Skip to main content
Log in

Implicit Numerical Integration of Nonsmooth Multisurface Yield Criteria in the Principal Stress Space

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Plasticity models employing multiple yield surfaces are frequently met in plasticity theory and engineering practice. The multiple yield surfaces may or may not intersect in a smooth manner, with the latter case being a superset of the former, typically encountered more often in engineering problems and covered within this work. Prominent members of this class of plasticity models can be found in a wide range of applications in Soil Mechanics, Rock Mechanics, Damage Mechanics, metal plasticity, concrete modeling or in the modeling of brittle or cohesive/frictional materials.

While the importance of these models is widely acknowledged, difficulties arising from the singularities induced by the nonsmooth intersections of the yield surfaces, introduce severe algorithmic and numerical complexities that usually require specific treatment of each model. Three main problems can be identified, originating mainly from the application of the normality hypothesis, namely that (a) the elastic domain is subdifferential with respect to the stress vector at the intersections of the yield surfaces, (b) severe numerical errors are present in the vicinity of intersections since the derivatives of the yield surfaces are not always defined in these areas and (c) the set of the yield surfaces considered to be ultimately active is not known a priori.

The objectives of this article are (a) to provide a comprehensive review of the related literature and an extensive overview of the solution techniques proposed by different researchers, (b) to present the formulation and propose the algorithmic treatment for the problem of nonsmooth multisurface plasticity models and finally (c) to give implementation details for some of the most widely used nonsmooth multisurface plasticity models.

The proposed algorithm is based on a spectral representation of stresses and strains for the case of infinitesimal deformation plasticity and the reformulation of the return mapping scheme in principal stress directions. The determination of the set of the yield surfaces that will remain ultimately active is identified by involving a systematic enforcement of the Karush–Kuhn–Tucker conditions, providing in this way a surface agnostic implementation.

Four representative examples of nonsmooth, multisurface plasticity models, are extensively presented and examined within the framework of the proposed algorithm. These are the Tresca, the Mohr–Coulomb, the Hoek–Brown and the Drucker–Prager (in the case that it is accompanied with a tension cut–off type surface) yield criteria, all of which are well established in the related literature and engineering practice.

The efficiency, robustness and accuracy of the proposed algorithm is demonstrated through a series of numerical examples with excellent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Acheson D (1990) Elementary fluid dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Anderson E, Bai Z, Bischof C (1999) LAPACK users’ guide. In: Society for industrial mathematics

    Google Scholar 

  3. Argyris JH, Faust G, Szimmat J, Warnke E, Willam K (1974) Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl Eng Des 28(1):42–75

    Google Scholar 

  4. Armero F, Perez-Foguet A (2002) On the formulation of closest-point projection algorithms in elastoplasticity—part I. The variational structure. Int J Numer Methods Eng 53(2):297–329

    MathSciNet  MATH  Google Scholar 

  5. Atkinson J (2007) The mechanics of soils and foundations. Taylor & Francis, London

    Google Scholar 

  6. Aysen A (2002) Soil mechanics: basic concepts and engineering applications. Taylor & Francis, London

    Google Scholar 

  7. Batoz J, Dhatt G (1979) Incremental displacement algorithms for nonlinear problems. Int J Numer Methods Eng 14(8):1262–1267

    MathSciNet  MATH  Google Scholar 

  8. Bauschinger J (1886) Yearly Report. Mitt Mech Lab Munich

  9. Bieniawski Z (1974) Geomechanics classification of rock masses and its application in tunneling

    Google Scholar 

  10. Bland D (1957) The associated flow rule of plasticity. J Mech Phys Solids 6(1):71–78

    MathSciNet  MATH  Google Scholar 

  11. Borja R, Sama K, Sanz P (2003) On the numerical integration of three-invariant elastoplastic constitutive models. Comput Methods Appl Mech Eng 192(910):1227–1258

    MATH  Google Scholar 

  12. Braudel H, Abouaf M, Chenot J (1986) An implicit and incremental formulation for the solution of elastoplastic problems by the finite element method. Comput Struct 22(5):801–814

    MATH  Google Scholar 

  13. Broyden C (1970) The convergence of a class of double-rank minimization algorithms—1. General considerations. IMA J Appl Math 6(1):76

    MathSciNet  MATH  Google Scholar 

  14. Budhu M (2009) Soil mechanics and foundations. Wiley, New York

    Google Scholar 

  15. Burzyñski W (1929) Über die Anstrengungshypothesen. Schweiz Bauztg 95:259–263

    Google Scholar 

  16. Bushnell D (1977) A strategy for the solution of problems involving large deflections, plasticity and creep. Int J Numer Methods Eng 11(4):683–708

    MATH  Google Scholar 

  17. Cela J (2002) Material identification procedure for elastoplastic Drucker–Prager model. J Eng Mech 128:586

    Google Scholar 

  18. Cervera M, Oliver J, Herrero E, Oñate E (1990) A computational model for progressive cracking in large dams due to the swelling of concrete. Eng Fract Mech 35(1):573–585

    Google Scholar 

  19. Chen W, Zhang H (1990) Structural plasticity. Springer, Berlin

    Google Scholar 

  20. Chen WF (1984) Plasticity in reinforced concrete. McGraw-Hill, New York

    Google Scholar 

  21. Cheng Y, Liu S (1990) Power caverns of the mingtan pumped storage project, Taiwan. Rock Mech Rock Eng 5:111–132

    Google Scholar 

  22. Christoffersen J, Hutchinson JW (1979) A class of phenomenological corner theories of plasticity. J Mech Phys Solids 27(5):465–487

    MathSciNet  MATH  Google Scholar 

  23. Clausen J, Damkilde L (2007) An exact implementation of the Hoek–Brown criterion for elasto-plastic finite element calculations. Int J Rock Mech Min Sci 45(6):831–847

    Google Scholar 

  24. Clausen J, Damkilde L, Andersen L (2007) An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space. Comput Struct 85(23):1795–1807

    Google Scholar 

  25. Cook RD, Malkus DS, Plesha ME, Witt RJ (1989) Concepts and applications of finite element analysis. Wiley, New York

    MATH  Google Scholar 

  26. Cormeau I (1975) Numerical stability in quasi–static elasto/visco–plasticity. Int J Numer Methods Eng 9(1):109–127

    MathSciNet  MATH  Google Scholar 

  27. Coulomb C (1776) Essai sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a l’architecture. In: Memoires de l’academie royale pres divers savants, vol 7

    Google Scholar 

  28. Cox A (1962) Axially-symmetric plastic deformation in soils–II. Indentation of ponderable soils. Int J Mech Sci 4(5):371–380

    Google Scholar 

  29. Crisfield M (1981) Numerical analysis of structures. In: Applied science publishers Ltd., developments in thin-walled structures, vol 1, pp 235–284

    Google Scholar 

  30. Crisfield M (1987) Plasticity computations using the Mohr–Coulomb yield criterion. Eng Comput 4:300–308

    Google Scholar 

  31. Crisfield M (1991) Non-linear finite element analysis of solids and structures, vol II. Wiley, New York

    Google Scholar 

  32. Crisfield M (1991) Non-linear finite element analysis of solids and structures, vol I. Wiley, New York

    Google Scholar 

  33. Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th national conference. ACM, New York, pp 157–172

    Google Scholar 

  34. De Borst R (1986) Non-linear analysis of frictional materials. PhD Thesis, Technische Universiteit Delft

  35. De Borst R (1987) Integration of plasticity equations for singular yield functions. Comput Struct 26(5):823–829

    MATH  Google Scholar 

  36. De Borst R, Bićanić N et al. (1991) A note on singularity indicators for Mohr–Coulomb type yield criteria. Comput Struct 39(1):219–220

    MATH  Google Scholar 

  37. De Saint-Venant B (1870) Sur l’établissement des équations des mouvements intérieurs opérés dans les corps solides ductiles au delá des limites oú l’élasticité pourrait les ramener á leur premier état. C R Acad Sci 70:473–480

    Google Scholar 

  38. Desai CS, Siriwardane HJ (1984) Constitutive laws for engineering materials, with emphasis on geologic materials, vol 11. Prentice Hall, New York

    MATH  Google Scholar 

  39. DiMaggio FL, Sandler IS (1971) Material model for granular soils. J Eng Mech Div 97(3):935–950

    Google Scholar 

  40. Dolbow J, Belytschko T (1999) Volumetric locking in the element free Galerkin method. Int J Numer Methods Eng 46(6):925–942

    MathSciNet  MATH  Google Scholar 

  41. Drucker D (1951) Spannungsverteilung in Plastischen Körpern. In: Proc. 1st US national Congress of applied mechanics. ASME, New York, pp 487–491

    Google Scholar 

  42. Drucker D, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10(2):157–165

    MathSciNet  MATH  Google Scholar 

  43. Drucker DC (1956) Variational principles in the mathematical theory of plasticity. Division of applied mathematics. Brown University Press, Providence

    Google Scholar 

  44. Duvaut G, Lions J (1972) Les inequations en mechanique et en physique. Dunod, Paris

    Google Scholar 

  45. Duvaut G, Lions J (1976) Inequalities in mechanics and physics. Springer, Berlin

    MATH  Google Scholar 

  46. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317

    MathSciNet  MATH  Google Scholar 

  47. Fletcher R (1987) Practical methods of optimization. Wiley, Chichester

    MATH  Google Scholar 

  48. Foster C, Regueiro R, Fossum A, Borja R (2005) Implicit numerical integration of a three-invariant, Isotropic/Kinematic hardening cap plasticity model for geomaterials. Comput Methods Appl Mech Eng 194(50–52):5109–5138

    MATH  Google Scholar 

  49. Goldfarb D (1970) A family of variable metric updates derived by variational means. Math Comput 24(109):23–26

    MathSciNet  MATH  Google Scholar 

  50. Gourvenec S, Randolph M, Kingsnorth O (2006) Undrained bearing capacity of square and rectangular footings. Int J Geomech 6:147

    Google Scholar 

  51. Gudehus Gv (1973) Elastoplastische Stoffgleichungen für trockenen sand. Arch Appl Mech 42(3):151–169

    MATH  Google Scholar 

  52. Haigh B (1919) The strain energy function and the elastic limit. In: British association of advancement of sciences, pp 486–495

    Google Scholar 

  53. Halmos P (1994) Finite-dimensional vector spaces. Springer, Berlin

    Google Scholar 

  54. Han W, Reddy B (1999) Plasticity: mathematical theory and numerical analysis. Springer, Berlin

    MATH  Google Scholar 

  55. Han W, Reddy BD, Schroeder GC (1997) Qualitative and numerical analysis of quasi-static problems in elastoplasticity. SIAM J Numer Anal 34(1):143–177

    MathSciNet  MATH  Google Scholar 

  56. Hansen J (1970) A revised and extended formula for bearing capacity. In: Danish geotechnical institute bulletin, vol 28, pp 5–11

    Google Scholar 

  57. He Q, Vallée C, Lerintiu C (2005) Explicit expressions for the plastic normality-flow rule associated to the tresca yield criterion. Z Angew Math Phys 56(2):357–366

    MathSciNet  MATH  Google Scholar 

  58. Hencky H (1923) Über Einige Statisch Bestimmte Fälle des Gleichgewichts in Plastischen Körpern. Z Angew Math Mech 3(4):241–251

    MATH  Google Scholar 

  59. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  60. Hlaváček I (1980) A finite element solution for plasticity with strain-hardening. In: RAIRO annal numér, vol 14, pp 347–368

    Google Scholar 

  61. Hlaváček I, Haslinger J, Nečas J, Lovíček J (1988) Solution of variational inequalities in mechanics. Applied mathematical science, vol 66. Springer, New York

    MATH  Google Scholar 

  62. Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci Geomech Abstr 27(3):227–229

    Google Scholar 

  63. Hoek E (1994) Strength of rock and rock masses. News—Int Soc Rock Mech 2(2):4–16

    Google Scholar 

  64. Hoek E, Brown E (1980) Empirical strength criteria for rock masses. J Geotech Eng Div 106:1013–1035

    Google Scholar 

  65. Hoek E, Brown E (1990) Underground excavations in rock. Spon, London

    Google Scholar 

  66. Hoek E, Brown E (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Google Scholar 

  67. Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion–2002 edition. In: 5th North American rock mechanics symposium and 17th tunneling association of Canada conference: NARMS-TAC, pp 267–271

    Google Scholar 

  68. Hoek E, Diederichs M (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43(2):203–215

    Google Scholar 

  69. Hoek E, Kaiser P, Bawden W (1995) Support of underground excavations in hard rock. Taylor & Francis, London

    Google Scholar 

  70. Hoek E, Marinos P (2007) A brief history of the development of the Hoek–Brown failure criterion. In: Soils and rocks, vol 2

    Google Scholar 

  71. Hoek E, Wood D, Shah S (1992) A modified Hoek–Brown criterion for jointed rock masses. In: Rock characterization, international society for rock mechanics symposium: eurock, vol 92, pp 209–214

    Google Scholar 

  72. Hooke R (1678) De potentiâ restitutiva. John Martyn, London

    Google Scholar 

  73. Huang J, Griffiths D (2008) Observations on return mapping algorithms for piecewise linear yield criteria. Int J Geomech 8(4):253–265

    Google Scholar 

  74. Hughes T (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15(9):1413–1418

    MATH  Google Scholar 

  75. Hughes T, Taylor R (1978) Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis. Comput Struct 8:169–173

    MATH  Google Scholar 

  76. Hughes TJ, Shakib F (1986) Pseudo-corner theory: a simple enhancement of j 2-flow theory for applications involving non-proportional loading. Eng Comput 3(2):116–120

    Google Scholar 

  77. Ilyushin A (1956) Plasticité. Eyrolles, Paris

    Google Scholar 

  78. Jaeger J, Cook N, Zimmerman R, Zimmerman R (2007) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  79. Jâky J (1944) A Nyugalmi Nyomâs Tényezöje. Magy Mérn Épít Egylet Közlönye (J Soc Hung Archit Eng) 355–358

  80. Jeremić B, Sture S (1997) Implicit integrations in elastoplastic geotechnics. Mech Cohes-Frict Mater 2(2):165–183

    Google Scholar 

  81. Jirásek M, Bažant Z (2002) Inelastic analysis of structures. Wiley, New York

    Google Scholar 

  82. Johnson C (1976) Existence theorems for plasticity problems. J Math Pures Appl 55(4):431–444

    MathSciNet  MATH  Google Scholar 

  83. Johnson C (1976) On finite element methods for plasticity problems. Numer Math 26(1):79–84

    MathSciNet  MATH  Google Scholar 

  84. Johnson C (1977) A mixed finite element method for plasticity problems with hardening. SIAM J Numer Anal 14(4):575–583

    MathSciNet  MATH  Google Scholar 

  85. Johnson C (1978) On plasticity with hardening. J Math Anal Appl 62(2):325–336

    MathSciNet  MATH  Google Scholar 

  86. Kachanov L (1974) Fundamentals of theory of plasticity

    Google Scholar 

  87. Karaoulanis F (2003) Viscoplastic Material Modelling. Master’s Thesis, Technische Universität Müchen, Germany

  88. Karaoulanis F (2008) Nonsmooth multisurface plasticity in principal stress space. In: 6th GRACM international Congress on computational mechanics

    Google Scholar 

  89. Karaoulanis F (2009) An efficient algorithm for nonsmooth multisurface plasticity. In: X international conference on computational plasticity

    Google Scholar 

  90. Karaoulanis F (2010) Multisurface elastoplastic yield criteria. Numerical implementation in principal stress space and application in geotechnical engineering problems (in Greek). PhD Thesis, Aristotle University of Thessaloniki

  91. Karaoulanis F (2011) An improved accuracy analysis of elastoplastic integration algorithms. In: Oñate E, Owen D (eds) XI international conference on computational plasticity

    Google Scholar 

  92. Karaoulanis F (2011) Design and implementation of a general purpose finite element library. In: 7th GRACM international Congress on computational mechanics

    Google Scholar 

  93. Karaoulanis F (2011) On the formulation of a spectral return mapping algorithm for nonsmooth multisurface viscoplasticity. In: 7th GRACM international Congress on computational mechanics

    Google Scholar 

  94. Karaoulanis F, Chatzigogos T (2009) Implicit numerical integration of the Mohr–Coulomb surface in principal stress space. In: 2nd South-East European conference on computational mechanics

    Google Scholar 

  95. Karaoulanis F, Chatzigogos T (2010) Implicit numerical integration of the Hoek–Brown yield criterion in principal stress space. In: IV European Congress on computational mechanics

    Google Scholar 

  96. Karaoulanis F, Panagiotopoulos C, Paraskevopoulos E (2006) Recent developments in finite element programming. In: Kohić M, Papadrakakis M (eds) First South-East European conference on computational mechanics, pp 101–107

    Google Scholar 

  97. Karaoulanis FE (2013) Nemesis. An experimental finite element code. http://www.nemesis-project.org (online; accessed 11 March 2013)

  98. Karush W (1939) Minima of Functions of Several Variables with Inequalities as Side Constraints. Master’s Thesis, Department of Mathematics, University of Chicago

  99. Khan A, Huang S (1995) Continuum theory of plasticity. Wiley, New York

    MATH  Google Scholar 

  100. Koiter W (1953) Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Q Appl Math 11(3):350–354

    MathSciNet  MATH  Google Scholar 

  101. Koiter W (1960) General theorems for elastic-plastic solids. In: Sneddon I, Hill R (eds) Progress in solid mechanics, vol 6. North-Holland, Amsterdam, pp 167–221

    Google Scholar 

  102. Korneev VG, Langer U (1984) Approximate solution of plastic flow theory problems, vol 69. Teubner, Leipzig

    MATH  Google Scholar 

  103. Kreiss H, Lorenz J (1989) Initial-boundary value problems and the Navier–Stokes equations. Academic Press, San Diego

    MATH  Google Scholar 

  104. Krieg R, Key S (1976) Implementation of a time independent plasticity theory into structural computer programs. Constitutive equations. In: Viscoplasticity: computational and engineering aspects, pp 125–137

    Google Scholar 

  105. Kropik C (1994) Three-dimensional elasto-viscoplastic finite element analysis of deformation and stresses resulting from the excavation of shallow tunnels. PhD Thesis, Technische Universität Wien

  106. Kuhn H, Tucker A (1982) Nonlinear programming. In: ACM SIGMAP bulletin, pp 6–18

    Google Scholar 

  107. Lade PV, Duncan JM (1975) Elastoplastic stress-strain theory for cohesionless soil. J Geotech Eng Div 101(10):1037–1053

    Google Scholar 

  108. Laine E, Vallée C, Fortuné D (1999) Nonlinear isotropic constitutive laws: choice of the three invariants, convex potentials and constitutive inequalities. Int J Eng Sci 37(15):1927–1941

    MATH  Google Scholar 

  109. Lamé G (1852) Leçons sur la Théorie Mathématique de l’Élasticité des Corps Solides. Bachelier

  110. Larsson R, Runesson K (1996) Implicit integration and consistent linearization for yield criteria of the Mohr–Coulomb type. Mech Cohes-Frict Mater 1(4):367–383

    Google Scholar 

  111. Lemaitre J, Chaboche JL (1990) Mechanics of solids materials. Cambridge University Press, Cambridge

    Google Scholar 

  112. Levin E (1955) Indentation pressure of a smooth circular punch. Q Appl Math 13:133–137

    MATH  Google Scholar 

  113. Levy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. C R Math Acad Sci 70:1323–1325

    MATH  Google Scholar 

  114. Levy M (1871) Extrait du mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état; présenté le 20 juin 1870. J Math Pures Appl 369–372

  115. Li Y, Babušska I (1996) A convergence analysis of a p-version finite element method for one-dimensional elastoplasticity problem with constitutive laws based on the gauge function method. SIAM J Numer Anal 33(2):809–842

    MathSciNet  MATH  Google Scholar 

  116. Li Y, Babušska I (1997) A convergence analysis of an h-version finite-element method with high-order elements for two-dimensional elasto-plasticity problems. SIAM J Numer Anal 34(3):998–1036

    MathSciNet  MATH  Google Scholar 

  117. Lode W (1926) Versuche über den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer und Nickel. Z Phys 36(11–12):913–939

    Google Scholar 

  118. Lorig L, Varona P (2001) Practical slope-stability analysis using finite-difference codes. In: Slope stability in surface mining, pp 115–124

    Google Scholar 

  119. Lubliner J (1972) On the thermodynamic foundations of non-linear solid mechanics. Int J Non-Linear Mech 7(3):237–254

    MATH  Google Scholar 

  120. Lubliner J (1990) Plasticity theory. Macmillan, New York

    MATH  Google Scholar 

  121. Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Google Scholar 

  122. Maier G (1970) A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica 5(1):54–66

    MathSciNet  MATH  Google Scholar 

  123. Mandel J (1964) Contribution theorique a l’etude de l’ecroissage et des lois de l’ecoulement plastique. In: 11th international Congress on applied mechanics, pp 502–509

    Google Scholar 

  124. Mandel J (1965) Generalisation de la theorie de plasticite de WT koiter. Int J Solids Struct 1(3):273–295

    Google Scholar 

  125. Marinos V, Marinos P, Hoek E (2005) The geological strength index: applications and limitations. Bull Eng Geol Environ 64(1):55–65

    Google Scholar 

  126. Marques J (1984) Stress computation in elastoplasticity. Eng Comput 1:42–51

    Google Scholar 

  127. Martin J (1975) Plasticity. Fundamentals and general results. MIT Press, Cambridge

    Google Scholar 

  128. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. In: Proc. JSCE, vol 232, pp 59–70

    Google Scholar 

  129. Matthies H, Strang G (1979) The solution of nonlinear finite element equations. Int J Numer Methods Eng 14(11):1613–1626

    MathSciNet  MATH  Google Scholar 

  130. Melan E (1938) Zur Plastizität des Räumlichen Kontinuums. Arch Appl Mech 9(2):116–126

    MATH  Google Scholar 

  131. Meyerhof G (1964) Some recent research on the bearing capacity of foundations. Can Geotech J 1(1):16–26

    Google Scholar 

  132. Michalowski R, Dawson E (2002) Three-dimensional analysis of limit loads on Mohr–Coulomb soil. In: Foundations of civil and environmental engineering, vol 1, pp 137–147

    Google Scholar 

  133. Moreau J (1976) Application of complex analysis to the treatment of elastoplstic systems. In: Germain P, Nayroles B (eds) Applications of methods of functional analysis to problems in mechanics. Springer, Berlin

    Google Scholar 

  134. Moreau J (1977) Evolution problem associated with a moving convex set in a Hilbert space. J Differ Equ 26(3):347–374

    MathSciNet  MATH  Google Scholar 

  135. Muskhelishvili N (1977) Some basic problems of the mathematical theory of elasticity. Springer, Berlin

    Google Scholar 

  136. Nagdhi P (1960) Stress-strain relations in plasticity and thermoplasticity. In: Proceedings of the 2nd symposium on naval structural mechanics. Pergamon, London

    Google Scholar 

  137. Nayak G, Zienkiewicz O (1972) Elasto-plastic stress analysis. A generalization for various contitutive relations including strain softening. Int J Numer Methods Eng 5(1):113–135

    MATH  Google Scholar 

  138. Neal BG (1961) The effect of shear and normal forces on the fully plastic moment of a beam of rectangular cross section. J Appl Mech 28:269

    MATH  Google Scholar 

  139. Nemat-Nasser S (1983) On finite plastic flow of crystalline solids and geomaterials. J Appl Mech 50:1114–1126

    MATH  Google Scholar 

  140. Nyssen C (1981) An efficient and accurate iterative method, allowing large incremental steps, to solve elasto-plastic problems. Comput Struct 13:63–71

    MATH  Google Scholar 

  141. Oñate E, Oller S, Oliver J, Lubliner J (1993) A constitutive model for cracking of concrete based on the incremental theory of plasticity. Eng Comput 5(4):309–319

    Google Scholar 

  142. Ogden R (1984) Non–linear elastic deformations. Ellis Horwood, Chichester

    Google Scholar 

  143. Ogden R (1997) Non-linear elastic deformations. Dover Publications, New York

    Google Scholar 

  144. Oller S, Oñate E, Oliver J, Lubliner J (1990) Finite element nonlinear analysis of concrete structures using a “plastic-damage model”. Eng Fract Mech 35(1):219–231

    Google Scholar 

  145. Oñate E (2008) Structural analysis with the finite element method. Linear statics, vol 1. Springer, Berlin

    Google Scholar 

  146. Oñate E, Owen R (2007) Computational plasticity, vol 7. Springer, Berlin

    MATH  Google Scholar 

  147. Ortiz M, Popov E (1985) Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng 21(9):1561–1576

    MathSciNet  MATH  Google Scholar 

  148. Ortiz M, Simo J (1986) An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng 23(3):353–366

    MathSciNet  MATH  Google Scholar 

  149. Ottosen N, Ristinmaa M (2005) The mechanics of constitutive modeling. Elsevier, Amsterdam

    Google Scholar 

  150. Owen D, Hinton E (1980) Finite elements in plasticity: theory and practice. Pineridge, Swansea

    MATH  Google Scholar 

  151. Owen D, Marques J, de Sa JC (1986) Reliability considerations in the numerical solution of elasto-plastic, visco-plastic and flow problems. In: Reliability of methods for engineering analysis. Pineridge, Swansea, pp 221–254

    Google Scholar 

  152. Pan X, Hudson J (1988) A simplified three dimensional Hoek–Brown yield criterion. In: Rock mechanics and power plants. Balkema, Rotterdam, pp 95–103

    Google Scholar 

  153. Pankaj Bićanić N (1989) On multivector stress returns in Mohr–Coulomb plasticity. In: Proc. 2nd int. conf. computational plasticity: models, software and applications. Pineridge, Swansea, pp 421–436

    Google Scholar 

  154. Pankaj Bićanić N (1990) Singularity indicators for stress return mapping in hardening/softening Mohr–Coulomb plasticity. In: Proc. int. conf. numerical methods in engineering: theory and applications, vol 2, pp 854–861

    Google Scholar 

  155. Pankaj Bićanić N (1997) Detection of multiple active yield conditions for Mohr–Coulomb elasto-plasticity. Comput Struct 62(1):51–61

    MATH  Google Scholar 

  156. Parlett B (1998) The symmetric eigenvalue problem. In: Society for industrial mathematics

    Google Scholar 

  157. Perić D, Neto E (1999) A new computational model for tresca plasticity at finite strains with an optimal parametrization in the principal space. Comput Methods Appl Mech Eng 171(3–4):463–489

    MATH  Google Scholar 

  158. Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

    Google Scholar 

  159. Pierce M, Brandshaug T, Ward M (2001) Slope stability assessment at the main cresson mine. In: Slope stability in surface mining, pp 239–250

    Google Scholar 

  160. Pinsky P, Ortiz M, Pister K (1983) Numerical integration of rate constitutive equations in finite deformation analysis. Comput Methods Appl Mech Eng 40(2):137–158

    MATH  Google Scholar 

  161. Potts D, Zdravković L (1999) Finite element analysis in geotechnical engineering: theory. Telford, Slough

    Google Scholar 

  162. Prager W (1949) Recent developments in the mathematical theory of plasticity. J Appl Phys 20(3):235–241

    MathSciNet  MATH  Google Scholar 

  163. Prager W (1955) The theory of plasticity: a survey of recent achievements. Proc Inst Mech Eng 169(1):41–57

    MathSciNet  Google Scholar 

  164. Prager W, Hodge PG (1951) Theory of perfectly plastic solids

    MATH  Google Scholar 

  165. Prandtl L (1920) Über die Harte Plastischer Korper. In: Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen. Mathematisch Phisicalische Klasse, p 74

    Google Scholar 

  166. Prandtl L (1921) Über die Eindringungsfestigkeit (Härte) Plastische Baustoffe und die Festigkeit von Schneiden. Z Angew Math Mech 1(1):15–20

    MATH  Google Scholar 

  167. Prandtl L (1924) Spannungsverteilung in Plastischen Körpern. In: Proceedings of the 1st international Congress on applied mechanics, Delft, pp 43–54

    Google Scholar 

  168. Prandtl L (1928) Ein Gedankenmodell zur Kinetischen theorie der Festen Körper. Z Angew Math Mech 8(2):85–106

    MATH  Google Scholar 

  169. Reuss A (1930) Berücksichtigung der Elastischen formänderung in der Plastizitätstheorie. Z Angew Math Mech 10(3):266–274

    MATH  Google Scholar 

  170. Robinson M (1971) A comparison of yield surfaces for thin shells. Int J Mech Sci 13(4):345–354

    Google Scholar 

  171. Saksala T (2011) Geometric return algorithm for non-associated plasticity with multiple yield planes extended to linear softening/hardening models. Raken Mek (J Struct Mech) 42(2):83–98

    Google Scholar 

  172. Schleicher F (1926) Der Spannungszustand an der Fliessgrenze. Z Angew Math Mech 6

  173. Schofield AN, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  174. Schreyer H, Kulak R, Kramer J (1979) Accurate numerical solutions for elastic-plastic models. J Press Vessel Technol 101:226–234

    Google Scholar 

  175. Shanno D (1970) Conditioning of Quasi–Newton methods for function minimization. Math Comput 24(111):647–656

    MathSciNet  Google Scholar 

  176. Shanno D, Kettler P (1970) Optimal conditioning of Quasi–Newton methods. Math Comput 24(111):657–664

    MathSciNet  Google Scholar 

  177. Shield R, Drucker D (1953) The Application of Limit Analysis to Punch-Indentation Problems. J Appl Mech 20(4)

  178. Simo J (1998) Numerical analysis and simulation of plasticity. Handb Numer Anal 6:179–499

    MathSciNet  Google Scholar 

  179. Simo J, Hughes T (1998) In: Computational inelasticity. Interdisciplinary applied mathematics, New York

    Google Scholar 

  180. Simo J, Kennedy J, Govindjee S (1988) Non-smooth multisurface plasticity and viscoplasticity. Loading/Unloading conditions and numerical algorithms. Int J Numer Methods Eng 26(10):2161–2185

    MathSciNet  MATH  Google Scholar 

  181. Simo J, Ortiz M (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49(2):221–245

    MATH  Google Scholar 

  182. Simo J, Taylor R (1986) A return mapping algorithm for plane stress elastoplasticity. Int J Numer Methods Eng 22(3):649–670

    MathSciNet  MATH  Google Scholar 

  183. Simo JC, Hjelmstad KD, Taylor RL (1984) Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear. Comput Methods Appl Mech Eng 42(3):301–330

    MATH  Google Scholar 

  184. Sjöberg J, Sharp J, Malorey D (2001) Slope stability at aznalcóllar. In: Slope stability in surface mining, pp 183–202

    Google Scholar 

  185. Skrzypek JJ, Hetnarski RB (1993) Plasticity and creep: theory, examples, and problems. Begell House, New York

    MATH  Google Scholar 

  186. Sloan S (1987) Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int J Numer Methods Eng 24(5):893–911

    MathSciNet  MATH  Google Scholar 

  187. Sloan S, Booker J (1986) Removal of singularities in tresca and Mohr–Coulomb yield functions. Commun Appl Numer Methods 2(2):173–179

    Google Scholar 

  188. Sloan S, Randolph M (1982) Numerical prediction of collapse loads using finite element methods. Int J Numer Anal Methods Geomech 6(1):47–76

    MATH  Google Scholar 

  189. Sonmez H, Ulusay R (1999) Modifications to the geological strength index (gsi) and their applicability to stability of slopes. Int J Rock Mech Min Sci 36(6):743–760

    Google Scholar 

  190. de Souza Neto E, Perić D, Owen D (2008) Computational methods for plasticity: theory and applications. Wiley, New York

    Google Scholar 

  191. Temam R (1985) Mathematical problems in plasticity. Gauthier-Villars, Paris

    Google Scholar 

  192. Terzaghi K, Peck R (1943) Soil mechanics. Wiley, New York

    Google Scholar 

  193. Timoshenko SP (1983) History of strength of materials. Dover, New York

    Google Scholar 

  194. Tresca H (1864) Sur l’écoulement des corps solides soumisa de fortes pressions. C R Acad Sci 59:754

    Google Scholar 

  195. Tresca H (1872) Mémoire sur le poinçonnage des métaux. In: Memoires des savants etrangers, vol 20, pp 617–638

    Google Scholar 

  196. Triantafyllidis N, Needleman A, Tvergaard V (1982) On the development of shear bands in pure bending. Int J Solids Struct 18(2):121–138

    MATH  Google Scholar 

  197. Tvergaard V, Needleman A, Lo KK (1981) Flow localization in the plane strain tensile test. J Mech Phys Solids 29(2):115–142

    MATH  Google Scholar 

  198. Vesic A (1975) Bearing capacity of shallow foundations. In: Foundation engineering handbook, vol 2, pp 121–147

    Google Scholar 

  199. Von Mises R (1913) Mechanik der Festen Körper im Plastisch-Deformablen Zustand. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp 582–592

    Google Scholar 

  200. Von Mises R (1928) Mechanik der Plastischen Formänderung von Kristallen. Z Angew Math Mech 8(3):161–185

    MATH  Google Scholar 

  201. Wan R (1992) Implicit integration algorithm for Hoek–Brown elastic-plastic model. Comput Geotech 14(3):149–177

    Google Scholar 

  202. Westergaard H (1920) On the resistance of ductile materials to combined stresses in two or three directions perpendicular to one another. J Franklin Inst 189(5):627–640

    Google Scholar 

  203. Wilkins M (1964) Calculation of elastic-plastic flow. In: Alder B et al. (eds) Methods of computational physics 3. Academic Press, New York

    Google Scholar 

  204. Young T (1807) Lectures on natural philosophy. Johnson, London

    Google Scholar 

  205. Yu M (2002) Advances in strength theories for materials under complex stress state in the 20th century. Appl Mech Rev 55:169

    Google Scholar 

  206. Yu MH, Li JC (2011) Computational plasticity: with emphasis on the application of the unified strength theory. (hardback) (series: advanced topics in science)

  207. Zienkiewicz O, Cormeau I (1974) Visco-plasticity—plasticity and creep in elastic solids—a unified numerical solution approach. Int J Numer Methods Eng 8(4):821–845

    MATH  Google Scholar 

  208. Zienkiewicz O, Taylor R (2005) The finite element method for solid and structural mechanics. Butterworth, Stoneham

    MATH  Google Scholar 

  209. Zienkiewicz O, Valliappan S, King I (1969) Elasto-plastic solutions of engineering problems ‘initial stress’, finite element approach. Int J Numer Methods Eng 1(1):75–100

    MATH  Google Scholar 

  210. Zyczkowski M (1981) Combined loadings in the theory of plasticity. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgements

The present work benefited form the input of Prof. Theodoros Chatzigogos, Department of Civil Engineering, Aristotle of University of Thessaloniki, who provided valuable ideas, comments and assistance to the undertaking of the research summarised here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotios E. Karaoulanis.

Additional information

The author gratefully acknowledge financial support from the Greek State Institute of Scholarships (I.K.Y.); contract/grant number: 4506/05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaoulanis, F.E. Implicit Numerical Integration of Nonsmooth Multisurface Yield Criteria in the Principal Stress Space. Arch Computat Methods Eng 20, 263–308 (2013). https://doi.org/10.1007/s11831-013-9087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-013-9087-3

Keywords

Navigation