Skip to main content
Log in

Process Crystallographic Simulation for Biocompatible Piezoelectric Material Design and Generation

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

From 1880’s discovery of piezoelectricity by French physicists Jacques and Pierre Curie, a huge number of piezoelectric materials have been developed and applied to the industrial equipment and scientific instrument. In the middle of 20th century, most widely used ceramic piezoelectric materials, BaTiO3 (BTO) in 1944, PbTiO3 in 1950, and Pb(Zr,Ti)O3 (PZT) in 1955, were discovered through “hermetic art approach.” It was not CAE driven material discovery. Actually, the experimental trial and error approach is inefficient way for the material discovery. Therefore a new CAE technique to develop a new high performance piezoelectric material under a short lead time is strongly required. It can analyze material characteristics, and design material structure and generation process simultaneously before actual production. This overall CAE technique for new material design and generation, which can be called as “process crystallographic simulation,” is discussed in this state-of-the-art paper, which will be able to establish a new concept of material and process design.

Now, we have serious problem with the piezoelectric material. Actually, PZT is most used in the world. However, “lead,” which is a component of PZT-based piezoelectric material, is the toxic material. The usage of lead and toxic materials is prohibited by the waste electrical and electronic equipment (WEEE) and the restriction on hazardous substances (RoHS). Therefore, CAE driven new biocompatible material development is recognized as urgent subject. A goal is to develop an environmentally and biologically compatible piezoelectric material, which can be applied for human healthcare devices, such as Bio-MEMS devices. Until now, we have CAE methodologies to develop a new material, such as the atomic simulation, the continuum mechanics base finite element method, and the crystal process optimization method, but these are not cooperated effectively. An overall and simultaneous computational technique is strongly required. In this review paper, we survey and discuss numerical methodologies, “process crystallographic simulation,” for material and generation process design. Further, an invention of a new biocompatible piezoelectric material, its generation and validation of a newly developed numerical technique, are demonstrated.

In this paper, below described subjects are reviewed and discussed.

  1. 1.

    Numerical analysis technique, “process crystallographic simulation,” which consists of a three-scale structure analysis and a generation process analysis.

  2. 2.

    Material and Process design of new biocompatible piezoelectric materials.

  3. 3.

    Generation of MgSiO3 thin film by using radio-frequency (RF) magnetron sputtering system. Validation of CAE technique.

Consequently, a general concept of CAE driven material discovery technique could be understood through this state-of-the-art paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Hindrichsen CG, Lou-Møller R, Hansen K, Thomsen EV (2010) Advantages of PZT thick film for MEMS sensors. Sens Actuators A, Phys 163:9–14

    Article  Google Scholar 

  2. Shintaku H, Nakagawa T, Kitagawa D, Tanujaya H, Kawano S, Ito J (2010) Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Sens Actuators A, Phys 158:183–192

    Article  Google Scholar 

  3. Li YD, Yong Lee K (2010) Effect of an imperfect interface on the SH wave propagating in a cylindrical piezoelectric sensor. Ultrasonics 50:473–478

    Article  Google Scholar 

  4. Lee SH, Esashi M (2004) Characteristics on PZT (Pb(Zr x Ti1−x )O3) films for piezoelectric angular rate sensor. Sens Actuators A 114:88–92

    Article  Google Scholar 

  5. Tsai JZ, Chen CJ, Chen WY, Liu JT, Liao CY, Hsin YM (2009) A new PZT piezoelectric sensor for gravimetric applications using the resonance-frequency detection. Sens Actuators B 139:259–264

    Article  Google Scholar 

  6. Patnaik BR, Heppler GR, Wilson WJ (1996) Effectiveness coefficient measures for piezoelectric sensors. Sens Actuators A 56:255–258

    Article  Google Scholar 

  7. Koh KH, Kobayashi T, Hsiao FL, Lee C (2010) Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors. Sens Actuators A 162:336–347

    Article  Google Scholar 

  8. Lee C, Cao GZ, Shen IY (2010) Effects of residual stresses on lead-zirconate-titanate (PZT) thin-film membrane microactuators. Sens Actuators A 159:88–95

    Article  Google Scholar 

  9. Watson B, Friend J, Yeo L (2009) Piezoelectric ultrasonic micro/milli-scale actuators. Sens Actuators A 152:219–233

    Article  Google Scholar 

  10. Cheng CH, Yang AS, Hsu TH (2008) Processing of PZT actuator and nickel plate in a multi-droplets microejector. J Mater Process Technol 201:683–688

    Article  Google Scholar 

  11. Zhang MM, Jia Z, Ren TL (2009) Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM. Solid-State Electron 53:473–477

    Article  Google Scholar 

  12. Jia Z, Ren TI, Liu TZ, Hu H, Zhang ZG, Xie D, Liu LT (2007) Study on oxidization of Ru and its application as electrode of PZT capacitor for FeRAM. Mater Sci Eng B 138:219–223

    Article  Google Scholar 

  13. Kang S, Park S, Kim KW, Woo SI, Park S (2007) High-throughput screening of ferroelectric materials for non-volatile random access memory using multilayer perceptrons. Appl Surf Sci 254:725–733

    Article  Google Scholar 

  14. Ren TL, Zhao HJ, Liu LT, Li ZJ (2003) Piezoelectric and ferroelectric films for microelectronic applications. Mater Sci Eng B 99:159–163

    Article  Google Scholar 

  15. Corkovic S, Zhang Q, Whatmore RW (2007) The investigation of key processing parameters in fabrication of Pb(Zr X Ti1−X )O3 thick films for MEMS applications. J Electroceram 19:295–301

    Article  Google Scholar 

  16. Jenkins DFL, Clegg WW, Cattan E, Remiens D (2001) PZT thin film bi-layer devices for phase controlled actuation in MEMS. J Electroceram 7:5–11

    Article  Google Scholar 

  17. Ma YT, Kong FR, Pan CL, Zhang Q, Feng ZH (2010) Miniature tubular centrifugal piezoelectric pump utilizing wobbling motion. Sens Actuators A 157:322–327

    Article  Google Scholar 

  18. Ogawa J, Kanno I, Kotera H, Wasa K, Suzuki T (2009) Development of liquid pumping devices using vibrating microchannel walls. Sens Actuators A 152:211–218

    Article  Google Scholar 

  19. Ishida J, Yamada T, Sawabe A, Okuwada K, Saito K (2002) Large remanent polarization and coercive force by 100 % 180 domain switching in epitaxial Pb(Zr0.5Ti0.5)O3 capacitor. Appl Phys Lett 80:467–469

    Article  Google Scholar 

  20. Kim SJ, Kim JH, Lee CH (2010) Domain switching and creep behavior of a poled PZT wafer under through-thickness electric fields at high temperatures. Acta Mater 58:2237–2249

    Article  Google Scholar 

  21. Satoh T, Wasa K, Tabata K, Adachi H, Ichikawa Y, Setsune K (1995) Microstructures of sputtered PbTiO3 thin films. J Vac Sci Technol A 13:1022–1026

    Article  Google Scholar 

  22. Kim S, Hishita S (1996) Growing BaTiO3 thin film on Si(100) with MgO-buffer layers by sputtering. Thin Solid Films 281–282:449–452

    Article  Google Scholar 

  23. Jin WJ, Woon JOC, Taek SH, Sang SC, Su JC (1998) The investigations of dielectric and structural properties of polycrystalline BaTiO3 thin films on Pt substrates by Rf-magnetron sputtering. Ferroelectrics 205:37–48

    Article  Google Scholar 

  24. Kanno I, Kotera H, Wasa K, Matsunaga T, Kamada T, Takayama R (2003) Crystallographic characterization of epitaxial Pb(Zr, Ti)O3 films with different Zr/Ti ratio grown by radio-frequency-magnetron sputtering. J Appl Phys 93:4091–4096

    Article  Google Scholar 

  25. Ianculescu A, Despax B, Bley V, Lebey T, Gavrilǎ R, Drǎgan N (2007) Structure-properties correlations for barium titanate thin films obtained by rf-sputtering. J Eur Ceram Soc 27:1129–1135

    Article  Google Scholar 

  26. Bose A, Maity T, Bysakh S, Seal A, Sen S (2010) Influence of plasma pressure on the growth characteristics and ferroelectric properties of sputter-deposited PZT thin films. Appl Surf Sci 256:6205–6212

    Article  Google Scholar 

  27. Zhang J, Beetz CP Jr, Krupanidhi SB (1994) Photoenhanced chemical-vapor deposition of BaTiO3. Appl Phys Lett 65:2410–2412

    Article  Google Scholar 

  28. Lu HA, Wills LA, Wessels BW (1994) Electrical properties and poling of BaTiO3 thin films. Appl Phys Lett 64:2973–2975

    Article  Google Scholar 

  29. Yoon YS, Kang WN, Shin HS, Yom SS, Kim TW, Lee JY, Choi DJ, Baek SS (1993) Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition. J Appl Phys 73:1547–1549

    Article  Google Scholar 

  30. Chiba T, Itoh KI, Matsumoto O (1997) Deposition of BaTiO3 thin films by plasma MOCVD. Thin Solid Films 300:6–10

    Article  Google Scholar 

  31. Hoerman BH, Ford GM, Kaufmann LD, Wessels BW (1998) Dielectric properties of epitaxial BaTiO3 thin films. Appl Phys Lett 73:2248–2250

    Article  Google Scholar 

  32. Tohma T, Masumoto H, Goto T (2002) Preparation of BaTiO3–BaZrO3 films by metal-organic chemical vapor deposition. Jpn J Appl Phys 1(41):6643–6646

    Article  Google Scholar 

  33. Gong J, Kawasaki M, Fujito K, Tanaka U, Ishizawa N, Yoshimoto M, Koinuma H, Kumagai M, Hirai K, Horiguchi K (1993) Heteroepitaxial growth of c-axis-oriented BaTiO3 thin films with an atomically smooth surface. Jpn J Appl Phys 2(32):L687–L689

    Article  Google Scholar 

  34. Schubert J, Siegert M, Fardmanesh M, Zander W, Prömpers M, Buchal C, Lisoni J, Lei CH (2000) Superconducting and electro-optical thin films prepared by pulsed laser deposition technique. Appl Surf Sci 168:208–214

    Article  Google Scholar 

  35. Murphy TE, Chen D, Phillips JD (2004) Electronic properties of ferroelectric BaTiO3/MgO capacitors on GaAs. Appl Phys Lett 85:3208–3210

    Article  Google Scholar 

  36. Gottmann J, Vosseler B, Kreutz EW (2002) Laser crystallisation during pulsed laser deposition of barium titanate thin films at low temperatures. Appl Surf Sci 197–198:831–838

    Article  Google Scholar 

  37. Onoue T, Wakiya N, Seo K, Kiguchi T, Mizutani N, Shinozaki K (2006) In-situ simultaneous observation of phase transition and electrical properties of Pb(Zr,Ti)O3 thin film by high temperature XRD and electrical measurement apparatus. Key Eng Mater 320:53–56

    Article  Google Scholar 

  38. Kim TU, Kim BR, Lee WJ, Moon JH, Lee BT, Kim JH (2006) Integration of artificial SrTiO3/BaTiO3 superlattices on Si substrates using a TiN buffer layer by pulsed laser deposition method. J Cryst Growth 289:540–546

    Article  Google Scholar 

  39. Yoneda Y, Okabe T, Sakaue K, Terauchi H, Kasatani H, Deguchi K (1998) Structural characterization of BaTiO3 thin films grown by molecular beam epitaxy. J Appl Phys 83:2458–2461

    Article  Google Scholar 

  40. Avrutin V, Liu HY, Izyumskaya N, Xiao B, Özgür U, Morkoç H (2009) Growth of Pb(Ti,Zr)O3 thin films by metal-organic molecular beam epitaxy. J Cryst Growth 311:1333–1339

    Article  Google Scholar 

  41. Liu B, Gao J, Wu KM, Liu C (2009) Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy. Solid State Commun 149:715–717

    Article  Google Scholar 

  42. Tseng JY, Wu TB (2004) Dielectric enhancement in (001)-textured BaTiO3/LaNiO3 superlattice. Mater Chem Phys 88:433–437

    Article  Google Scholar 

  43. Osada M, Nishida K, Wada S, Okamoto S, Ueno R, Funakubo H, Katoda T (2005) Domain distributions in tetragonal Pb(Zr, Ti)O3 thin films probed by polarized Raman spectroscopy. Appl Phys Lett 87:1–3

    Article  Google Scholar 

  44. Geetika Umarji AM (2010) The influence of Zr/Ti content on the morphotropic phase boundary in the PZT-PZN system. Mater Sci Eng B 167:171–176

    Article  Google Scholar 

  45. Kim KB, Hsu DK, Ahn B, Kim YG, Barnard DJ (2010) Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1–3 composite ultrasonic transducers for NDE applications. Ultrasonics 50:790–797

    Article  Google Scholar 

  46. Chen H, Fan C (2010) Fabrication and properties of PYN-PMN-PZT quaternary piezoelectric ceramics for high-power, high-temperature applications. Mater Lett 64:654–656

    Article  Google Scholar 

  47. Wongdamnern N, Triamnak N, Unruan M, Kanchiang K, Ngamjarurojana A, Ananta S, Laosiritaworn Y, Yimnirun R (2010) Sub-coercive field dynamic hysteresis in morphotropic phase boundary composition of Pb(Zr1/2Ti1/2)O3–Pb(Zn1/3Nb2/3)O3 ceramic and its scaling behavior. Phys Lett A 374:391–395

    Article  Google Scholar 

  48. Pojucan MMS, Santos MCC, Pereira FR, Pinheiro MAS, Andrade MC (2010) Piezoelectric properties of pure and (Nb5++Fe3+) doped PZT ceramics. Ceram Int 36:1851–1855

    Article  Google Scholar 

  49. European Union (EU) (2003) Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Off J Eur Union L037:24–39

    Google Scholar 

  50. European Union (EU) (2003) Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union L037:19–23

    Google Scholar 

  51. Zhu J, Zheng L, Luo WB, Li YR, Zhang Y (2006) Microstructural and electrical properties of BaTiO3 epitaxial films on SrTiO3 substructures with a LaNiO3 conductive layer as a template. J Phys D 39:2438–2443

    Article  Google Scholar 

  52. Zhang SW, Zhang H, Zhang BP, Zhao G (2009) Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere. J Eur Ceram Soc 29:3235–3242

    Article  Google Scholar 

  53. Fu P, Xu Z, Chu R, Li W, Zhang G, Hao J (2010) Piezoelectric, ferroelectric and dielectric properties of La2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater Des 31:796–801

    Article  Google Scholar 

  54. Caturla MJ, Diaz de la Rubia T, Marqués LA, Glimer GH (1996) Ion-beam processing of silicon at keV energies: a molecular-dynamics study. Phys Rev B 54:16683–16695

    Article  Google Scholar 

  55. Ramalingam S, Maroudas D, Aydil ES (1998) Interactions of SiH radicals with silicon surfaces: an atomic-scale simulation study. J Appl Phys 84:3895–3911

    Article  Google Scholar 

  56. Bernstein N, Aziz MJ, Kaxiras E (2000) Atomistic simulations of solid-phase epitaxial growth in silicon. Phys Rev B 61:6696–6700

    Article  Google Scholar 

  57. Theiss SK, Caturla MJ, Johnson MD, Zhu J, Lenosky T, Sadigh B, De La Diaz Rubia T (2000) Atomic scale models of ion implantation and dopant diffusion in silicon. Thin Solid Films 365:219–230

    Article  Google Scholar 

  58. Rubio JE, Jaraiz M, Martin-Bragado I, Hermandez-Mangas JM, Barblla J, Gilmer GH (2003) Atomistic Monte Carlo simulations of three-dimensional polycrystalline thin films. J Appl Phys 94:163–168

    Article  Google Scholar 

  59. Sakaki M, Yoshida S (1992) Stoichiometry- and bond-structure-dependent decomposition of trimethylgallium on As-rich GaAs(100) surfaces. J Vac Sci Technol B 10:1720–1724

    Article  Google Scholar 

  60. Avery AR, Dobbs HT, Holmes DM, Joyce BA, Vedensky DD (1997) Nucleation and growth of island on GaAs surfaces. Phys Rev Lett 79:3938–3941

    Article  Google Scholar 

  61. Shiraishi K, Ito T (1998) Ga-adatom-induced As rearrangement during GaAs epitaxial growth: self-surfactant effect. Phys Rev B 57:6301–6304

    Article  Google Scholar 

  62. Tsukamoto S, Kiguchi N (1999) Atomic-level in situ real-space observation of Ga adatoms on GaAs(001) (2×4)-As surface during molecular beam epitaxy growth. J Cryst Growth 201:118–123

    Article  Google Scholar 

  63. Bungaro C, Rabe KM (2004) Epitaxially strained [001]-(PbTiO3)1(PbZrO3)1 superlattice and PbTiO3 from first principles. Phys Rev B 69:184101

    Article  Google Scholar 

  64. Lee SG, Chung YC (2006) Surface characteristics of epitaxially grown Ni layers on Al surfaces: molecular dynamics simulation. J Appl Phys 100:074905

    Article  Google Scholar 

  65. Björketum ME, Sindell PG, Wahnström G (2007) Structure and thermodynamic stability of hydrogen interstitials in BaZrO3 perovskite oxide from density functional calculations. Faraday Discuss 134:247–265

    Article  Google Scholar 

  66. Xu JL, Feng JY (2002) Study of Ge epitaxial growth on Si substrates by cluster beam deposition. J Cryst Growth 240:407–414

    Article  Google Scholar 

  67. Paul J, Nishimatsu T, Kawazoe Y, Waghmare UV (2007) Ferroelectric phase transitions in ultrathin films of BaTiO3. Phys Rev Lett 99:077601

    Article  Google Scholar 

  68. Costa SC, Pizani PS, Rino JP, Borges DS (2005) Structural phase transition and dynamical properties of PbTiO3 simulated by molecular dynamics. J Phys Condens Matter 17:5771–5783

    Article  Google Scholar 

  69. Sepliarsky M, Phillpot SR, Streiffer SK, Stachiotti MG, Migoni RL (2001) Polarization reversal in a perovskite ferroelectric by molecular-dynamics simulation. Appl Phys Lett 79:4417–4419

    Article  Google Scholar 

  70. Zhang Y, Zhao D, Matsui M, Guo G (2006) Equations of state of CaSiO3 perovskite: a molecular dynamics study. Phys Chem Miner 33:126–137

    Article  Google Scholar 

  71. Diéguez O, Rabe KM, Vanderbilt D (2005) First-principles study of epitaxial strain in perovskites. Phys Rev B 72:144101

    Article  Google Scholar 

  72. Yakovkin IN, Gutowski M (2004) SrTiO3/Si(001) epitaxial interface: a density functional theory study. Phys Rev B 70:165319

    Article  Google Scholar 

  73. Mermin ND (1965) Thermal properties of the inhomogeneous electron gas. Phys Rev 137:A1441–A1443

    Article  MathSciNet  Google Scholar 

  74. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  MathSciNet  Google Scholar 

  75. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  MathSciNet  Google Scholar 

  76. Negele JW (1970) Structure of finite nuclei in the local-density approximation. Phys Rev C 1:1260–1321

    Article  Google Scholar 

  77. Smith JR (1970) Beyond the local-density approximation: surface properties of (110) W. Phys Rev Lett 25:1023–1026

    Article  Google Scholar 

  78. Langreth DC, Perdew JP (1980) Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys Rev B 21:5469–5493

    Article  Google Scholar 

  79. Perdew JP (1985) Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys Rev Lett 55:1665–1668

    Article  Google Scholar 

  80. Kittel C (1986) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  81. Olsson AMJ, Sandberg GE (2002) Latin hypercube sampling for stochastic finite element analysis. J Eng Mech 128:121–125

    Article  Google Scholar 

  82. Sakata S, Ashida F, Zako M (2007) Hybrid approximation algorithm with kriging and quadratic polynomial-based approach for approximate optimization. Int J Numer Methods Eng 70:631–654

    Article  MATH  Google Scholar 

  83. Oikonomou T, Baris Bagci G, Tirnakli U (2012) Canonical equilibrium distribution derived from Helmholtz potential. Physica A 391:6386–6389

    Article  Google Scholar 

  84. Uetsuji Y, Kimura S, Kuramae H, Tsuchiya K, Kamlah M (2012) Multiscale finite element simulations of piezoelectric materials based on two- and three-dimensional electron backscatter diffraction-measured microstructures. J Intell Mater Syst Struct 23:563–573

    Article  Google Scholar 

  85. Landis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55:613–628

    Article  MATH  Google Scholar 

  86. Nagai G, Hayashi T, Takekawa T (2008) Numerical procedure for polycrystalline Ferroelectric/Ferroelastic problems using Landau’s phenomenological model. J Solid Mech Mater Eng 2:1307–1317

    Article  Google Scholar 

  87. Asai M, Takano N, Uetsuji Y, Taki K (2007) An iterative solver applied to strongly coupled piezoelectric problems of porous Pb(Zr, Ti)O3 with non-destructive modelling of microstructure. Model Simul Mater Sci Eng 15:597–617

    Article  Google Scholar 

  88. Kuramae H, Uetsuji Y (2010) Parallel iterative partitioned coupling procedure for multi-scale piezoelectric finite element analysis. In: Proceedings of 2nd international conference on computer technology and development, Cairo, Egypt, pp 60–64

    Google Scholar 

  89. Horie T, Kuramae H (1996) Evaluation of parallel performance of large scale computing using workstation network. Comput Mech 17:234–241

    Article  Google Scholar 

  90. Pacheco P (1996) Parallel programming with MPI. Morgan Kaufmann, San Mateo

    Google Scholar 

  91. Uetsuji Y, Imoto K, Kumazawa S, Tsuchiya K, Ueda S, Nakamachi E (2007) A study on bio-compatible piezoelectric materials by first principles calculation. J Solid Mech Mater Eng 1:191–201

    Article  Google Scholar 

  92. Uetsuji Y, Hwang H, Tsuchiya K, Nakamachi E (2008) First-principles study on crystal structure and piezoelectricity of perovskite-type silicon oxides. J Solid Mech Mater Eng 2:1427–1435

    Article  Google Scholar 

  93. Uetsuji Y, Hwang H, Sakata S, Tsuchiya K, Nakamachi E (2008) Crystal growth prediction by first-principles calculations for epitaxial piezoelectric thin films. Trans Jpn Soc Mech Eng C 74:763–769

    Google Scholar 

  94. Uetsuji Y, Hwang H, Sakata S, Tsuchiya K, Nakamachi E (2008) Propositions of first-principles aided triple-scale analysis for biocompatible piezoelectric thin films. Trans Jpn Soc Mech Eng C 74:1405–1410

    Article  Google Scholar 

  95. De Proft F, Langenaeker W, Geerlings P (1993) An initio determination of substitute constants in a density functional theory formalism: calculation of intrinsic group electronegativity, hardness and softness. J Phys Chem 97:1826–1831

    Article  Google Scholar 

  96. Baeten A, Tafazoli M, Kirsch-Volders M, Geerlings P (1999) Use of the HSAB principle in quantitative structure-activity relationships in toxicological research: application to the genotoxicity of chlorinated hydrocarbons. Int J Quant Chem 74:351–355

    Article  Google Scholar 

  97. Tazaki K (trans) (1998) Exploring chemistry with electronic structure methods, Gaussian (in Japanese)

  98. Yamamoto A, Honma R, Sumita M (1998) Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39:331–340

    Article  Google Scholar 

  99. Taguchi G, Clausing D (1987) The system of experimental design, vol 2. American Supplier Institute Inc., Madrid

    Google Scholar 

  100. Berger PD, Maurer RE (2001) Experimental design with application in management, engineering and the sciences. Duxbury Thomson Learning Inc, N Scituate

    Google Scholar 

  101. Lee KH, Eom IS, Park GJ, Lee WI (1996) Robust design for unconstrained optimization problems using the Taguchi method. AIAA J 34:1059–1063

    Article  MATH  Google Scholar 

  102. Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, New York

    MATH  Google Scholar 

  103. Papalambros PY, Wilde DJ (2000) Principles of optimum design: modeling and computation. Cambridge University Press, New York

    Book  Google Scholar 

  104. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  105. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–423

    Article  MathSciNet  MATH  Google Scholar 

  106. Lee KH, Park GJ (2002) Robust optimization in discrete design space for constrained problems. AIAA J 40:774–780

    Article  Google Scholar 

  107. Myers RH, Khuri AI, Vining G (1992) Response surface alternatives to the Taguchi robust parameter design approach. Am Stat 46:131–139

    Google Scholar 

  108. Myers RH, Montgomery DC, Anderson-Cook CM (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  109. Andrault D, Bolfan-Casanova N, Guignot N (2001) Equation of state of lower mantle (Al,Fe)–MgSiO3 perovskite. Earth Planet Sci Lett 193:501–508

    Article  Google Scholar 

  110. Andrault D (2003) Cationic substitution in MgSiO3 perovskite. Phys Earth Planet Inter 136:67–78

    Article  Google Scholar 

  111. Saikia A, Ballaran TB, Frost DJ (2009) The effect of Fe and Al substitution on the compressibility of MgSiO3-perovskite determined through single-crystal X-ray diffraction. Phys Earth Planet Inter 173:153–161

    Article  Google Scholar 

  112. Irifune T, Koizumi T, Ando JI (1996) An experimental study of the garnet-perovskite transformation in the system MgSiO3–Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157

    Article  Google Scholar 

  113. Ito E, Matsui Y (1978) Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet Sci Lett 38:443–450

    Article  Google Scholar 

  114. Tanaka T, Takei H (1997) Growth of MgSiO3 orthoenstatite single crystals by the top-seeded solution growth (TSSG) method. J Cryst Growth 180:206–211

    Article  Google Scholar 

  115. Gerald Pacalo RE, Weidner DJ (1997) Elasticity of majorite, MgSiO3 tetragonal garnet. Phys Earth Planet Inter 99:145–154

    Article  Google Scholar 

  116. Hwang H, Uetsuji Y, Katayama T, Nakamachi E (2011) Three-scale analysis of BaTiO3 piezoelectric thin films fabrication process and its experimental validations. J Mater Sci 46:1380–1387

    Article  Google Scholar 

  117. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, San Diego, p 54

    Google Scholar 

  118. Geys J, Nemery B, Hoet PHM (2010) Assay conditions can influence the outcome of cytotoxicity tests of nanomaterials: better assay characterization is needed to compare studies. Toxicol in Vitro 24:620–629

    Article  Google Scholar 

  119. Hu X, Cook S, Wang P, Hwang Hm, Liu X, Williams QL (2010) In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines. Sci Total Environ 408:1812–1817

    Article  Google Scholar 

  120. Zhu ZX, Li JF, Liu Y, Li J (2009) Shifting of the morphotropic phase boundary and superior piezoelectric response in Nb-doped Pb(Zr, Ti)O3 epitaxial thin films. Acta Mater 57:4288–4295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Nakamachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamachi, E., Uetsuji, Y., Kuramae, H. et al. Process Crystallographic Simulation for Biocompatible Piezoelectric Material Design and Generation. Arch Computat Methods Eng 20, 155–183 (2013). https://doi.org/10.1007/s11831-013-9084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-013-9084-6

Keywords

Navigation