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On the bivariate Sarmanov distribution and
copula. An application on insurance data using
truncated marginal distributions

Zuhair Bahraoui!, Catalina Bolancé!, Elena Pelican? and Raluca Vernic?

Abstract

The Sarmanov family of distributions can provide a good model for bivariate random variables
and it is used to model dependency in a multivariate setting with given marginals. In this
paper, we focus our attention on the bivariate Sarmanov distribution and copula with different
truncated extreme value marginal distributions. We compare a global estimation method based
on maximizing the full log-likelihood function with the estimation based on maximizing the pseudo-
log-likelihood function for copula (or partial estimation). Our aim is to estimate two statistics that
can be used to evaluate the risk of the sum exceeding a given value. Numerical results using a
real data set from the motor insurance sector are presented.
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1. Introduction

Modelling bivariate variables that represent economic losses is not a straightforward
task. To analyse such data, the usual approach involves fitting univariate distributions to
both marginals and then considering the corresponding theoretical bivariate distribution
for the entire data set. However, this procedure might not be successful if the marginals
present different distribution types or if the dependency structure of the theoretical
bivariate distribution is inappropriate for the real data. Furthermore, given the shape
of the likelihood function or moments, estimating the parameters can be challenging.
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On the other hand, when the marginals follow extreme value distributions, in some
cases we have infinite moments. In an economic context, this means that the loss amount
is unlimited. However, in practice, this is an unrealistic scenario.

In this paper, we limit ourselves to the Sarmanov family of distributions, originally
introduced in its bivariate form by Sarmanov (1966) to join given marginals. This dis-
tribution has also been proposed in a more general form in the field of physics by cohen
(1984), its multivariate version was suggested by Lee (1996) and generalised further by
Bairamov et al. (2001) and Bairamov et al. (2011). Recently, the Sarmanov distribution
has attracted interest in other fields (see, for example, Danaher, 2007; Gémez-Déniz
and Pérez-Rodriguez, 2015), including finance and insurance. Thus, Herndndez-Bastida
et al. (2009) and Herndndez-Bastida and Ferndndez-Sanchez (2013) used the bivariate
Sarmanov distribution for evaluating premiums in insurance compound models, while
further applications related to the theory of ruin were presented by Yang and Hashorva
(2013). Furthermore, Hashorva and Ratovomirija (2015) have analysed the Sarmanov
distribution with mixed Erlang marginal distributions and have used it for capital allo-
cation. In general, this family of distributions is useful for analysing multivariate loss
data, whose marginal distributions may be of the extreme value type or may present very
different behaviours. We propose a global estimation (GE) method for the parameters of
the Sarmanov distribution with right truncated extreme value marginal distributions.

The bivariate Sarmanov copula is derived from the bivariate Sarmanov distribution
and can be a good, quite simple alternative for representing dependency. A copula
is a function that relates a bivariate distribution function to its univariate marginal
distribution functions, thus allowing the structure of dependence between variables to
be fitted separately from the marginal distributions. Specifically, we focus our attention
on the bivariate Sarmanov distribution and copula with different log-types of truncated
marginal distributions: truncated log-normal, mixture of truncated log-normals and
truncated log-logistic. The proposed models may be useful for measuring the risk of
loss.

When analising data that represent univariate losses, the univariate distribution that
generates the observations is often an extreme value distribution and, therefore, the
mean or variance (first or second moment) of the corresponding random variable can
be infinite. In finance and insurance, for quantifying the risk it is useful to assume a
finite value for the first two moments of the distribution, leading to the right truncation
of the distribution of the random variable analised, which was the procedure adopted in
this paper. Furthermore, we use a bivariate Sarmanov distribution that requires marginal
distributions with finite first moment.

Using a real data set from the motor insurance sector, we compare the estimated risk
of loss evaluated for the bivariate Sarmanov distribution with truncated extreme value
marginal distributions whose parameters result by the GE method, with the estimation
of the same risk obtained after Monte Carlo simulation from the corresponding copula
(as examples of fitting alternative copulas and marginals on this data set see, Bolancé et
al., 2014; Bahraoui et al., 2014).
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The paper is structured as follows: in Section 2 we present two truncated log-normal-
type univariate distributions, plus the heavier-tailed truncated log-logistic (Champer-
nowne) distribution, for which we also obtained the first and second moments. In Sec-
tion 3 we introduce the bivariate Sarmanov distribution and its copula representation,
and discuss the parameters estimation. Some comments on the evaluation of two statis-
tics that are used to quantify the risk of loss (Value at Risk - VaR and Tail Value at Risk
- TVaR) are presented in Section 4. Finally, in Section 5 we present the results of the
proposed fits and risk estimations. Section 6 concludes.

2. Some univariate truncated distributions

We begin by introducing some notations and some univariate truncated distributions to
be used as marginals for the bivariate Sarmanov distribution and copula in Section 3.

Let X = (X;,X;) be a bivariate random vector that represents two dependent losses.
The random variable (r.v.) S = X; 4+ X} is the total loss and we are interested in measuring
the risk associated with the distribution of S; for this, we need to consider both the joint
distribution of X and the marginal distributions of X;,X,.

In this section, we analise the probability distribution function (pdf), the cumulative
distribution function (cdf) and the first two moments of three distributions that can be
useful to model losses: the truncated log-normal, the mixture of two truncated log-
normals and the truncated log-logistic, also known as the Champernowne distribution;
we let m and M be the truncation points' on the left and right side, respectively.

2.1. Truncated log-normal distributions

Let ¢ (-) and ®(-) denote the pdf and the cdf, respectively, of the standard normal
N (0,1) distribution. To denote the pdf of the general normal N (,u,az) ,WMweER o >0

distribution, we use the same symbol ¢ emphasizing the parameters, i.e. @ (x; U, 02) =
_-w? e
I_e” 202 ,x €R. The truncated normal distribution TN (u,0%;m,M) ,u €R,0 > 0,
oy2n . K
with truncation points m < M, has the pdf

¢ (x;u,07%) 1 _Gmw)?
xX) = = e 202 ,m S X S M7
frv () D(A)—P(a) (P(A)—DP(a))oV2m
where A = @,a = mTf“ Its expected value and variance are given respectively, by

(see, for example, Kotz et al.,2000)

1. In our numerical application we assume m = 0.
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o e@-e) o, [, ap@-AvA) [e@-v@A)\*) ,
S TPV YA ‘(” S~ (sae) )"'

We recall that a random variable (r.v.) X follows a log-normal distribution LN (u,0?)
if InX ~ N(,u,az) , having hence the pdf fx (x) = %Lp (lnx;,u,(72) and cdf fx (x) =

o (1“_“) ,x > 0. Moreover, we say that X follows a truncated log-normal distribution

g
TLN (u,0%;m,M) with truncation points 0 < m < M, if InX ~ TN (u,0%;Inm,InM);

nx 2
hence, its pdf is fx (x) = %%, where B = I“Aé*“,b — 1“"(";“_

Proposition 1 If X ~ TLN (,u, Uz;m,M) ,0 <m < M, its first two moments are given
by

whereC=B—o,c=b—0o,D=B—-20,d=b—-20.

Proof Changing variable y = Inx, we obtain

My (Inxu,0?) Mg (yu,0%) e
E= [ @ -0® % S 5-5H”

e,quU—zz InM ) )
CIGEI0! /lnm ¢ (y;u+o0?,0%)dy,

which immediately yields the stated formula of E [X]. The formula of E [X 2] results in
a similar way. ]

2.2. Mixtures of two truncated log-normal distributions

Consider two truncated normal distributions TN (u;, 0?;m,M),u; € R,0; > 0,i = 1,2,
having the same truncation points m < M. Then, denoting their mixture by
TNyt (U1, 142,07,03,r,m,M) ,r € (0,1), its pdf has the form

¢ (x;02,03)

D (Ay) —P(az)’

. 2
i () = r 2T

m<x<M,
D (A)) —P(ay) T

M—u; —u; . ..
where A; = Ui“’ ,ap = mai‘" ,i=1,2, and r is the mixing parameter.
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Similarly, we say that the r.v. X follows a mixture of two truncated log-normal
distributions 7 LN,y (1, U2,07,03,r;m,M) ,m > 0, if its pdf is

¢ (Inx;pp,07)

'4 (lnx;uzﬂﬁ)
(@ (B1) —® (b)) se=M

(@(By)—@(b)) "

JTLN i (x) = rx +(1—7) -

with B; = I”Azlf“”,bi = ]”"g“” ,i=1,2.Inthis case,InX ~ TNy, (1, 12,01,03,r;m',M'),
where m' = Inm,M' = InM.

To obtain the moments of the above mixtures of truncated distributions, we note that
the pdf of such a mixture of distributions is of the form f (x) = rfi (x) + (1 —r) f2 (x),
where f; and f, are themselves pdf’s. If we denote by X; a r.v. having pdf f; and by X a
r.v. with pdf f, then the first two moments of the mixed distribution results as

EX]=rEX\|+(1—r)E[X), E[X*] =rE [X] + (1 —1r)E [X3],
from where a straightforward calculation yields the variance
Var[X| = rVar[X,|+ (1 = r)Var[Xi|+r(1=r)(E[X|] —E [Xz])z.

Using these formulas, the first moments of the TN, and TLN,,;,, distributions are
immediate.

Moreover, we also note that fitting a truncated log-normal distribution or a mixture
of two truncated log-normal distributions to a data set, is the same as fitting a truncated
normal distribution or, correspondingly, a mixture of two truncated normal distributions
to the log-data set.

2.3. Champernowne (log-logistic) distribution

Introduced by Champernowne in 1952 (see, Champernowne, 1952), the log-logistic
distribution is the distribution of a r.v. whose logarithm follows a logistic distribution.
In economics, where it is also known as the Fisk distribution (see, Fisk, 1961), it is used
to model the distribution of wealth or income. Its shape is similar to the log-normal
distribution, but it has heavier tails; moreover, as an asymptotic behaviour, it converges
towards a Pareto distribution in the tail (see, Buch-Larsen et al., 2005). Denoted by
Ch(a,H),a,H > 0, its pdf is defined by

aHaxafl

fen (x) = m,

>0,
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. . -1 .
having cdf F¢y, (x) = xai%,x >0, expected value % (sm g) , for a > 1, and variance
2, . -1 -1 . -1 .
”aiz (sm g) ((cos g) -7 (smg) ), for a > 2. Note that H is a scale parameter

and the median of the distribution, while a is a shape parameter.
We also consider the truncated form TCh(a,H;M) ,a, H,M > 0, having pdf*

" " H a xafl
fren(x) = a(M* +H )<M) m,ogng. (1)

Its moments do not have a closed form, but they can be expressed in terms of the
hypergeometric function ,F defined for |z| < 1 by the following integral or power series

1 b) /O]tbl (1 *I)C*b*] (1 *l‘Z)iadt _ i Mg’

2F (Cl,b;c;z) i ———
B(b,c— k=0 (C)k

where

I, k=0
(q)k={ St D) (g k1) k>0 € EO-T=20 ),

and B (a,b) = [} 1*' (1 —1)"""dt is the Beta function.

Proposition 2 Letting X ~ TCh(a,H; M), its first two moments are given by

aM M\ 2 1 1 M\“
- 2 (- (4 ) s aoan k() o
aM?

M\ 2 2 M\
+2<1+<E) )2F1 <2,1+a;2+a;<ﬁ) ) (3)

Proof We evaluate the expected value of X by changing variable x = My'/® in

E[X] = a(M® +H%) <%>a/oMﬁdx

@ . 1/a)® 1/a—1
= a(M®+ H") <£> / (My'%)  my*
M Jo((Myt/e)® + 1™ @

E[X*] =

Q

2. Since in our application we assume m = 0, for the sake of simplicity, we only present the properties for M > 0.
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=M l—i-MaBl—i-ll F 21+1'2+1‘ M
- H a7 2147 ) a, a, H )

with the last relation resulting from the definition of the function ,F;. Note that

1 r(1+4Hra 1
a r(2+3) 1+1  1+4a

where I'(a) = [;”x*"'e *dx denotes the Gamma function. Inserting this result into the
last expression of E [X] immediately yields formula (2). Formula (3) results in a similar
way. ]

3. Bivariate Sarmanov distribution

3.1. The general distribution

We say that the random vector X = (X;,X;) follows a bivariate Sarmanov’s distribution
if its joint pdf is given by (see, Kotz et al., 2000).

Jx (x1,x2) = fi (x1) f2 (x2) (1 + wopy (x1) P2 (x2)) 4)

where (f;);_ , are the corresponding marginal pdf’s, (¢;),_, , are bounded non-constant
kernel functions and w is a real number such that

/°° @i (x;) fi (x;)dx; =0, i=1,2, and (5)
1+ wo (x1) 2 (x2) >0, forall (x1,x;) € R?. (6)

If we denote v; = [* x¢;(x) fi (x)dx, i = 1,2, then the covariance and correlation
coefficient are given, respectively, by
Ccov (X] ,Xz) = w7172,

wV1 V2

\/Var [X,|Var [Xz]'

corr (X1,X;) = @)
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Note that when w=0, X; and X, are independent. As to the choice of the kernel functions
¢;, some particular cases satisfying (5) have already been discussed in the literature (see,
Lee, 1996), from which we recall:

e ¢, =1 —2F;, where F; is the cdf of X;. In this case, the Sarmanov distribution is
known as the Farlie-Gumbel-Morgenstern distribution (see Farlie, 1960), verifying
the restrictive condition that the correlation coefficient corr (X;,X;) cannot exceed
1/3 in absolute value. However, in general, the Sarmanov distribution is not
restricted by such a condition (see, for example, Shubina and Lee, 2004).

e pi(x) =e*—E [e*“Xi] (we say no more about this form as it did not provide a
good fit to our data).

* ¢i(x) = x* — E[X?], assuming that E [X?] < 0. In this case, v; = E [X*"'] —
E [X*|E[X]], if it is finite.

Given its simplicity and better fit for our data, in our study we consider ¢; (x) =
x* — E[X] with a = 1, yielding from (7) the correlation

COI‘I'(Xl,Xz) = W/ Var [X]] Var [Xz] (8)

Therefore, assuming that E [X;] < o, in the following we limit ourselves to the pdf
form

x(x1,x2) = fi(x1) fa(x2) (1 + o (x1 —E[X1]) (22 — E[X2])) )

that requires the existence of a finite first moment for both marginals. In this case,
condition (6) obviously restricts the domain of fx. For simplicity, we preferred to work
with truncated marginals, which meant imposing restrictions on the coefficient w. More
precisely, if the support of X; is [m;,M;],i = 1,2, then condition (6) yields / < w < u,
where

—1 —1
l‘“"“"{wl—E[Xﬂ)(Mz—E[xz])’<m1—E[x1]><mz—E[xz]>}’ {10

. —1 —1
”:"““{<M1E[X1]><sz[xz1>’<m1E[Xﬂ)(MzE[XzD}' (n

Because of the restriction imposed by condition (6), we used marginal distributions
with bounded support. Therefore, we considered the truncated distributions presented in
Section 2, their choice being driven by the real data to be studied in Section 5.
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3.2. Copula representation and simulation

A copula can be defined as a multivariate cdf with standard uniform [0, 1] marginals.
Then the cdf of a random vector X = (X, ..., X,,) can be written in terms of its marginal
cdf’s using a copula function C : [0,1]" — [0,1], as follows Fx (x) = C (Fi (x1),...,
F (x,)); for details on copulas see Nelsen (2006).

Since the Sarmanov bivariate distribution is defined directly from its marginal
distributions, its cdf can be immediately expressed as Fx (x) = C (F) (x1),F» (x2)) using
the following copula function

Clur, ) = wyr + w/oul ¢1(F1‘1(t))dt/ou2 bo(Fy (5)ds,0 <ur,un <1,  (12)

assuming that Ff] ,Fz’] exist; the corresponding density is

c(ur,ur) = 14+ @1 (F ' (ur)) $a(Fy ' (ua)). (13)

Working with the copula representation of the Sarmanov family of distributions has
some advantages. The copula representation is straightforward and its estimation proce-
dure is simple. Furthermore, this representation enables us to generate pseudo-random
samples from the Sarmanov bivariate distribution. To do this, we first generate values
from the Sarmanov copula (12) using the procedure described in Nelsen (2006), which
is based on the conditional distribution of a random vector (U}, U, ) having uniform [0, 1]
marginals and cdf C, i.e., on C,, (u2) = Pr(U, < us|U; = u;). Note that

CL[ (Mz) — lim C(ul +AM1>M2) *C(Ml,uz) _ ac(ul’u2) ‘
! Au|%0+ Aul aul

The corresponding algorithm is implemented as follows:

1. Generate two independent random values u; and z from the uniform U(0,1)
distribution.

2. Setu, = Cf,?l)(z), where CL(,:]) denotes a quasi-inverse of C,,. The desired pair
from the Sarmanov copula is (u;,u).

3. Solving now Fj (x1) = u; for x; and F (x,) = u, for x; yields the pseudo-random
pair (x1,x;) simulated from the corresponding bivariate Sarmanov’s distribution.

In our case, assuming that the inverses Fl_1 , F2_1 exist, the partial derivative of (12) is

Cu(12) = -+ o (F (1)) [ (57 (5))ds.
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If, in particular, we take the kernel functions ¢; (z) = z— E [X;] ,i = 1,2, this gives

U

Cuy (2) = tr + &(F ' (1) — E [Xl])/o (Fy ' (s) — E[Xa])ds.

3.3. Estimation of parameters

Let ® denote the parameters set of the Sarmanov distribution. First, we estimate
the parameters using the maximum likelihood (ML) method, that we named global
estimation (GE), based on the random data sample {(x j,xzj)};le consisting of n
couples of observations. For estimating the Sarmanov copula, we use the maximum
pseudo-likelihood method that we named partial estimation (PE).

3.3.1. Global estimation (GE) method

From density (4), the log-likelihood function to be maximized is

L ({(x1,%))}|_:0) = Z Infi (1) +1n > (x2) + In (1 + wy (x1) b2 (x2,))).-

(14)
The parameters to be estimated are w, the parameters of f;, and, eventually, the
parameters of ¢;. Let 6 denote a generic parameter of f;. The corresponding ML system
is

~dInL & (dInfi(xy)) Blnfz (x2; > - !
0="8 _J;< 20 Z 11+ i (x1)) p2 (x2))
" <¢1<xu>a¢§gz’) b2 () 22000 )
&1nL Z”: @1 (x15) 2 (x25)
1+ woy (x1) P2 (x2)

(15)

This system can become quite complex and, therefore, it must be solved using numerical
methods that require starting values for the unknown parameters. Such starting values
readily result from the method of moments (MM); for example, a value for «w can be
obtained from the empirical correlation coefficient, p. For more details on this procedure
see Pelican and Vernic (2013).

Alternatively, instead of solving the ML system, numerical methods can be used to
find the maximum of the log-likelihood function directly. Such an optimization problem
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can be solved using, for example, a variable neighborhood search (VNS) algorithm (see,
Mladenovic and Hansen, 1997).

3.3.2. Partial estimation (PE) method

As discussed above, the GE method can result in cumbersome calculations. For this
reason, we suggest comparing it with the alternative method based on maximizing
the pseudo-log-likelihood corresponding to the copula representation of the Sarmanov
distribution (see, for example, Joe, 1997):

— Using the ML method, we estimate the parameters of the univariate marginal
distributions of X; and X,, starting from the corresponding data samples (x; j)?:]
and (xy;)’_,, respectively.

— To obtain the parameter «w of the copula, we use again the ML method on (14),
after setting the marginal parameters at the values obtained in the previous step.
Note, that it is enough to maximize only the last part of (14), i.e.,

foiIn(1+ we (x17) P2 (x27)), since the rest does not depend on w; in fact, this
is reduced to applying the ML method to the copula density (13).

4. Evaluating the total risk of loss

Evaluating risk measures for aggregate losses is a challenging task. Let S denote an
insurance risk, that is, a non-negative random variable whose cdf is denoted by Fs. A
risk measure is generally formulated as a functional from the space of insurance risks to
[0,00], and its purpose is to provide a single value for the degree of risk associated with
the corresponding risk. Among the common risk measures, the Value-at-Risk (VaR) is
probably the most frequently adopted. To define it, let g € (0,1) denote the confidence
level required by regulations; then

VaR,[S] :=inf{x : Fs(x) > g}.

The Solvency II Accord drawn up by the EU Commission sets g = 0.995 over a one
year time horizon.

When heavy tails occur in risk management (see recent episodes of financial insta-
bility), a risk measure providing information above a given threshold is recommended.
In this respect, the Tail Value-at-Risk (TVaR, also known as the expected shortfall or
conditional tail expectation) measure is defined, for g € (0, 1), as

TVaR,[S) := E[S|S > VaR,[S]).
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TVaR is considered a coherent risk measure, see Artzner et al. (1999). In some countries,
TVaR has already replaced VaR in the regulatory requirements; the current practice is
g = 0.99 over a one year time horizon.

Let now S = X; + X, be the sum of two possibly dependent insurance risks X; and X5.
In this section, our goal is to show how to calculate VaR and TVaR for the risk § when
X = (X;,X;) follows the bivariate Sarmanov distribution. Vernic (2014) has analised a
closed form for the TVaR of the sum of random variables Sarmanov distributed with
exponential marginals. We approach this task in two ways: by direct evaluation and by
simulation based on the Sarmanov copula.

4.1. Direct evaluation

To obtain VaR, we must evaluate the cdf of S and then invert it. Letting fs denote the
pdf of S, its cdf results from

Fs(S):/Osfs(X)dx:/OS/OXfx(x—y,y)dydx

:/OS/lefx(x(lt),xt)dtdx.

Similarly, for TVaR we need

1

E[S|S>sq]:TS(sq)

/wxfs (x)dx

Sq

oo ]
:ﬁ/ /ox2fx(x(1—t),xt)dtdx,
q/ 7Sq

where 5, = VaR,[S]. As there are no closed formulas for these integrals, they have to be
calculated using mathematical software. To do this, we wrote Matlab procedures based
on Simpson’s composite rule for double integrals (see, for example, Bourden and Faires,
2001), paying special attention to the integrals limits since the marginals are truncated.

4.2. Simulation of the Sarmanov copula

Using the Monte Carlo method, the procedure is as follows:

1. We apply the PE method to the data sample {(x;;,x» j)};zl from which we obtain
the estimations of the marginals cdf’s, denoted Fi,i = 1,2, and the estimated
parameter of the Sarmanov copula, @.
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2. Using the algorithm described in Section 3.2, we generate the pseudo-random
sample {(£;,% j)};:l from the bivariate Sarmanov distribution with marginals

F, and Fz, where the sample volume r is large (we used r = 10000).

3. We calculate §; = £; +%2;,j = 1,...,r, and we estimate VaR,[S] and TVaR,[S]

empirically from the generated pseudo-sample (3;)’_,.

5. Numerical study

We used the bivariate Sarmanov distribution and copula to model a random sample
of motor insurance claims consisting of the costs of property damage and medical
expenses, kindly provided by a major insurer in Spain for the year 2000. Since the data
were collected two years later, in 2002, all the claims included in our sample had been
settled. The sample size is n = 518 and for each claim, X; represents the cost of property
damage (including third-part liability), while X, represents the cost of medical expenses
(i.e., treatments and hospitalization as a result of the accident).

Previously, several bivariate distributions were fitted to these data, the best global
fit being provided by the bivariate log-skew-normal distribution with a log-likelihood
value of —7323.50 and AIC = 14663.00 (see, Bolancé et al., 2008). In an attempt to
find a better model, in the numerical part of this paper we fitted the bivariate Sarmanov
distribution with different normal-type marginals to the bivariate log-data set. Note
that if we fit a bivariate Sarmanov distribution with pdf fy to the log-data, then the
distribution corresponding to the original data is the bivariate log-Sarmanov with pdf

1
fx (x1,x2) = — fy (Inxy,Inx;) ,xp, x5 > 0.
X1X2

This implies that the marginal distributions of the original data are the log-distributions
of the corresponding marginals of Y (in our case, they become of log-normal and log-
logistic types).

In the first attempt, we assumed that InX; follows a truncated normal (TN) distri-
bution and we varied the distribution of InX,, but since the best fit was provided by the
mixture of two truncated normal distributions TN,,;; for In X;, we decided not to provide
details of the other distributions and we concentrated only on the best fit. This choice
was also motivated by the fact that when studying separately the marginal distributions
of our data set, we noticed that the normal distribution provided a good fit for In X7, but
unfortunately, this was not the case with In X,, which has a less regular histogram; hence,
we made use of the property of the Sarmanov distribution of joining different marginals.
Alternatively, we also fitted the bivariate Sarmanov distribution with the heavier-tailed
Champernowne marginal distributions to the original data.

In Table 1 we show the descriptive statistics for the original data and for the log-data.
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Table 1: Descriptive statistics.
Mean Std.Dev. Kurtosis Skewness ‘ Min ‘ Max Median
Original data
X1 1827.60 6867.81 297.10 15.65 13.00 137936.00 677.00
X 283.92 863.17 82.02 8.04 1.00 11855.00 88.00
Correlation between X and X, is 0.73
Log-data

In X3 6.44 1.33 0.57 0.21 2.56 11.83 6.52
In X, 4.38 1.52 0.45 0.12 0.00 9.38 4.48

Correlation between In X; and In X5 is 0.59

Table 2: AIC obtained for different estimated models and methods.

Method Marginals max maxx 10 max x 100
GE X1 ~TLN, Xy ~ TLNjxt 14839.58 14863.04 14869.42
X ~TCh,X, ~TCh 14849.26 14878.42 14883.74
PE X1 ~TLN, Xy ~ TLNyixt 14854.79 14868.25 14873.40
X ~TCh,X, ~TCh 14880.99 14884.31 14884.52

Since we decided to work with truncated distributions (as discussed in Section 3.1),
a key issue was the choice of the upper truncation limits, the lower ones being fixed at
m; = my = 0. We started by taking the upper limits as being equal to the maximum
observed values, i.e., M; = max x;;,i = 1,2. However, this choice most probably

Jj=L,...n
underestimates the real risk since it implies the assumption that the probability of a loss

greater than the maximum observed is zero, which is not true in practice. Hence, we
assumed that the upper truncation limits increase progressively, being equal to 10, 100
and 1000 times the maximum observed values (denoted in the following by maxx 10,
max x 100 and max x 1000, respectively). We found the results for the truncation limits
of maxx 100 and max x 1000 to be similar, hence, we present here only the former, i.e.,
max x 100, which is equivalent to almost eliminating the effect of truncation.

To estimate the parameters using the methods described in Section 3.3, we took the
main empirical characteristics as starting values. Then, to compare the different fits,
we calculated the corresponding log-likelihood and the Akaike information criterion
(AIC) values. AIC is defined by AIC = 2(s —InL), where s is the number of estimated
parameters and L is the likelihood function. This criterion penalizes an increased number
of parameters, so that the preferred model is the one with the lowest AIC value. In Table
2 we show the AIC obtained for each estimation, while the estimated parameters and
their standard errors are shown in Tables 3-6 in the Appendix. It seems that GE yields a
slightly better fit than PE, although we observe that the difference between the AICs for
GE and PE is small. This is expected since the GE method maximizes the full likelihood,
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while the PE method maximizes separately the partial likelihoods corresponding to the
copula and the marginal distributions. Considering both methods (GE and PE) for all
upper truncation limits, it results that the best model is the Sarmanov distribution with
a truncated log-normal distribution for X; and a mixture of two truncated log-normal
distributions for X,.

In Figures 1 and 2 we plot the VaR and TVaR curves as functions of the confidence
level g for g > 0.98, for all the distributions estimated. In Tables 7-10 in Appendix
we also displayed the VaR and TVaR values obtained for the same distributions and
for some confidence levels ¢, compared with the empirical values resulting from data.
These values and plots clearly show that for ¢ > 0.95, the Sarmanov distributions with
log-normal-type marginals underestimate the empirical values. Although closer to the
empirical curve, this is also the case of the Sarmanov distribution with TCh marginals
and an upper truncation limit equal to max, while the other two distributions (i.e.,
max x 10 and max x 100) overestimate the empirical values. Therefore, from the point
of view of the insurer, only these two last distributions would be of interest.
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Figure 1: Estimated VaR and TVaR with GE.

Note that, the curves resulting from GE and PE methods look similar, although, from
Tables 7-10 in Appendix it seems that, in general, PE leads to higher values of VaR and
TVaR than those provided by GE.
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Figure 2: Estimated VaR and TVaR with PE.

On the other hand, note that the best globally fitted distribution (in our case,
according to AIC, the Sarmanov distributions with LTN and LTN,,;,; marginals) does
not necessarily provide the best model for the risk measures VaR and TVaR, which are
defined on the distribution tail —this is also the case with the previously fitted bivariate
log-skew-normal distribution, which strongly overestimates the empirical TVaR curve
(see Bolancé et al., 2008). For our data set the heavier-tailed Champernowne distribution
provides a better model for Sarmanov’s marginals when evaluating VaR and TVaR.

6. Conclusions

In this paper, we have proposed the Sarmanov bivariate distribution as a model for
bivariate insurance losses and we have illustrated its applicability using a real data set
from the motor insurance sector. The choice of this distribution was motivated by its
flexible structure that allowed us to join given marginals. From the numerical study, we
conclude that the distribution could be a good model for such bivariate insurance data,
but special attention should be paid to the choice of the marginal distributions. More
specifically, these distributions must fulfill the condition of a real pdf, see (5)-(6), so
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that truncated marginal distributions can be selected. Moreover, the upper truncation
limits have to be carefully fixed so that the real risk values (like VaR or TVaR) should
not be underestimated, but also not overestimated to an exaggerated degree.

It should also be noted that a better global fit does not necessarily mean a better fit
regarding the evaluation of some tail related risk measures.

As for the choice between GE and PE methods, it seems that GE yields a somewhat
better fit than PE, although the differences are very small. However, the application
of the GE method might be more time-consuming given the random search involved
in the ML solution. Clearly, the complexity of the calculation should be taken into

consideration when selecting the most suitable estimation method.

Appendix

Table 3: GE for InX| ~ TN and InXy ~ T Ny, and different upper

truncation limits (standard errors between parentheses).

max maxx 10 max x 100
U1 6.4237 (0.0585) 6.4163 (0.0596) 6.4089 (0.0594)
Y21 4.3661 (0.0836) 4.3758 (0.0713) 4.2860 (0.1199)
U2z 4.3771 (0.5458) 4.0157 (0.4906) 4.4288 (0.2702)
o1 1.3310 (0.0412) 1.3560 (0.0431) 1.3517 (0.0428)
o091 1.2420 (0.0833) 1.2938 (0.0569) 1.1653 (0.1140)
o 2.9064 (0.8128) 3.0008 (0.3984) 2.0079 (0.2070)
r 0.8079 (0.0889) 0.8456 (0.0383) 0.6733 (0.1348)
w 0.0404 (0.0210) 0.0214 (0.0188) 0.0162 (0.0180)
InL —7411.79 —7423.52 —7426.71
AIC 14839.58 14863.04 14869.42

Table 4: PE for InX| ~ TN and InXp ~ T N,y and different upper

truncation limits (standard errors between parentheses).

max maxx 10 max x 100
U1 6.4439 (0.0587) 6.4437 (0.0553) 6.4437 (0.0587)
Y21 4.3115 (0.1274) 4.1975 (0.0801) 4.2743 (0.1560)
U2 4.4105 (0.2229) 5.0547 (0.2746) 4.4769 (0.2594)
o1 1.3351 (0.0416) 1.3350 (0.0415) 1.3350 (0.0415)
071 1.1476 (0.1184) 1.3346 (0.0671) 1.2315 (0.1508)
o 1.9488 (0.2144) 1.9550 (0.1994) 2.0372 (0.5330)
r 0.5899 (0.1580) 0.7770 (0.0587) 0.6396 (0.3122)
w 0.0309 (0.0095) 0.0212 (0.0086) 0.0161 (0.0082)
InL —7419.39 —7426.13 —7428.70
AIC 14854.79 14868.25 14873.40
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Table 5: GE for X| ~ TCh and X, ~ TCh and different upper
truncation limits (standard errors between parentheses).
max maxx 10 max x 100
ap 1.3344 (0.0950) 1.3420 (0.0489) 1.3423 (0.0492)
a 1.1767 (0.0444) 1.1771 (0.0431) 1.1706 (0.0427)
H, 631.1100 (36.2700) 623.2490 (35.6333) 619.3690 (35.1012)
H, 76.8340 (4.9617) 77.7100 (5.0423) 78.2220 (5.1128)
w  |3.0290x1078 (1.4497x1078) | 2.3070%x107° (2.6310x107°) | 1.9540x10710 (8.773163x10~'0)
InL —7419.63 —7434.21 —7436.87
AIC 14849.26 14878.42 14883.74
Table 6: PE for X\ ~ TCh and X ~ TCh and different upper
truncation limits (standard errors between parentheses).
max max x 10 max x 100
ap 1.3362 (0.0497) 1.3409 (0.0492) 1.3407 (0.0492)
a 1.1564 (0.0755) 1.1693 (0.0768) 1.1706 (0.0769)
H, 624.1119 (35.6350) 623.3819 (35.4695) 623.5835 (35.4896)
H, 78.9157 (6.2698) 78.3094 (6.2351) 78.2899 (6.2332)
13) 9.4918x107° (9.6420x107%) | 9.7283x107'0 (3.2613%x107%) | 9.7508x10~'! (2.4705%x1077)
InL —7435.49 —7437.15 —7437.26
AIC 14880.99 14884.31 14884.52
Table 7: VaR values for several truncated Sarmanov distributions
and different confidence levels using GE.
Distribution Confidence level ¢
¢i=x—E[X]] 0.95 0.99 0.995 0.999
Log — Sarmanov
. 3484.592 11221.492 16469.954 34770.477
TN + T Nmixt(max)
Log = Sarmanov 6703.136 | 18043.612 | 26888.181 | 62829.676
TN + T Nmixt(max x 10) ' ' ' '
Log — Sarmanov
TN + T Nmixt (max x 100) 6363.582 15658.461 21929.474 44858.422
Sarmanoy 3307784 | 16192401 | 27588.607 | 71445.821
TCh+ TCh(max) ' ' ' '
Sarmanoy 6399348 | 20755.411 | 34073251 | 113319.114
TCh+TCh(max x 10) ' ' ' '
Sarmanoy 6405.983 | 20868.242 | 34416052 | 106865442
TCh+ TCh(max x 100) ' ' ' '
Empirical values 7905.600 24821.140 28420.870 92112.930
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Table 8: TVaR values for several truncated Sarmanov distributions

and different confidence levels using GE.

Distribution Confidence level ¢
¢i=x—E[X;] 0.95 0.99 0.995 0.999
Log — Sarmanov
, 10722.435 | 23966.182 31500.887 55354.994
TN + T Nmixt(max)
Log = Sarmanov 15198.865 | 35093.589 | 48500.570 | 88741.558
TN + T Nmixt(max x 10) ' ' ' '
Log = Sarmanov 13184.039 | 28457449 | 38574933 | 75462.460
TN + T Nmixt(max x 100) ' ' ' '
Sarmanoy 14236400 | 40314.549 56765.029 | 103080.945
TCh+ TCh(max) ' ' ' '
Sarmarnoy 20317.585 | 59231.604 92295.169 | 244553.953
TCh+ TCh(max x10) ' ’ ' ’
Sarmanov 21255717 | 63750746 | 101169.957 | 284614.349
TCh+ TCh(max x 100) : : : :
Empirical values 20836.960 | 49453.170 | 73078.330 | 149791.000
Table 9: VaR values for several truncated Sarmanov distributions
and different confidence levels using PE.
Distribution Confidence level ¢
¢i=x—E[X;] 0.95 0.99 0.995 0.999
Log — Sarmanov
, 6146.651 | 15182.363 | 20345.663 36692.056
TN + T Nmixt(max)
Log = Sarmanov 6499.495 | 16546371 | 22518986 | 46979.657
TN + TNmixt(max x 10) ' ' ' '
Log =Sarmanoy 6485.068 | 16408.995 | 22269.078 | 36658.346
TN + T Nmixt(max x 100) ' ' ' '
Sarmanov 5943208 | 19699.385 | 29599.685 77228.707
TCh+ TCh(max) ' ' ' '
Sarmanov 6229.109 | 23097.386 | 38009.139 | 116412.203
TCh+ TCh(max x10) ' ' ' )
Sarmanov 6237.787 | 23074.898 | 38462701 | 141907.139
TCh+ TCh(max x 100) : : : :
Empirical values 7905.600 | 24821.140 | 28420.870 92112.930
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Table 10: TVaR values for several truncated Sarmanov distributions
and different confidence levels using PE.

Distribution Confidence level ¢
¢ =x—E[X] 0.95 0.99 0.995 0.999
Log — Sarmanoy 12100.52 | 24887.46 | 32197.80 57251.34
TN + T Nmixt(max) ' ' ' '
Log — Sarmanov
14002.47 31249.10 42864.60 91912.35

TN + T Nmixt(max x 10)

Log — Sarmanov

15727.76 39941.33 60676.94 190957.41
TN + T Nmixt(max x 100) % ? 09

Sarmanov

TCh+TCh(max) 16015.06 40962.05 57834.45 95298.44

Sarmanov

TCh-+TCh(max x 10) 20355.52 58995.50 89891.05 191242.66

Sarmanov

TCh-+TCh(max x100) 21601.87 64854.65 101058.90 222460.19

Empirical values 20836.960 49453.170 73078.330 149791.000
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