Skip to main content

Advertisement

Log in

On the Road to Personalized Medicine: Multiscale Computational Modeling of Bone Tissue

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Personalized medicine is an emerging field, considered by many in the biomedical community to be among the upcoming approaches to medical treatment. To embrace this new challenge, physicians need a better understanding of the biological processes in the human body, as well as precise diagnostic tools and patient-specific treatments. In response, the last three decades have witnessed a major shift in tissue engineering development, from treating bone tissue at the macro-scale level only to treating it at complex multiscale levels. Researchers have begun striving for a better understanding of bone structure and mechanics, and then applying this knowledge in designing new medical treatments and procedures. Today computational methods, including finite element analyses, are the tool of choice for biomechanical research of bone tissues. Moreover, bone multiscale modeling can become a vital part of a comprehensive computerized diagnostic system for patient-specific treatment of metabolic bone diseases, fractures and bone cancer. This review paper describes the state of the art in multiscale computational methods used in analyzing bone tissue. The discussed methods and techniques can serve as a base for the creation of such an envisioned diagnostic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84

Similar content being viewed by others

References

  1. Corander J, Aittokallio T, Ripatti S, Kaski S (2012) The rocky road to personalized medicine: computational and statistical challenges. Pers Med 9(2):109–114

    Google Scholar 

  2. Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363(4):301–304

    Google Scholar 

  3. Chan IS, Ginsburg GS (2011) Personalized medicine: progress and promise. Annu Rev Genomics Human Genet 12(1):217–244

    Google Scholar 

  4. Podshivalov L, Fischer A, Bar-Yoseph PZ (2011) 3D hierarchical geometric modeling and multiscale FE analysis as a base for individualized medical diagnosis of bone structure. Bone 48(4):693–703

    Google Scholar 

  5. Treharne R (1981) Review of Wolff’s law and its proposed means of operation. Orthop Rev 10(1):35–47

    Google Scholar 

  6. Koch JC (1917) The laws of bone architecture. The Am J Anat 21(2):177–298

    Google Scholar 

  7. Minor J-ML, Sick H (2005) Atlas of human anatomy and surgery. Taschen, Cologne

    Google Scholar 

  8. Bourgery JM, Jacob NH (2008) Atlas of human anatomy and surgery, Anniversai edn. Taschen, Paris

    Google Scholar 

  9. Wolff J (1870) Über die innere Architektur der Knochen und ihre Bedeutung für die Frage vom Knochenwachstum. Virchow’s Arch 50(3):389–453

    Google Scholar 

  10. Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36:S19–24

    Google Scholar 

  11. Huiskes R (2000) If bone is the answer, then what is the question? J Anat 1892:145–156

    Google Scholar 

  12. Wessinghage D (1993) 100 Jahre, Transformationsgesetz der Knochen von Julius Wolff. In: Pesch HJ, Stöß H, Kummer B (eds) Osteologie aktuell VII. Springer, Berlin, pp 3–12

    Google Scholar 

  13. Podshivalov L, Fischer A, Bar-Yoseph P (2012) Patient-specific diagnosis and visualization of bone micro-structures. Patient-specific modeling in tomorrow’s medicine. Stud Mechanobiol Tissue Eng Biomater 19:27–52

    Google Scholar 

  14. Weiner S, Wagner HD (1998) The material bone: structure–mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Google Scholar 

  15. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396

    Google Scholar 

  16. Walker MD (2011) Differences in bone microarchitecture between postmenopausal Chinese-American and white women. J Bone Miner Res 26(7):1392–1398

    Google Scholar 

  17. Ghanbari J, Naghdabadi R (2009) Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J Biomech 42(10):1560–1565

    Google Scholar 

  18. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102

    Google Scholar 

  19. Weiner S, Traub W (1992) Bone structure: from angstroms to microns. The FASEB J 6:879–885

    Google Scholar 

  20. Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK (2005) A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct 28(4):345–371

    Google Scholar 

  21. Carter DR (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59–A(7):954–962

    Google Scholar 

  22. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA 103(47):17741–17746

    Google Scholar 

  23. Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(10):1737–1746

    Google Scholar 

  24. Cowin SC (2001) Bone mechanics handbook, vol 1. CRC Press, Boca Raton

    Google Scholar 

  25. Currey JD (2002) Bones: structure amd mechanics. Princeton University Press, Princeton

    Google Scholar 

  26. Keaveny TM, Morgan EF (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Google Scholar 

  27. Hildebrand T, Laib A, Muller R, Dequeker J, Rüegsegger P (1999) Direct three dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174

    Google Scholar 

  28. Huiskes R, Ruimerman R, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706

    Google Scholar 

  29. Singh I (1978) The architecture of cancellous bone. J Anat 127(2):305–310

    Google Scholar 

  30. Keaveny TM, Yeh OC (2002) Architecture and trabecular bone-toward an improved understanding of the biomechanical effects of age, sex and osteoporosis. J Musculoskelet Neuronal 2(3):205–208

    Google Scholar 

  31. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1):27–35

    Google Scholar 

  32. Müller R (2005) Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling. Osteoporos Int 16:S25–35

    Google Scholar 

  33. Fyhrie DP, Kimura JH (1999) Cancellous bone biomechanics. J Biomech 32(11):1139–1148

    Google Scholar 

  34. Ding M, Odgaard A, Danielsen CC, Hvid I (2002) Mutual associations among microstructural, physical and mechanical properties of human cancellous bone. J Bone Joint Surg 84B(6):900–907

    Google Scholar 

  35. Hamed E, Jasiuk I, Yoo A, Lee Y, Liszka T (2012) Multi-scale modelling of elastic moduli of trabecular bone. J R Soc Interface R Soc 9(72):1654–1673

    Google Scholar 

  36. Podshivalov L, Fischer A, Bar-Yoseph PZ (2011) Multiscale FE method for analysis of bone micro-structures. J Mech Behav Biomed Mater 4(6):888–899

    Google Scholar 

  37. Todoh M, Ihara M, Matsumoto T, Tanaka M (2004) Relationship between mechanical property of cancellous bone and hardness of trabeculae. JSME Int J Ser C 47(4):1075–1078

    Google Scholar 

  38. Barkaoui A, Hambli R (2011) A 3D multiscale modelling of cortical bone structure, using the inverse identification method: microfibril scale study, pp. 2–5

  39. Cooper DML, Turinsky L, Sensen CW, Hallgrímsson B (2003) Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec B New Anat 274(1):169–179

    Google Scholar 

  40. Deuerling JM, Yue W, Espinoza Orías AA, Roeder RK (2009) Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone. J Biomech 42(13):2061–2067

    Google Scholar 

  41. Rho JY, Zioupos P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanodentation. Bone 25(3):295–300

    Google Scholar 

  42. Lenz C, Nackenhorst U (2003) Finite element analysis of osteons concerning the mechanosensation of bone material

  43. McDonnell P, McHugh PE, O’Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35(2):170–189

    Google Scholar 

  44. Rubin MA, Jasiuk I (2005) The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36(7–8):653–664

    Google Scholar 

  45. Giraud Guille MM, Mosser G, Helary C, Eglin D (2005) Bone matrix like assemblies of collagen: from liquid crystals to gels and biomimetic materials. Micron 36(7–8):602–608

    Google Scholar 

  46. Hamed E, Jasiuk I (2012) Elastic modeling of bone at nanostructural level. Mater Sci Eng 73(3–4):27–49

    Google Scholar 

  47. Tzaphlidou M (2005) The role of collagen in bone structure: an image processing approach. Micron 36(7–8):593–601

    Google Scholar 

  48. Knothe Tate ML (2007) Multiscale computational engineering of bones: state-of-the-art insigts for the future, pp 141–160

  49. Porter D (2004) Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Mater Sci Eng A 365(1–2):38–45

    Google Scholar 

  50. O’Brien FJ, Brennan O, Kennedy OD, Lee TC (2005) Microcracks in cortical bone: how do they affect bone biology? Curr Osteoporos Rep 3(2):39–45

    Google Scholar 

  51. Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145

    Google Scholar 

  52. McCreadie BR, Morris MD, Chen T-C, Sudhaker Rao D, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39(6):1190–1195

    Google Scholar 

  53. Haidekker MA, Andresen R, Evertsz CJ, Banzer D, Peitgen HO (1997) Evaluation of the cortical structure in high resolution CT images of lumbar vertebrae by analysing low bone mineral density clusters and cortical profiles. Br J Radiol 70:1222–1228

    Google Scholar 

  54. Frost HM (2002) Emerging views about “osteoporosis”, bone health, strength, fragility, and their determinants. J Bone Miner Metab 20:319–325

    Google Scholar 

  55. Kaptoge S, Armbrecht G, Felsenberg D, Lunt M, Weber K, Boonen S, Jajic I, Stepan JJ, Banzer D, Reisinger W, Janott J, Kragl G, Scheidt-Nave C, Felsch B, Matthis C, Raspe HH, Lyritis G, Póor G, Nuti R, Miazgowski T, Hoszowski K, Armas JB, Vaz AL, Benevolenskaya LI, Masaryk P, Cannata JB, Johnell O, Reid DM, Bhalla A, Woolf AD, Todd CJ, Cooper C, Eastell R, Kanis JA, O’Neill TW, Silman AJ, Reeve J (2006) Whom to treat? The contribution of vertebral X-rays to risk-based algorithms for fracture prediction. Results from the European Prospective Osteoporosis Study. Osteoporos Int J 17(9):1369–1381

    Google Scholar 

  56. Gomberg BR, Saha PK, Wehrli FW (2005) Method for cortical bone structural analysis from magnetic resonance images. Acad Radiol 12(10):1320–1332

    Google Scholar 

  57. Akhter MP, Lappe JM, Davies KM, Recker RR (2007) Transmenopausal changes in the trabecular bone structure. Bone 41(1):111–116

    Google Scholar 

  58. Lee TC, McHugh PE, Taylor D, Rackard SM, Kennedy OD, Mahony NJ, Harrison N, Brennan O, Gleeson J, Hazenberg JG, Mullins L, McNamara LM, Prendergast PJ (2004) Bone for life: osteoporosis, bone remodelling and computer simulation. In: Prendergast PJ, McHugh PE (eds) pp 58–93

  59. Rubin MR, Dempster DW, Kohler T, Stauber M, Zhou H, Shane E, Nickolas T, Stein E, Sliney J, Silverberg SJ, Bilezikian JP, Müller R (2010) Three dimensional cancellous bone structure in hypoparathyroidism. Bone 46(1):190–195

    Google Scholar 

  60. Homminga J, van Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516

    Google Scholar 

  61. Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30(5):759–764

    Google Scholar 

  62. van Rietbergen B, Huiskes R, Eckstein F, Rüegsegger P (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18(10):1781–1788

    Google Scholar 

  63. Yang H, Nawathe S, Fields AJ, Keaveny TM (2012) Micromechanics of the human vertebral body for forward flexion. J Biomech 45(12):2142–2148

    Google Scholar 

  64. Mittra E, Rubin C, Qin Y-X (2005) Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech 38(6):1229–1237

    Google Scholar 

  65. Burr D (2003) Microdamage and bone strength. Osteoporos Int J 14(Suppl 5):S67–572

    Google Scholar 

  66. Guo XE, Kim CH (2002) Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone 30(2):404–411

    Google Scholar 

  67. Tsouknidas A, Anagnostidis K, Maliaris G, Michailidis N (2012) Fracture risk in the femoral hip region: a finite element analysis supported experimental approach. J Biomech 45(11):1959– 1964

    Google Scholar 

  68. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Google Scholar 

  69. Sahar ND, Hong S-I, Kohn DH (2005) Micro- and nano-structural analyses of damage in bone. Micron 36(7–8):617–629

    Google Scholar 

  70. Nyman JS, Reyes M, Wang X (2005) Effect of ultrastructural changes on the toughness of bone. Micron (Oxford, England: 1993) 36(7–8):566–582

    Google Scholar 

  71. Gupta HS, Wagermaier W, Zickler GA, Hartmann J, Funari SS, Roschger P, Wagner HD, Fratzl P (2006) Fibrillar level fracture in bone beyond the yield point. Int J Fract 139(3–4):425–436

    MATH  Google Scholar 

  72. Macione J, Kavukcuoglu NB, Nesbitt RSA, Mann AB, Guzelsu N, Kotha SP (2011) Hierarchies of damage induced loss of mechanical properties in calcified bone after in vivo fatigue loading of rat ulnae. J Mech Behav Biomed Mater 4(6):841–848

    Google Scholar 

  73. Taylor M, Cotton J, Zioupos P (2002) Finite element simulation of the fatigue behaviour of cancellous bone. Meccanica 37:419– 429

    MATH  Google Scholar 

  74. Nagaraja S, Lin ASP, Guldberg RE (2007) Age-related changes in trabecular bone microdamage initiation. Bone 40(4):973–980

    Google Scholar 

  75. Liebschner MAK, Müller R, Wimalawansa SJ, Rajapakse CS, Gunaratne GH (2005) Testing two predictions for fracture load using computer models of trabecular bone. Biophys J 89(2):759–767

    Google Scholar 

  76. Yang QD, Cox BN, Nalla RK, Ritchie RO (2006) Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials 27(9):2095–2113

    Google Scholar 

  77. Budyn É, Hoc T (2007) Multiple scale modeling for cortical bone fracture in tension using X-FEM. Eur J Comput Mech 16(2):213–236

    MATH  Google Scholar 

  78. Shefelbine SJ, Simon U, Claes L, Gold A, Gabet Y, Bab I, Müller R, Augat P (2005) Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone 36(3):480–488

    Google Scholar 

  79. Fantner GE, Rabinovych O, Schitter G, Thurner P, Kindt JH, Finch MM, Weaver JC, Golde LS, Morse DE, Lipman EA, Rangelow IW, Hansma PK (2006) Hierarchical interconnections in the nano-composite material bone: fibrillar cross-links resist fracture on several length scales. Compos Sci Technol 66(9):1205–1211

    Google Scholar 

  80. Yan J, Mecholsky JJ, Clifton KB (2007) How tough is bone? Application of elastic-plastic fracture mechanics to bone. Bone 40(2):479–484

    Google Scholar 

  81. Malawer MM, Link MP, Donaldson SS (1997) Sarcomas of bone. Cancer: principles and practice of oncology, 2nd edn. Lippincott/Raven, Philadelphia, pp 1794–1893

    Google Scholar 

  82. Pizzo P, Poplack D (2002) Principles and practice of pediatric oncology, 4th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  83. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics 2013. CA Cancer J Clin 63(1):11–30

    Google Scholar 

  84. Tubiana-Hulin M (1991) Incidence, prevalence and distribution of bone metastases. Bone 12:S9–S10

    Google Scholar 

  85. Paterson A, Powles T, Kanis J, McCloskey E, Hanson J, Ashley S (1993) Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11(1):59–65

    Google Scholar 

  86. Tamada T, Sone T, Jo Y, Imai S, Kajihara Y, Fukunaga M (2005) Three-dimensional trabecular bone architecture of the lumbar spine in bone metastasis from prostate cancer: comparison with degenerative sclerosis. Skelet Radiol 34(3):149–155

    Google Scholar 

  87. Whyne CM, Hu SS, Lotz JC (2001) Parametric finite element analysis of verterbral bodies affected by tumors. J Biomech 34(10):1317–1324

    Google Scholar 

  88. Alkalay R (2008) The Orthopedic Biomechanics Laboratory Spine Research Group: biomechanics of vertebral fractures, pp 51–52

  89. Wehrli FW, Saha PK, Gomberg BR (2003) Noninvasive assessment of bone architecture by magnetic resonance micro-imaging-based virtual bone biopsy. Proc IEEE 91(10):1520–1542

    Google Scholar 

  90. Lee T (2007) Predicting failure load of the femur with simulated osteolytic defects using noninvasive imaging technique in a simplified load case. Ann Biomed Eng 35(4):642–650

    Google Scholar 

  91. Lee J, Arrington SA, Damron TA (2008) Predicting distal femur bone strength in a murine model of tumor osteolysis. Clin Orthop Relat Res 466(6):1271–1278

    Google Scholar 

  92. Sciumè G, Gray W, Ferrari M, Decuzzi P, Schrefler B (2013) On computational modeling in tumor growth. Arch Comput Methods Eng 20(4):327–352

    MathSciNet  Google Scholar 

  93. Borah B, Gross GJ, Dufresne TE, Smith TS, Cockman MD, Chmielewski PA, Lundy MW, Hartke JR, Sod EW (2001) Three-dimensional microimaging, finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec 265(2):101–110

    Google Scholar 

  94. Kazakia GJ, Majumdar S (2006) New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord 7(1–2):67–74

    Google Scholar 

  95. Genant HK, Gordon C, Jiang Y (2004) Advanced imaging of the macrostructure and microstructure of bone. Horm Res 54(1):24–30

    Google Scholar 

  96. Dalle Carbonare L, Valenti MT, Bertoldo F, Zanatta M, Zenari S, Realdi G, Lo Cascio V, Giannini S (2005) Bone microarchitecture evaluated by histomorphometry. Micron 36(7–8):609–616

    Google Scholar 

  97. Stauber M, Müller R (2006) Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int 17(4):616–626

    Google Scholar 

  98. Genant HK, Jiang Y (2006) Advanced imaging assessment of bone quality. Ann N Y Acad Sci 1068:410–428

    Google Scholar 

  99. Bauer JS, Link TM (2009) Advances in osteoporosis imaging. Eur J Radiol 71(3):440–449

    Google Scholar 

  100. Müller R (2003) Bone microarchitecture assessment: current and future trends. Osteoporos Int J 14(5):89–99

    Google Scholar 

  101. Grampp S, Jergas M, Lang P, Steiner E, Fuerst T, Gluer C, Mathur A, Gerant H (1996) Quantitative CT assessment of the lumbar spine and radius in patients with osteoporosis. Am J Roentgenol 167(1):133–140

    Google Scholar 

  102. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. The J Clin Endocrinol Metab 90(12):6508–6515

    Google Scholar 

  103. Müller R (2009) Hierarchical microimaging of bone structure and function. Nat Rev Rheumatol 5(7):373–381

    Google Scholar 

  104. Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, Oest M, Phillips J, Porter BD, Robertson G, Taylor WR (2003) Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag 22(5):77–83

    Google Scholar 

  105. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc 218(2):171–179

    MathSciNet  Google Scholar 

  106. Ding M, Odgaard A, Hvid I (1999) Accuracy of cancellous bone volume fraction measured by micro-CT scanning. J Biomech 32(3):323–326

    Google Scholar 

  107. Issever AS, Burghardt A, Patel V, Laib A, Lu Y, Ries M, Majumdar S (2003) A micro-computed tomography study of the trabecular bone structure in the femoral head. J Musculoskelet Neuronal Interact 3(2):176–184

    Google Scholar 

  108. Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20(7):1177–1184

    Google Scholar 

  109. Nazarian A, Müller R (2004) Time-lapsed microstructural imaging of bone failure behavior. J Biomech 37(1):55–65

    Google Scholar 

  110. Jaecques SVN, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander J (2004) Sloten, Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25(9):1683–1696

    Google Scholar 

  111. Templeton A, Cody D, Liebschner M (2004) Updating a 3-D vertebral body finite element model using 2-D images. Med Eng Phys 26(4):329–333

    Google Scholar 

  112. Yeni YN, Christopherson GT, Dong XN, Kim D-G, Fyhrie DP (2005) Effect of micro-computed tomography voxel sze on the finite element model accuracy for human cancellous bone. J Biomech Eng 127(1):8–8

    Google Scholar 

  113. Schneider P, Krucker T, Meyer E, Ulmann-Schuler A, Weber B, Stampanoni M, Müller R (2009) Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro-computed tomography and vascular replica. Microsc Res Tech 72(9):690–701

    Google Scholar 

  114. Hsu J-T, Wang S-P, Huang H-L, Chen Y-J, Wu J, Tsai M-T (2013) The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT. J Biomech 46(15):2611–2618

    Google Scholar 

  115. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22(5):445–454

    Google Scholar 

  116. Rajapakse CS, Magland JF, Wald MJ, Liu XS, Zhang XH, Guo XE, Wehrli FW (2010) Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 47(3):556–563

    Google Scholar 

  117. Wehrli FW, Saha PK, Gomberg BR, Song HK, Snyder PJ, Benito M, Wright A, Weening R (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Mag Reson imaging 13(5):335–355

    Google Scholar 

  118. Wehrli FW, Song HK, Saha PK, Wright AC (2006) Quantitative MRI for the assessment of bone structure and function. NMR in Biomed 19:731–764

    Google Scholar 

  119. Gomberg BR, Wehrli FW, Vasilić B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35(1):266–276

    Google Scholar 

  120. Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10

    Google Scholar 

  121. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616

    Google Scholar 

  122. Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33(3):270–282

    Google Scholar 

  123. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4):315–28

    Google Scholar 

  124. Jinnai H, Watashiba H, Kajihara T, Nishikawa Y, Takahashi M, Ito M (2002) Surface curvatures of trabecular bone microarchitecture. Bone 30(1):191–194

    Google Scholar 

  125. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25(1):55–60

    Google Scholar 

  126. Kabel J, Odgaard A, van Rietbergen B, Huiskes R (1999) Connectivity and the elastic properties of cancellous bone. Bone 24(2):115–20

    Google Scholar 

  127. Thomsen JS, Mosekilde L, Barlach J, Søgaard CH, Mosekilde E (1996) Computerized determination of 3-D connectivity density in human iliac crest bone biopsies. Math Comput Simul 40(3–4):411–423

    Google Scholar 

  128. Goldstein SA, Goulet R, McCubbrey D (1993) Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 53:127– 133

    Google Scholar 

  129. Gomberg BR, Saha PK (2000) Topological analysis of trabecular bone MR images. IEEE Trans Med Imaging 19(3):166–174

    Google Scholar 

  130. Badiei A, Bottema MJ, Fazzalari NL (2005) Expected and observed changes to architectural parameters of trabecular bone with aging: a comparison of measurement techniques. Australas Phys Eng Sci Med 29(1):48–53

    Google Scholar 

  131. Saha PK, Wehrli FW (2004) A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recognit 37(9):1935–1944

    Google Scholar 

  132. Gomberg BR, Saha PK, Wehrli FW (2003) Topology-based orientation analysis of trabecular bone networks. Med Phys 30(2):158–158

    Google Scholar 

  133. Chappard D, Legrand E, Haettich B, Chalès G, Auvinet B, Eschard JP, Hamelin JP, Baslé MF, Audran M (2001) Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity. J Pathol 195(4):515–521

    Google Scholar 

  134. Feltrin GP, Macchi V, Saccavini C (2001) Fractal analysis of lumbar vertebral cancellous bone architecture. Clin Anat 14:414–417

    Google Scholar 

  135. Zhang J, Niebur GL, Ovaert TC (2008) Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. J Biomech 41(2):267–275

    Google Scholar 

  136. Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119

    Google Scholar 

  137. Currey JD (1984) The mechanical adaptations of bones. Princeton University Press, Princeton

    Google Scholar 

  138. Hellmich C, Ulm F-J, Dormieux L (2004) Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach. Biomech Model Mechanobiol 2(4):219–238

    Google Scholar 

  139. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(20):1325–1330

    Google Scholar 

  140. Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23(2):135–146

    Google Scholar 

  141. Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, Hayashi K, Nakamura T (2002) Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone 31(3):351–358

    Google Scholar 

  142. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897–904

    Google Scholar 

  143. Pharr G, Oliver W (1992) Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull 17(7):28–33

    Google Scholar 

  144. Hoffler CE, Moore KE, Kozloff K, Zysset PK (2000) Heterogeneity of bone lamellar-level elastic moduli. Bone 26(6):603–609

    Google Scholar 

  145. Ziv V, Wagner HD, Weiner S (1996) Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone 18(5):417–428

    Google Scholar 

  146. Akhtar R, Eichhorn S, Mummery P (2006) Microstructure-based finite element modelling and characterisation of bovine trabecular bone. J Bionic Eng 3(1):3–9

    Google Scholar 

  147. van der Meulen MCH, Jepsen KJ, Mikić B (2001) Understanding bone strength: size isn’t everything. Bone 29(2):101–104

    Google Scholar 

  148. Novitskaya E, Chen P-Y, Hamed E, Jun L, Lubarda V, Jasiuk I, McKittrick J (2011) Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review. Theor Appl Mech 38(3):209–297

    MATH  MathSciNet  Google Scholar 

  149. van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29(12):1653–1657

    Google Scholar 

  150. Kabel J, van Rietbergen B, Dalstra M, Odgaard A, Huiskes R (1999) The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J Biomech 32(7):673–680

    Google Scholar 

  151. Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33:1575–1583

    Google Scholar 

  152. Bone T, Liu XS, Sajda P, Saha PK, Wehrli FW, Guo XE (2006) Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res 21(10):1608–1617

    Google Scholar 

  153. Ji B, Gao H (2006) Elastic properties of nanocomposite structure of bone. Compos Sci Technol 66(9):1212–1218

    Google Scholar 

  154. Raum K, Grimal Q, Laugier P, Gerisch A (2010) Multiscale structure–functional modeling of lamellar bone. Baltimore, Maryland

    Google Scholar 

  155. Jenson F, Padilla F, Peyrin F (2004) Characterization of human femoral trabecular bone in vitro using transmission and backscatter ultrasound measurements

  156. Hamed E, Lee Y, Jasiuk I (2010) Multiscale modeling of elastic properties of cortical bone. Acta Mech 213(1–2):131–154

    MATH  Google Scholar 

  157. Vaughan TJ, McCarthy CT, McNamara LM (2012) A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. J Mech Behav Biomed Mater 12:50–62

    Google Scholar 

  158. Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, Laugier P, Raum K (2012) Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech 45(13):2264–2270

    Google Scholar 

  159. Iyo T, Maki Y, Sasaki N, Nakata M (2004) Anisotropic viscoelastic properties of cortical bone. J Biomech 37(9):1433–1437

    Google Scholar 

  160. Johnson TPM, Socrate S, Boyce MC (2010) A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomater 6(10):4073–4080

    Google Scholar 

  161. Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16(6):385–409

    Google Scholar 

  162. Christen D, Webster DJ, Müller R (1920) Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk. Philos Trans Ser A Math Phys Eng Sci 2010(368):2653–2668

    Google Scholar 

  163. Burczynski T, Kus W, Brodacka A (2010) Multiscale modeling of osseous tissues. J Theor Appl Mech 48(4):855–870

    Google Scholar 

  164. Aboudi J (1991) Mechanics of composite materials. Studies in applied mechanics, vol 29. Elsevier, New York

    Google Scholar 

  165. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Google Scholar 

  166. Bensoussan A, Lions J-L, Papanicolaou G (1978) Asymptotic analysis for periodic structures. Studies in mathematics and its applications, vol 5. North-Holland, Amsterdam

    Google Scholar 

  167. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    MathSciNet  Google Scholar 

  168. Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24(9):825–839

    Google Scholar 

  169. Hollister SJ, Brennan JM, Kikuchi N (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27(4):433–444

    Google Scholar 

  170. Van Rietbergen B (2001) Micro-FE analyses of bone: state of the art. In: Majumdar SB, Brian K (eds) Noninvasive assessment of trabecular bone architecture and the competence of bone. Springer, Berlin

    Google Scholar 

  171. Carey GF, Jiang BN (1986) Element-by-element linear and nonlinear solution schemes. Commun Appl Numer Methods 2(2):145–153

    MATH  MathSciNet  Google Scholar 

  172. Fyhrie DP, Hamid MS, Kuo RF, Lang SS (1992) Direct three-dimensional finite element analysis of human vertebral cancellous bone. In: 38th meeting of Orthopaedic Research Society, Washington

  173. Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P (2004) Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing. IEEE Computer Society, Washington, p 34

  174. Arbenz P, van Lenthe G, Mennel U, Müller R, Sala M (2010) Multi-level micro-finite element analysis for human bone structures. In: Kågström B (ed) Applied parallel computing. State of the art in scientific computing. Springer, Berlin, pp 240–250

    Google Scholar 

  175. Fatemi J, van Keulen F (2003) On micropolar modelling of cancellous bone. Key Biscayne, Florida

    Google Scholar 

  176. Zannoni C, Mantovani R, Viceconti M (1998) Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 20(10):735–740

    Google Scholar 

  177. Wolfram U (2011) Mechanical multiscale characterisation of vertebral trabecular bone for the prediction of vertebral fracture risk, pp 103–103

  178. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744–750

    Google Scholar 

  179. van Rietbergen B (2001) Micro-FE analyses of bone: state of the art. Adv Exp Med Biol 496:21–30

    Google Scholar 

  180. Terada K, Miura T, Kikuchi N (1997) Digital image-based modeling applied to the homogenization analysis of composite materials. Comput Mech 20(4):331–346

    MATH  Google Scholar 

  181. van Rietbergen B, Weinans HH, Huiskes R (1996) Computational strategies for iterative solutions of large FEM applications employing voxel data. Int J Numer Methods Biomed Eng 39:2743–2767

    MATH  Google Scholar 

  182. Hollister SJ, Brennan JM, Kikuchi N (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27(4):433–444

    Google Scholar 

  183. Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17(2):126–133

    Google Scholar 

  184. van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81

    Google Scholar 

  185. Boyd SK, Müller R (2006) Smooth surface meshing for automated finite element model generation from 3D image data. J Biomech 39(7):1287–1295

    Google Scholar 

  186. Ito Y, Corey Shum P, Shih AM, Soni BK, Nakahashi K (2006) Robust generation of high-quality unstructured meshes on realistic biomedical geometry. Int J Numer Methods Eng 65(6):943–973

    MATH  Google Scholar 

  187. Viceconti M, Davinelli M, Taddei F, Cappello A (2004) Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J Biomech 37(10):1597–1605

    Google Scholar 

  188. Bourne BC, van der Meulen MCH (2004) Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech 37(5):613–621

    Google Scholar 

  189. Stölken JS, Kinney JH (2003) On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone 33(4):494–504

    Google Scholar 

  190. Morgan EF, Yeh OC, Chang WC, Keaveny TM (2001) Nonlinear behavior of trabecular bone at small strains. J Biomech Eng 123(2):1–9

    Google Scholar 

  191. Bevill G, Keaveny TM (2009) Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 44(4):579–584

    Google Scholar 

  192. Gupta A, Bayraktar HH, Fox JC, Keaveny TM, Papadopoulos P (2006) Constitutive modeling and algorithmic implementation of a plasticity-like model for trabecular bone structures. Comput Mech 40(1):61–72

    Google Scholar 

  193. Verhulp E, van Rietbergen B, Müller R, Huiskes R (2008) Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech 41(2):1479–1485

    Google Scholar 

  194. Pistoia W, van Rietbergen B, Laib A, Rüegsegger P (2001) High-Resolution three-dimensional pQCT images can be an adequate basis for in-vivo \(\mu \)FE analysis of bone. J Biomech Eng 123(2):176–176

    Google Scholar 

  195. Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P (2004) Ultrascalable implicit finite element analyses in solid mechanics

  196. Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free -finite element analysis of human bone structures. Int J Numer Methods Biomed Eng 73:927–947

    MATH  Google Scholar 

  197. Bekas C, Curioni A, Arbenz P, Flaig C, van Lenthe GH, Müller R, Wirth AJ (2010) Extreme scalability challenges in micro-finite element simulations of human bone. Concurr Comput 22(16):2282–2296

    Google Scholar 

  198. Rudnyi EB, van Rietbergen B, Korvink JG (2005) Efficient harmonic simulation of a trabecular bone finite element model by means of model reduction, Ulm

  199. Podshivalov L, Holdstein Y, Fischer A, Bar-Yoseph PZ (2009) Towards a multi-scale computerized bone diagnostic system: 2D micro-scale finite element analysis. Commun Numer Methods Eng 25(6):733–749

    MATH  Google Scholar 

  200. Podshivalov L, Fischer A, Bar-Yoseph P (2010) Multiresolution 2D geometric meshing for multiscale finite element analysis of bone micro-structures. Virtual Phys Prototyp 5(1):33–43

    Google Scholar 

  201. Ladd AJC, Kinney JH (1998) Numerical errors and uncertainties in finite-element modeling of trabecular bone. J Biomech 31(10):941–945

    Google Scholar 

  202. Jacobs CR, Davis BR, Rieger CJ (1999) The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. J Biomech 32:1159–1164

    Google Scholar 

  203. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Google Scholar 

  204. Pahr DH, Schwiedrzik J, Dall’ara E, Zysset PK (2014) Clinical versus pre-clinical FE models for vertebral body strength predictions. J Mech Behav Biomed Mater 33:76–83

    Google Scholar 

  205. Bevill G, Eswaran SK, Farahmand F, Keaveny TM (2009) The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone 44(4):573–578

    Google Scholar 

  206. Jones AC, Wilcox RK (2008) Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys 30(10):1287–1304

    Google Scholar 

  207. Imai K, Ohnishi I, Bessho M, Nakamura K (2006) Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine 31(16):1789–1794

    Google Scholar 

  208. Dall’Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, Kainberger F, Zysset PK (2010) A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J Biomech 43(12):2374–2380

    Google Scholar 

  209. Su R, Campbell GM, Boyd SK (2007) Establishment of an architecture-specific experimental validation approach for finite element modeling of bone by rapid prototyping and high resolution computed tomography. Med Eng Phys 29(4):480– 490

    Google Scholar 

  210. Yosibash Z, Padan R, Joskowicz L, Milgrom C (2007) A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. J Biomech Eng 129(3):297–309

    Google Scholar 

  211. Evans SP, Parr WCH, Clausen PD, Jones A, Wroe S (2012) Finite element analysis of a micromechanical model of bone and a new 3D approach to validation. J Biomech 45(15):2702–2705

    Google Scholar 

  212. Oxnard CE (2004) Thoughts on bone biomechanics. Folia Primatol 75(4):189–201

    Google Scholar 

  213. Kim HS, Al-Hassani STS (2002) A morphological model of vertebral trabecular bone. J Biomech 35:1101–1114

    Google Scholar 

  214. Kowalczyk P (2003) Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. J Biomech 36(7):961–972

    Google Scholar 

  215. Dagan D, Be’ery M, Gefen A (2004) Single-trabecula building block for large-scale finite element models of cancellous bone. Med Biol Eng Comput 42(4):549–556

    Google Scholar 

  216. Kinzl M, Wolfram U, Pahr DH (2013) Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body. J Mech Behav Biomed Mater 26:136–147

    Google Scholar 

  217. Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238

    MathSciNet  Google Scholar 

  218. Ilic S, Hackl K, Gilbert R (2010) Application of the multiscale FEM to the modeling of cancellous bone. Biomech Modeling Mechanobiol 9(1):87–102

    Google Scholar 

  219. Gonçalves Coelho P, Rui Fernandes P, Carriço Rodrigues H (2011) Multiscale modeling of bone tissue with surface and permeability control. J Biomech 44(2):321–329

    Google Scholar 

  220. Knothe Tate ML (2003) Whither flows the fluid in bone? An osteocyte’s perspective. J Biomech 36(10):1409–1424

    Google Scholar 

  221. Anderson EJ, Kaliyamoorthy S, Alexander JID, Knothe Tate ML (2005) Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes. Ann Biomed Eng 33(1):52–62

    Google Scholar 

  222. Lemaire T, Naïli S, Rémond A (2006) Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone. Biomech Modeling Mechanobiol 5(1):39–52

    Google Scholar 

  223. Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech 41:347

    Google Scholar 

  224. Anderson EJ, Kreuzer SM, Small O, Knothe Tate ML (2007) Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro- and nano-scale pericellular spaces. Microfluid Nanofluid 4(3):193–204

    Google Scholar 

  225. Anderson EJ, Knothe Tate ML (2008) Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. J Biomech 41(8):1736–1746

    Google Scholar 

  226. Knothe Tate ML (2011) Top down and bottom up engineering of bone. J Biomech 44(2):304–312

    Google Scholar 

  227. Rohan E, Naili S, Cimrman R, Lemaire T (2012) Multiscale modeling of a fluid saturated medium with double porosity: relevance to the compact bone. J Mech Phys Solids 60(5):857–881

    MathSciNet  Google Scholar 

  228. Lanyon LE (1984) Functional strain as a determinant for bone remodeling. Calcif Tissue Int 36:56–61

    Google Scholar 

  229. Bonewald LF (2008) Osteocytes. Academic Press, San Diego, pp 169–189

    Google Scholar 

  230. Landrigan M, Penninger C, Post MJ (2006) Experimental and computational investigations in bone structure and adaptation, pp 1–16

  231. van Oers RFM, Ruimerman R, Tanck E, Hilbers PAJ, Huiskes R (2008) A unified theory for osteonal and hemi-osteonal remodeling. Bone 42(2):250–259

    Google Scholar 

  232. Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J (2006) Osteocyte lacunae tissue strain in cortical bone. J Biomech 39(9):1735–1743

    Google Scholar 

  233. Cowin SC (2007) The significance of bone microstructure in mechanotransduction. J Biomech 40:S105–S109

    Google Scholar 

  234. Christen P, Ito K, dos Santos AA, Müller R, van Rietbergen B (2013) Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations. J Biomech 46(5):941–948

    Google Scholar 

  235. Koontz JT, Charras GT, Guldberg RE (2001) A microstructural finite element simulation of mechanically induced bone formation. J Biomech Eng 123:607–612

    Google Scholar 

  236. Kerner J, Huiskes R, van Lenthe GH, Weinans H, van Rietbergen B, Engh CA, Amis AA (1999) Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling. J Biomech 32(7):695–703

    Google Scholar 

  237. Martin RB (2000) Toward a unifying theory of bone remodeling. Bone 26(1):1–6

    Google Scholar 

  238. Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–941

    Google Scholar 

  239. Nagaraja S, Couse TL, Guldberg RE (2005) Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech 38(4):707–716

    Google Scholar 

  240. Adachi T, Tsubota K-I, Tomita Y, Hollister SJ (2001) Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J Biomech Eng 123(5):403–409

    Google Scholar 

  241. Tanck E, Homminga J, van Lenthe GH, Huiskes R (2001) Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone 28(6):650–654

    Google Scholar 

  242. Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40(1):14–21

    Google Scholar 

  243. Tsubota K-I, Adachi T (2005) Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Med Eng Phys 27(4):305–311

    Google Scholar 

  244. Kameo Y, Adachi T, Hojo M (2011) Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation. J Mech Behav Biomed Mater 4(6):900–908

    Google Scholar 

  245. McNamara LM, Prendergast PJ (2007) Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 40(6):1381–1391

    Google Scholar 

  246. Schneider P, Meier M, Wepf R, Müller R (2010) Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone 47(5):848–458

    Google Scholar 

  247. Dunlop JWC, Hartmann MA, Bréchet YJ, Fratzl P, Weinkamer R (2009) New suggestions for the mechanical control of bone remodeling. Calcif Tissue Int 85(1):45–54

    Google Scholar 

  248. Peterson MC, Riggs MM (2010) A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46(1):49–63

    Google Scholar 

  249. Kaczmarczyk L, Pearce CJ (2011) Efficient numerical analysis of bone remodelling. J Mech Behav Biomed Mater 4(6):858–867

    Google Scholar 

  250. Malachanne E, Dureisseix D, Jourdan F (2011) Numerical model of bone remodeling sensitive to loading frequency through a poroelastic behavior and internal fluid movements. J Mech Behav Biomed Mater 4(6):849–857

    Google Scholar 

  251. Hartmann MA, Dunlop JWC, Bréchet YJM, Fratzl P, Weinkamer R (2011) Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface. J Mech Behav Biomed Mater 4(6):879–887

    Google Scholar 

  252. Lemaire T, Capiez-Lernout E, Kaiser J, Naili S, Sansalone V (2011) What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. J Mech Behav Biomed Mater 4(6):909–920

    Google Scholar 

  253. Wang H, Ji B, Liu XS, Guo XE, Huang Y, Hwang K-C (2012) Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process. J Biomech 45(14):2417–2425

    Google Scholar 

  254. Paoletti N, Liò P, Merelli E, Viceconti M (2012) Multilevel computational modeling and quantitative analysis of bone remodeling. IEEE/ACM Trans Comput Biol Bioinform 9(5):1366–1378

    Google Scholar 

  255. Christen P, Ito K, Müller R, Rubin MR, Dempster DW, Bilezikian JP, van Rietbergen B (2012) Patient-specific bone modelling and remodelling simulation of hypoparathyroidism based on human iliac crest biopsies. J Biomech 45(14):2411–2416

    Google Scholar 

  256. Lambers FM, Koch K, Kuhn G, Ruffoni D, Weigt C, Schulte FA, Müller R (2013) Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone 55(2):325–334

    Google Scholar 

  257. Christen P, Ito K, Knippels I, Müller R, van Lenthe GH, van Rietbergen B (2013) Subject-specific bone loading estimation in the human distal radius. J Biomech 46(4):759–766

    Google Scholar 

  258. Schulte FA, Zwahlen A, Lambers FM, Kuhn G, Ruffoni D, Betts D, Webster DJ, Müller R (2013) Strain-adaptive in silico modeling of bone adaptation: a computer simulation validated by in vivo micro-computed tomography data. Bone 52(1):485– 492

    Google Scholar 

  259. Lukas C, Ruffoni D, Lambers FL, Schulte FA, Kuhn G, Kollmannsberger P, Weinkamer R, Müller R (2013) Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56(1):55–60

    Google Scholar 

  260. Trüssel A, Müller R, Webster D (2012) Toward mechanical systems biology in bone. Ann Biomed Eng 40(11):2475–2487

    Google Scholar 

  261. Schulte FA, Lambers FM, Webster DJ, Kuhn G, Müller R (2011) In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography. Bone 49(6):1166–1172

    Google Scholar 

  262. Hambli R, Barkaoui A (2010) Multiscale approach for bone remodeling simulation based on finite element and neural network computation. Freiburg, Germany

    Google Scholar 

  263. Hambli R (2011) Apparent damage accumulation in cancellous bone using neural networks. J Mech Behav Biomed Mater 4(6):868–878

    Google Scholar 

  264. Zaideman O, Fischer A (2010) Geometric bone modeling: from macro to micro structures. J Comput Sci Technol 25(3):614– 622

    Google Scholar 

  265. Bendsoe MP (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  266. Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA 107(30):13222–13227

    Google Scholar 

  267. Nowak M (2006) Structural optimization system based on trabecular bone surface adaptation. Struct Multidiscip Optim 32(3):241–249

    Google Scholar 

  268. Coelho PG, Cardoso JB, Fernandes PR, Rodrigues HC (2011) Parallel computing techniques applied to the simultaneous design of structure and material. Adv Eng Softw 42(5):219–227

    MATH  Google Scholar 

  269. Nauman EA, Chang WCW, Satcher RL, Keaveny TM (1998) Microscale engineering applications in bone adaptation. Microscale Thermophys Eng 2:139–172

    Google Scholar 

  270. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    Google Scholar 

  271. D’urso PS, Atkinson RL, Bruce IJ, Effeney DJ, Lanigan MW, Earwaker WJ, Holmes A, Barker TM, Thompson RG (1998) Stereolithographic (SL) biomodelling in craniofacial surgery. Br J Plast Surg 51(7):522–530

    Google Scholar 

  272. Langer R (2007) Editorial: tissue engineering: perspectives, challenges, and future directions. Tissue Eng 13(1):1–2

    Google Scholar 

  273. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nano 6(1):13–22

    Google Scholar 

  274. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Google Scholar 

  275. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Google Scholar 

  276. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Google Scholar 

  277. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Google Scholar 

  278. Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359

    Google Scholar 

  279. Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972

    Google Scholar 

  280. Jones JR, Hench LL (2003) Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci 7(4–5):301–307

    Google Scholar 

  281. Sengers BG, Oomens CWJ, Baaijens FPT (2004) An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering. J Biomech Eng 126(1):82–91

    Google Scholar 

  282. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Google Scholar 

  283. Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2(3):303–317

    Google Scholar 

  284. Yang S, Leong K-F, Du Z, Chua C-K (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    Google Scholar 

  285. El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2(1):87–101

    Google Scholar 

  286. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11(1–2):101–109

    Google Scholar 

  287. Bartolo P, Chua C, Almeida H, Chou S, Lim A (2009) Biomanufacturing for tissue engineering: present and future trends. Virtual Phys Prototyp 4(4):203–216

    Google Scholar 

  288. Yoshimoto H, Shin Y, Terai H, Vacanti J (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    Google Scholar 

  289. Vallet-Regí M, Colilla M, González B (2011) Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40(2):596–607

    Google Scholar 

  290. Wang Y, Rosen DW (2010) A feature-based approach to re-engineering CAD models from cross sections. Comput Aided Des Appl 7(5):759–776

    Google Scholar 

  291. Sun W, Starly B, Nam J, Darling A (2005) Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Des 37(11):1097–1114

    Google Scholar 

  292. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Google Scholar 

  293. Lohfeld S, Barron V, McHugh PE (2005) Biomodels of bone: a review. Ann Biomed Eng 33(10):1295–1311

    Google Scholar 

  294. Srouji S, Livne E (2005) Bone marrow stem cells and biological scaffold for bone repair in aging and disease. Mech Ageing Dev 126(2):281–287

    Google Scholar 

  295. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-desing analysis. J Biomech 20(11):1135–1150

    Google Scholar 

  296. Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38(3):377–399

    MathSciNet  Google Scholar 

  297. Guillén T, Zhang QH, Tozzi G, Ohrndorf A, Christ HJ, Tong J (2011) Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis. J Mech Behav Biomed Mater 4(7):1452–1461

    Google Scholar 

  298. Sanz-Herrera J, García-Aznar J, Doblaré M (2009) On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater 5(1):219–229

    Google Scholar 

  299. Fang Z, Starly B, Shokoufandeh A, Regli W, Sun W (2005) A computer-aided multi-scale modeling and direct fabrication of bone structure. Comput Aided Des Appl 2(5):627–634

    Google Scholar 

  300. Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Wagoner Johnson AJ (2010) Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31(13):3552–3563

    Google Scholar 

  301. Martins A, Chung S, Pedro AJ, Sousa RA, Marques AP, Reis RL, Neves NM (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3:37–42

    Google Scholar 

  302. Tellis BC, Szivek JA, Bliss CL, Margolis DS, Vaidyanathan RK, Calvert P (2009) Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater Sci Eng C Mater Biol Appl 28(1):171–178

    Google Scholar 

  303. Pek YS, Gao S, Arshad MSM, Leck K-J, Ying JY (2008) Porous collagen–apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 29(32):4300–4305

    Google Scholar 

  304. Lacroix D, Chateau A, Ginebra M-P, Planell JA (2006) Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27(30):5326–5334

    Google Scholar 

  305. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Google Scholar 

  306. Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37(5):623–636

    Google Scholar 

  307. Jones AC, Milthorpe B, Averdunk H, Limaye A, Senden TJ, Sakellariou A, Sheppard AP, Sok RM, Knackstedt MA, Brandwood A, Rohner D, Hutmacher DW (2004) Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25(20):4947–4954

    Google Scholar 

  308. Podshivalov L, Gomes CM, Zocca A, Guenster J, Bar-Yoseph PZ, Fischer A (2013) Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds. Procedia CIRP 5:247–252

    Google Scholar 

  309. Gomes CM, Zocca A, Guenster J, Podshivalov L, Bar-Yoseph P, Fischer A (2013) Designing apatite/wollastonite (A/W) porous scaffolds by powder-based 3D printing. High value manufacturing: advanced research in virtual and rapid prototyping. In: Proceedings of the 6th international conference on advanced research in virtual and rapid prototyping, p 159. Leiria, Portugal

  310. Vena P, Contro R (2002) Micromechanical analysis of the trabecular bone stress state at the interface with metallic biomedical devices. Meccanica 37:431–439

    MATH  Google Scholar 

  311. Holdstein Y (2012) Geometric and physical modeling of bone micro-structures as a base for scaffold design, in Mechanical Engineering, p 85. Technion

  312. Holdstein Y, Fischer A, Podshivalov L, Bar-Yoseph PZ (2009) Volumetric texture synthesis of bone micro-structure as a base for scaffold design. In: IEEE international conference on shape modeling and applications

  313. Doblaré M, García JM, Gómez MJ (2004) Modelling bone tissue fracture and healing: a review. Eng Fract Mech 71(13–14):1809–1840

    Google Scholar 

  314. Taylor D (2007) Fracture and repair of bone: a multiscale problem. J Mater Sci 42(21):8911–8918

    Google Scholar 

  315. Knothe Tate ML, Dolejs S, McBride SH, Matthew Miller R, Knothe UR (2011) Multiscale mechanobiology of de novo bone generation, remodeling and adaptation of autograft in a common ovine femur model. J Mech Behav Biomed Mater 4(6):829–840

    Google Scholar 

  316. Ural A, Mischinski S (2013) Multiscale modeling of bone fracture using cohesive finite elements. Eng Fract Mech 103:141–152

    Google Scholar 

  317. Kallai I, van Lenthe GH, Ruffoni D, Zilberman Y, Müller R, Pelled G, Gazit D (2010) Quantitative, structural, and image-based mechanical analysis of nonunion fracture repaired by genetically engineered mesenchymal stem cells. J Biomech 43(12):2315–2320

    Google Scholar 

  318. Shefelbine SJ, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38(12):2440–2450

    Google Scholar 

  319. Ouaknin GY, Bar-Yoseph PZ (2009) Stochastic collective movement of cells and fingering morphology: no maverick cells. Biophys J 97(7):1811–1821

    Google Scholar 

  320. Geng J-P, Tan KBC, Liu G-R (2001) Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 85(6):585–598

    Google Scholar 

  321. Magne P (2007) Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dental Mater J 23(5):539–548

    Google Scholar 

  322. Limbert G, van Lierde C, Muraru OL, Walboomers XF, Frank M, Hansson S, Middleton J, Jaecques S (2010) Trabecular bone strains around a dental implant and associated micromotions: a micro-CT-based three-dimensional finite element study. J Biomech 43:1251–1261

    Google Scholar 

  323. Tajima K, Chen K-K, Takahashi N, Noda N, Nagamatsu Y, Kakigawa H (2009) Three-dimensional finite element modeling from CT images of tooth and its validation. Dent Mater J 28(2):219– 226

    Google Scholar 

  324. Miura J, Maeda Y, Nakai H, Zako M (2009) Multiscale analysis of stress distribution in teeth under applied forces. Dent Mater 25(1):67–73

    Google Scholar 

  325. Eser A, Tonuk E, Akca K, Dard MM, Cehreli MC (2013) Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. J Biomech 46(13):2250–2257

    Google Scholar 

  326. van Ruijven LJ, Mulder L, van Eijden TMGJ (2007) Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J Biomech 40(6):1211–1218

    Google Scholar 

  327. Takada H, Abe S, Tamatsu Y, Mitarashi S, Saka H, Ide Y (2006) Three-dimensional bone microstructures of the mandibular angle using micro-CT and finite element analysis: relationship between partially impacted mandibular third molars and angle fractures. Dent Traumatol 22(1):18–24

    Google Scholar 

  328. Mulder L, van Ruijven LJ, Koolstra JH, van Eijden TMGJ (2007) Biomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle. J Biomech 40(7):1575–1582

    Google Scholar 

  329. Eswaran SK, Bayraktar HH, Adams MF, Gupta A, Hoffmann PF, Lee DC, Papadopoulos P, Keaveny TM (2007) The micromechanics of cortical shell removal in the human vertebral body. Comput Methods Appl Mech Eng 196:3025–3032

    MATH  Google Scholar 

  330. Homminga J, Weinans H, Gowin W, Felsenberg D, Huiskes R (2001) Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 26(14):1555–1560

    Google Scholar 

  331. Eswaran SK, Gupta A, Keaveny TM (2007) Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body. Bone 41(4):733–739

    Google Scholar 

  332. McDonald KA, Little JP, Pearcy MJ, Clayton JA (2010) Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics. Med Eng Phys 32(6):653–661

    Google Scholar 

  333. Fields AJ, Eswaran SK, Jekir MG, Keaveny TM (2009) Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 24(9):1523–1530

    Google Scholar 

  334. Eswaran SK, Fields AJ, Nagarathnam P, Keaveny TM (2009) Multi-scale modeling of the human vertebral body: comparison of micro-CT based high-resolution and continuum-level models. Pac Symp Biocomput 293–303

  335. Pahr DH, Zysset PK (2009) A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J Biomech 42(4):455–462

    Google Scholar 

  336. Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46(14):2342–2355

    Google Scholar 

  337. Karajan N (2012) Multiphasic intervertebral disc mechanics: theory and application. Arch Comput Methods Eng 19(2):261–339

    MathSciNet  Google Scholar 

  338. Valliappan S, Svensson NL, Wood RD (1977) Three dimensional stress analysis of the human femur. Comput Biol Med 7(4):253–264

    Google Scholar 

  339. Brown TD, Ferguson AB (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 51(3):429–437

    Google Scholar 

  340. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173

    Google Scholar 

  341. Ascenzi M-G, Kawas NP, Lutz A, Kardas D, Nackenhorst U, Keyak JH (2013) Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur. J Comput Phys 244:298–311

    MathSciNet  Google Scholar 

  342. Cristofolini L, Taddei F, Baleani M, Baruffaldi F, Stea S, Viceconti M (1879) Multiscale investigation of the functional properties of the human femur. Philos Trans Ser A Math Phys Eng Sci 2008(366):3319–3341

    Google Scholar 

  343. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40(8):1745–1753

    Google Scholar 

  344. Rudman KE, Aspden RM, Meakin JR (2006) Compression or tension? The stress distribution in the proximal femur. Biomed Eng Online 5:12

    Google Scholar 

  345. Verhulp E, van Rietbergen B, Huiskes R (2006) Comparison of micro-level and continuum-level voxel models of the proximal femur. J Biomech 39(16):2951–2957

    Google Scholar 

  346. Be’ery-Lipperman M, Gefen A (2006) A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling. Comput Methods Biomech Biomed Eng 9(1):35–44

    Google Scholar 

  347. Fedida R, Yosibash Z, Milgrom C, Joskowicz L (2005) Femur mechanical simulation using high-order fe analysis with continuous mechanical properties. Lisbon, Portugal

  348. Palfi P (2004) Locally orthotropic femur model. J Comput Appl Mech 5(1):103–115

    MATH  Google Scholar 

  349. Shim VB, Pitto RP, Streicher RM, Hunter PJ, Anderson IA (2007) The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. J Biomech 40(1):26–35

    Google Scholar 

  350. Ramos A, Simões JA (2006) Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys 28(9):916–924

    Google Scholar 

  351. Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Müller R (2009) Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone 45(5):882–891

    Google Scholar 

  352. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P (1999) Load transfer analysis of the distal radius from in-vivo high-resolution CT-imaging. J Biomech 32(8):821–828

    Google Scholar 

  353. Newitt DC, Majumdar S (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int J 13:6–17

    Google Scholar 

  354. Pistoia W, van Rietbergen B, Lochmüller EM, Lill CA, Eckstein F, Ruegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848

    Google Scholar 

  355. Junguo B, Jeffrey HS, Xiao H, Emil YS, Jerry LP, Charles AP, Xiaochuan P (2010) Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT. Phys Med Biol 55(22):6575

    Google Scholar 

  356. Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J, Constantinescu E, Estep D, Evans K, Farhat C, Hakim A, Hammond G, Hansen G, Hill J, Isaac T, Jiao X, Jordan K, Kaushik D, Kaxiras E, Koniges A, Lee K, Lott A, Lu Q, Magerlein J, Maxwell R, McCourt M, Mehl M, Pawlowski R, Randles AP, Reynolds D, Rivière B, Rüde U, Scheibe T, Shadid J, Sheehan B, Shephard M, Siegel A, Smith B, Tang X, Wilson C, Wohlmuth B (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83

    Google Scholar 

  357. Grinberg L, Karniadakis GE (2010) A new domain decomposition method with overlapping patches for ultrascale simulations: application to biological flows. J Comput Phys 229(15):5541–5563

    MATH  MathSciNet  Google Scholar 

  358. Grinberg L, Fedosov DA, Karniadakis GE (2013) Parallel multiscale simulations of a brain aneurysm. J Comput Phys 244:131–147

    MathSciNet  Google Scholar 

  359. Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5(28):1–17

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Phyllis and Joseph Gurwin Fund, by the Irwin and Joan Jacobs Fellowship, the Umbrella Cooperation Programme, the Minerva Foundation, and by the Samuel and Anne Tolkowsky Chair at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Podshivalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podshivalov, L., Fischer, A. & Bar-Yoseph, P.Z. On the Road to Personalized Medicine: Multiscale Computational Modeling of Bone Tissue. Arch Computat Methods Eng 21, 399–479 (2014). https://doi.org/10.1007/s11831-014-9120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9120-1

Navigation