Skip to main content
Log in

Variational-Based Reduced-Order Model in Dynamic Substructuring of Coupled Structures Through a Dissipative Physical Interface: Recent Advances

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper deals with a variational-based reduced-order model in dynamic substructuring of two coupled structures through a physical dissipative flexible interface. We consider the linear elastodynamic of a dissipative structure composed of two main dissipative substructures perfectly connected through interfaces by a linking substructure. The linking substructure is flexible and is modeled in the context of the general linear viscoelasticity theory, yielding damping and stiffness operators depending on the frequency, while the two main dissipative substructures are modeled in the context of linear elasticity with an additional classical viscous damping modeling which is assumed to be independent of the frequency. We present recent advances adapted to such a situation, which is positioned with respect to an appropriate review that we carry out on the different methods used in dynamic substructuring. It consists in constructing a reduced-order model using the free-interface elastic modes of the two main substructures and, for the linking substructure, an appropriate frequency-independent elastostatic lifting operator and the frequency-dependent fixed-interface vector basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agrawal BN (1976) Mode synthesis technique for dynamic analysis of structures. J Acoust Soc Am 59:1329–1338

    Article  Google Scholar 

  2. Allen MS, Mayes RL, Bergman EJ (2010) Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections. J Sound Vib 329:4891–4906

    Article  Google Scholar 

  3. Allen MS, Gindlin HM, Mayes RL (2011) Experimental modal substructuring to estimate fixed-base modes from tests on a flexible fixture. J Sound Vib 330:4413–4428

    Article  Google Scholar 

  4. Amsallem D, Farhat C (2011) An online method for interpolationg linear parametric reduced-order models. SIAM J Sci Comput 33:2169–2198

    Article  MATH  MathSciNet  Google Scholar 

  5. Argyris JH, Kelsey S (1959) The analysis of fuselages of arbitrary cross-section and taper: a DSIR sponsored reserach program on the development and application of the matrix force method and the digital computer. Aircr Eng Aerosp Technol 31:272–283

    Article  Google Scholar 

  6. Argyris J, Mlejnek HP (1991) Dynamics of structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  7. Balmes E (1996) Optimal Ritz vectors for component mode synthesis using the singular value decomposition. AIAA J 34:1256–1260

    Article  MATH  Google Scholar 

  8. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New York

    Google Scholar 

  9. Bathe KJ, Gracewski S (1981) On non-linear dynamic analysis using substructuring and mode superposition. Comput Struct 13:699–707

    Article  MATH  Google Scholar 

  10. Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, New York

    MATH  Google Scholar 

  11. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction. Wiley, Chichester

    Book  MATH  Google Scholar 

  12. Belytschko TB, Liu WK, Moran B (2000) Nonlinear finite element for continua and structures. Wiley, Chichester

    Google Scholar 

  13. Benfield WA, Hruda RF (1971) Vibration analysis of structures by component mode substitution. AIAA J 9:1255–1261

    Article  MATH  Google Scholar 

  14. Bland DR (1960) The theory of linear viscoelasticity. Pergamon, London

    MATH  Google Scholar 

  15. Bourquin F, d’Hennezel F (1992) Numerical study of an intrinsic component mode synthesis method. Comput Methods Appl Mech Eng 97:49–76

    Article  MATH  MathSciNet  Google Scholar 

  16. Brown AM, Ferri AA (1996) Probabilistic component mode synthesis of nondeterministic substructures. AIAA J 34:830–834

    Article  Google Scholar 

  17. Castanier MP, Tan YC, Pierre C (2001) Characteristic constraint modes for component mode synthesis. AIAA J 39:1182–1187

    Article  Google Scholar 

  18. Chatelin F (2012) Eigenvalues of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Book  Google Scholar 

  19. Clough RW, Penzien J (1975) Dynamics of structures. McGraw-Hill, New York

    MATH  Google Scholar 

  20. Craig RR (1985) A review of time domain and frequency domain component mode synthesis method in Combined experimental-analytical modeling of dynamic structural systems. In: Martinez DR, Miller AK (eds) 67 ASME-AMD. New York

  21. Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analyses. AIAA J 6:1313–1322

    Article  MATH  Google Scholar 

  22. Craig RR, Kurdila A (2006) Fundamentals of structural dynamics. Wiley, Chichester

    MATH  Google Scholar 

  23. Dautray R, Lions JL (1992) Mathematical analysis and numerical methods for science and technology. Springer, Berlin

    MATH  Google Scholar 

  24. de Klerk D, Rixen DJ, Voormeeren SN (2008) General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J 46:1169–1181

    Article  Google Scholar 

  25. El-Khoury O, Adeli H (2013) Recent advances on vibration control of structures and their dynamic loading. Arch Comput Methods Eng 20:353–360

    Article  Google Scholar 

  26. Ewins DJ (2000) Modal testing: theory, practice and applications, 2nd edn. Research Studies Press Ltd., Baldock

    Google Scholar 

  27. Farhat C, Geradin M (1994) On a component mode method and its application to incompatible substructures. Comput Struct 51:459–473

    Article  MATH  Google Scholar 

  28. Felippa CA, Park KC, Farhat C (2001) Partioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247–3270

    Article  MATH  Google Scholar 

  29. Geradin M, Rixen D (1997) Mechanical vibrations: theory and applications to structural dynamics, 2nd edn. Wiley, Chichester

    Google Scholar 

  30. Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3:380–380

    Article  Google Scholar 

  31. Hale AL, Meirovitch L (1982) A procedure for improving discrete substructure representation in dynamic synthesis. AIAA J 20:1128–1136

    Article  MATH  Google Scholar 

  32. Har J, Tamma K (2012) Advances in computational dynamics of particles, materials and structures. Wiley, Chichester

    Book  MATH  Google Scholar 

  33. Herran M, Nelias D, Combescure A, Chalons H (2011) Optimal component mode synthesis for medium frequency problem. Int J Numer Methods Eng 86:301–315

    Article  MATH  MathSciNet  Google Scholar 

  34. Hinke L, Dohnal F, Mace BR, Waters TP, Ferguson NS (2009) Component mode synthesis as a framework for uncertainty analysis. J Sound Vib 324:161–178

    Article  Google Scholar 

  35. Hintz RM (1975) Analytical methods in component modal synthesis. AIAA J 13:1007–1016

    Article  MATH  Google Scholar 

  36. Hong SK, Epureanu BI, Castanier MP, Gorsich DJ (2011) Parametric reduced-order models for predicting the vibration response of complex structures with component damage and uncertainties. J Sound Vib 330:1091–1110

    Article  Google Scholar 

  37. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, New York

    Google Scholar 

  38. Hurty WC (1960) Vibrations of structural systems by component mode synthesis. J Eng Mech 86:51–69

    Google Scholar 

  39. Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA J 3:678–685

    Article  Google Scholar 

  40. Inman DJ (2006) Vibration with control. Wiley, Chichester

    Book  Google Scholar 

  41. Irons B (1965) Structural eigenvalue problems: elimination of unwanted variables. AIAA J 3:961–962

    Article  Google Scholar 

  42. Jezequel L (1985) A hybrid method of modal synthesis using vibration tests. J Sound Vib 100:191–210

    Article  Google Scholar 

  43. Kassem M, Soize C, Gagliardini L (2011) Structural partitioning of complex structures in the medium-frequency range: an application to an automotive vehicle. J Sound Vib 330:937–946

    Article  Google Scholar 

  44. Kuhar EJ, Stahle CV (1974) Dynamic transformation method for modal synthesis. AIAA J 12:672–678

    Article  Google Scholar 

  45. Leung AYT (1993) Dynamic stiffness and substructures. Springer, Berlin

    Book  Google Scholar 

  46. Lim CN, Neild SA, Stoten DP, Drury D, Taylor CA (2007) Adaptive control strategy for dynamic substructuring tests. J Eng Mech 133:864–873

    Article  Google Scholar 

  47. Lindberg E, Horlin NE, Goransson P (2013) Component mode synthesis using undeformed interface coupling modes to connect soft and stiff substructures. Shock Vib 20:157–170

    Article  Google Scholar 

  48. Liu WK, Karpov EG, Park HS (2006) Nanomechanics and materials: theory, multiscale methods and applications. Wiley, Chichester

  49. Liu W, Ewins DJ (2000) Substructure synthesis via elastic media Part I: Joint identification. In: Proceedings of the 18th IMAC Conference on Computational Challenges in Structural Dynamics (IMAC-XVIII). Book Series: Proceedings of The Society of Photo-Optical Instrumentation Engineers (SPIE) Bellingham, vol 4062, pp 1153–1159

  50. MacNeal RH (1971) A hybrid method of component mode synthesis. Comput Struct 1:581–601

    Article  Google Scholar 

  51. Markovic D, Park KC, Ibrahimbegovic A (2007) Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis. Int J Numer Methods Eng 70:163–180

    Article  MATH  Google Scholar 

  52. Meirovitch L (1980) Computational methods in structural dynamics. Sijthoff and Noordhoff, Rockville

    MATH  Google Scholar 

  53. Meirovitch L, Hale AL (1981) On the substructure synthesis method. AIAA J 19:940–947

    Article  Google Scholar 

  54. Meirovitch L, Kwak MK (1991) Rayleigh–Ritz based substructure synthesis for flexible multibody systems. AIAA J 29:1709–1719

    Article  MATH  Google Scholar 

  55. Mignolet MP, Soize C, Avalos J (2013) Nonparametric stochastic modeling of structures with uncertain boundary conditions/coupling between substructures. AIAA J 51:1296–1308

    Article  Google Scholar 

  56. Morand HJP, Ohayon R (1979) Substructure variational analysis for the vibrations of coupled. Int J Numer Methods Eng 14:741–755

    Article  MATH  Google Scholar 

  57. Morand HJP, Ohayon R (1995) Fluid structure interaction. Wiley, Chichester

    MATH  Google Scholar 

  58. Morgan JA, Pierre C, Hulbert GM (1998) Calculation of component mode synthesis matrices from measured frequency response functions, part 1: theory. J Vib Acoust 120:503–508

    Article  Google Scholar 

  59. Morgan JA, Pierre C, Hulbert GM (1998) Calculation of component made synthesis matrices from measured frequency response functions, part 2: application. J Vib Acoust 120:509–516

    Article  Google Scholar 

  60. Nobari AS, Robb DA, Ewins DJ (1995) A new approach to modal-based structural dynamic-model updating and joint identification. Mech Syst Signal Process 9:85–100

    Article  Google Scholar 

  61. Oden JT, Reddy JN (2011) An introduction to the mathematical theory of finite elements. Dover, New York

    Google Scholar 

  62. Ohayon R, Soize C (1998) Structural acoustics and vibration. Academic Press, London

    Google Scholar 

  63. Ohayon R, Soize C (2012) Advanced computational dissipative structural acoustics and fluid-structure interaction in low- and medium-frequency domains - Reduced-order models and uncertainty quantification. Int J Aeronaut Space Sci 13:127–153

    Google Scholar 

  64. Ohayon R, Soize C (2013) Structural dynamics in encyclopedia of applied and computational mathematics (EACM). In: Engquist B, Oden JT (eds) Field editor for Mechanics. Springer, New York

    Google Scholar 

  65. Ohayon R, Soize C (2014) Advanced computational vibroacoustics. Cambridge University Press, New York

    Book  Google Scholar 

  66. Ohayon R, Soize C (2014) Clarification about component mode synthesis methods for substructures with physical flexible interfaces. Int J Aeronaut Space Sci. Accepted 13 May 2014

  67. Ohayon R, Sampaio R, Soize C (1997) Dynamic substructuring of damped structures using singular value decomposition. J Appl Mech 64:292–298

    Article  MATH  Google Scholar 

  68. Park KC, Park YH (2004) Partitioned component mode synthesis via a flexibility approach. AIAA J 42:1236–1245

    Article  Google Scholar 

  69. Perdahcioglu DA, Geijselaers HJM, Ellenbroek MHM, de Boer A (2012) Dynamic substructuring and reanalysis methods in a surrogate-based design optimization environment. Struct Multidiscip Optim 45:129–138

    Article  MathSciNet  Google Scholar 

  70. Philippe B, Sameh A (2011) Eigenvalue and singular value problems 608–615 Encyclopedia of parallel computing. In: Padua D (ed) Springer, Berlin

  71. Przemieniecki JS (1963) Matrix structural analysis of substructures. AIAA J 1:138–147

    Article  Google Scholar 

  72. Reynders E (2012) System identification methods for (operational) modal analysis: review and comparaison. Arch Comput Methods Eng 19:51–124

    Article  MathSciNet  Google Scholar 

  73. Rixen DJ (2004) A dual Craig-Bampton method for dynamic substructuring. J Comput Appl Math 168:383–391

    Article  MATH  MathSciNet  Google Scholar 

  74. Rubin S (1975) Improved component-mode representation for structural dynamic analysis. AIAA J 13:995–1006

    Article  MATH  Google Scholar 

  75. Saad Y (2011) Numerical methods for large eigenvalue problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Book  MATH  Google Scholar 

  76. Sanchez-Hubert J, Sanchez-Palencia E (1989) Vibration and coupling of continuous systems: asymptotic methods. Springer, Berlin

    Book  MATH  Google Scholar 

  77. Sarkar A, Ghanem R (2003) A substructure approach for the midfrequency vibration of stochastic systems. J Acoust Soc Am 113:1922–1934

    Article  Google Scholar 

  78. Soize C (2012) Stochastic models of uncertainties in computational mechanics. American Society of Civil Engineers, Reston

    Book  Google Scholar 

  79. Soize C, Batou A (2011) Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes. J Appl Mech 78:061003-1–061003-9

    Article  Google Scholar 

  80. Soize C, Chebli H (2003) Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model. J Eng Mech 129:449–457

    Article  Google Scholar 

  81. Soize C, Mziou S (2003) Dynamic substructuring in the medium-frequency range. AIAA J 41:1113–1118

    Article  Google Scholar 

  82. Soize C, Poloskov IE (2012) Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation. Comput Math Appl 64:3594–3612

  83. Suarez LE, Singh MP (1992) Improved fixed interface method for modal synthesis. AIAA J 30:2952–2958

    Article  MATH  Google Scholar 

  84. Truesdell C (1984) Mechanics of solids, Vol III, theory of viscoelasticity, plasticity, elastic waves and elastic stability. Springer, Berlin

    Google Scholar 

  85. Tu JY, Yang HT, Lin PY, Chen PC (2013) Dynamics, control and real-time issues related to substructuring techniques: application to the testing of isolated structure systems. J Syst Control Eng 227:507–522

    Google Scholar 

  86. Urgueira APV (1989) Dynamic analysis of coupled structures using experimental data. Thesis of the University of London for the Diploma of Imperial College of Science, Technology and Medecine. London

  87. Voormeeren SN, van der Valk PL, Rixen DJ (2011) Generalized methodology for assembly and reduction of component models for dynamic substructuring. AIAA J 49:1010–1020

    Article  Google Scholar 

  88. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Butterworth-Heinemann, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Brazil-France project CAPES-COFECUB Ph672/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Soize.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohayon, R., Soize, C. & Sampaio, R. Variational-Based Reduced-Order Model in Dynamic Substructuring of Coupled Structures Through a Dissipative Physical Interface: Recent Advances. Arch Computat Methods Eng 21, 321–329 (2014). https://doi.org/10.1007/s11831-014-9107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9107-y

Keywords

Navigation