, c3, d, d∗, da, d1, d2, d3, z, z1, z2, z3, z4};
• H = {e, s} is the set of labels;
• EC = {q0, q1, q2, q3, q4, qc, qd, qcc, qdd} is the set of electrical charges;
• the membrane structure has only two membranes, the skin with label s an an

elementary membrane with label e, µ = [[]q0e]q0s ;
• the initial multisets are we = z and ws = ∅. We also consider as input, the

population of objects ck and dn−k. They will be placed in membrane e in the
initial configuration.

We will also consider the following sets of rules

R1 ≡ [z]q0e → [z1]q1e [z1]q2e

R2 ≡ [z1 → λ]q1e

R3 ≡ [z1 → λ]q2e

R4 ≡ [c]q1e → c []q3e

R5 ≡ [d]q1e → d []q3e

In the initial configuration we have only one membrane e with the population
of objects c and d and one extra object z. This extra object z produces the division
(R1) of the membrane. We have two copies of the population: one with charge q1
and the second one with charge q2.

The main idea is that all the objects in the membrane e with charge q1 will pass
sequentially to membrane with charge q2. In this second membrane the payoffs will

P Systems with Replicator Dynamics: A Proposal 67

be computed. The charges will be used as traffic-lights in order to control the flow
of objects.

R6 ≡ c []q2e → [c1]qc
e

R7 ≡ d []q2e → [d1]qd
e

R8 ≡ [c]qc
e → z4 []qcc

e

R9 ≡ [d]qd
e → z4 []qdd

e

When an object c or d arrives to the membrane with label q2 with R6 or R7,
the calculation of the payoff starts. Since an individual does not meet itself in
order to get a payoff, an object c or d is sent out of the membrane (R8 or R9).

R10 ≡ [c1 → c2c3]qc
e

R11 ≡ [d1 → d2d3]qd
e

R12 ≡ [z4 → λ]q0s

These rules R10 − R12 are technical rules in order to adjust the proposed
P system to the model of active membranes, where rules c []q2e → [c2c3]qc

e or
[c]qc

e → λ []qcc
e are not allowed. The computation of the payoff is performed by the

following rules:

R13 ≡ [c → cR
∗ c]qcc

e

R14 ≡ [d → cS
∗ d]qcc

e

R15 ≡ [c → dT
∗ c]qdd

e

R16 ≡ [d → dP
∗ d]qdd

e

The charge qcc can be interpreted as the visit of an individual c. The objects
c in the membrane produce R copies of c∗ and all the objects d produce S copies
of d∗. Analogously, the charge qdd can be interpreted as the visit of an individual
d. In this case, the objects c in the membrane produce T copies of c∗ and all the
objects d produce P copies of d∗.

The path to complete the cycle and to start again begins with the following
rules. An object z2 is sent to the first membrane labeled with e in order to get a
new individual for the calculation of the payoff.

R17 ≡ [c2]qcc
e → z2 []q2e

R18 ≡ [d2]qdd
e → z2 []q2e

R19 ≡ z2 []q3e → [z2]q1e

The object c or d sent out by the rule R8 or R9 is placed again on the corre-
sponding membrane by rule R20 or R21.

R20 ≡ [c3 → c]q2e

R21 ≡ [d3 → d]q2e

68 M. Cavaliere, M.A. Gutiérrez-Naranjo

Sending z2 into the corresponding membrane opens the traffic light by changing
the charge to q1. The cycle starts again and rules R4 and R5 can be triggered again,
if any object c or d remains in the membrane. In order to control the behavior
of the membrane when all the objects c and d have been sent out, we add some
technical rules.

R22 ≡ [z2 → z3]q1e

R23 ≡ [z3 → λ]q3e

If z3 appears in a membrane, it means that all objects c or d have been sent
out in previous steps. In this case, the membrane can be dissolved and the cycle
of computing the payoffs is completed.

R24 ≡ [z3]q1e → z3

R25 ≡ z3 []q2e → [z3]q4e

When an object z3 goes into the membrane with label e, the old objects c and
d are removed and the objects c∗ and d∗ become the new population.

R26 ≡ [c∗ → ca]q4e

R27 ≡ [d∗ → da]q4e

R28 ≡ [z3 → z z4]q4e

R29 ≡ [ca → c]q4e

R30 ≡ [da → d]q4e

R31 ≡ [c → λ]q4e

R32 ≡ [d → λ]q4e

Finally, we change the charge of the membrane e and a new stage can start

R33 ≡ [z4]q4e → z4 []q0e

3.1 Overview of the Computation

The main idea of the design is to consider two copies of the population. The first
copy (which acts as a counter) sends individuals to the second one: when all the
objects have been sent, the computation of all payoffs is completed and we finish
a cycle. In the second copy, the payoffs are computed and stored. For each object,
the P system takes five computational steps in order to calculate its payoff.

We start with the initial configuration C0 = [[zckdn−k]q0e]q0s . Initially,
the two copies of the population are created by applying the rule R1, C1 =
[[z1c

kdn−k]q1e [z1c
kdn−k]q2e]q0s . The first new membrane, with label q1 will send

objects to the second one with label q2. At this moment, rules R4 and R5 can be
non-deterministically applied, but, due to the semantics of active membranes, only
one of them is chosen. Let us suppose that R3 is taken (the other case is analo-
gous) and we reach C2 = [[ck−1dn−k]q3e [ckdn−k]q2e c]q0s . Notice that the label in

P Systems with Replicator Dynamics: A Proposal 69

the first membrane has been changed to q3. Intuitively, this membrane is closed
till the arrival of the object z2 at step 6. Objects z1 are removed.

In the next step, the object c in the skin is sent as c1 into the second elemen-
tary membrane and changes the polarization, C3 = [[ck−1dn−k]q3e [ckdn−kc1]qc

e]q0s .
The process of computing the payoff of this object c1 starts: c1 is replaced
by c2c3 and one object c is sent to the skin, changing again the polariza-
tion, C4 = [[ck−1dn−k]q3e [ck−1dn−kc2c3]qcc

e z4]q0s . The computation of the pay-
off is made now by application in parallel of the rules R13 and R14. In or-
der to avoid that this rule can be applied in the next step, the object c2 is
sent out (as z2) and the polarization changes again. According to R13 and
R14, R objects c∗ are produced for each c and S objects c∗ for each d, C5 =
[[ck−1dn−k]q3e [ck−1dn−kc3c

R(k−1)+S(n−k)
∗]q2e z2]q0s . Finally, c3 goes to c in the sec-

ond elementary membrane and z2 goes into the first one, changes the polarization
and opens the membrane, C6 = [[ck−1dn−kz2]q1e [ckdn−kc

R(k−1)+S(n−k)
∗]q2e z2]q0s .

Notice that we have again two membranes, one of them with charge q1 and the
other one with charge q2 as in the configuration C1. In the next steps the process
goes on by sending all the objects from the first membrane to the second one,
where the payoffs will be stored.

After 5n + 1 steps we arrive at the configuration

C5n+1 = [[z2]q1e [ckdn−kc
k(R(k−1)+S(n−k))
∗ d

(n−k)(Tk+P (n−k−1))
∗]q2e]q0s

No more objects are left in the first membrane. In C5n+2 we have an object z3

inside a membrane with label e and charge q1. In the next step, the rule r24 is
applied and the membrane is dissolved,

C5n+3 = [[ckdn−kc
k(R(k−1)+S(n−k))
∗ d

(n−k)(Tk+P (n−k−1))
∗]q2e z3]q0s

The object z3 goes into the elementary membrane and changes the polarization to
q4,

C5n+4 = [[ckdn−kc
k(R(k−1)+S(n−k))
∗ d

(n−k)(Tk+P (n−k−1))
∗ z3]q4e]q0s

This new polarization produces the updating of the payoff to a new population in
two steps, so

C5n+6 = [[ck(R(k−1)+S(n−k))d(n−k)(Tk+P (n−k−1))]q4e z4]q0s

which is analogous to the configuration C0, so a new stage starts (the object z4

disappears in the next step by using the rule R12).

4 Conclusions and Future Work

Replicator dynamics in one of most used mechanisms in evolutionary game theory.
In this context, several papers have shown the relevance of compartments and
structures. On the other hand, membrane computing explicitly investigates the

70 M. Cavaliere, M.A. Gutiérrez-Naranjo

relevances of compartments for computation. A natural possibility, proposed in
this note, is to bridge these two areas. We have sketched two possibilities. The
first one consists in using rules inspired from the replicator dynamics. A second
one consists in programming the replicator dynamics using the tools of membrane
computing. In this case, we have presented a possible solution using membrane
systems with active membranes. However several other solutions can be imagined,
in particular replacing the cell-like membrane structure by a tissue-like structure
could allow a simpler version of the simulations.

Acknowledgments

MAGN acknowledges the support of the projects TIN-2009-13192 of the Ministerio
de Ciencia e Innovación of Spain and the support of the Project of Excellence of
the Junta de Andalućıa, grant P08-TIC-04200. M. C. acknowledges the support of
the program JAEDoc15 (”Programa junta para la ampliacion de estudios”) and
of the Research Group on Natural Computing of the University of Sevilla.

References

1. Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: A simulator for con-
fluent P systems. In: Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero,
F.J., Sburlan, D. (eds.) Third Brainstorming Week on Membrane Computing. pp.
169–184. Fénix Editora, Sevilla, Spain (2005)

2. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge
University Press (Jun 1998)

3. Păun Gh., Rozenberg G., Salomaa A. Eds.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, 2010.

4. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, 1st
edition edn. (Dec 1982)

