
Configuration of Multi Product Lines by Bridging
Heterogeneous Variability Modeling Approaches

Deepak Dhungana
Siemens AG Österreich

Corporate Technology, Vienna, Austria
deepak.dhungana@siemens.com

Dominik Seichter and Goetz Botterweck
Lero–The Irish Software Engineering Research Center

University of Limerick, Limerick, Ireland
goetz.botterweck@lero.ie

Rick Rabiser and Paul Grünbacher
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University, Linz, Austria
rick.rabiser@jku.at

David Benavides and José A. Galindo
Department of Computer Languages and Systems

University of Seville, Seville, Spain
benavides@us.es

Abstract—In industrial settings, products are rarely built by
one organization alone. Software vendors and suppliers typically
maintain their own product lines, which can contribute to a
larger (multi) product line. The teams involved often use different
approaches and tools to manage variability of their systems. It
is unrealistic to assume that all participating units can use a
standardized and prescribed variability modeling technique. The
configuration of products based on several models in different
notations and with different semantics is not well supported by
existing approaches. In this paper we present an integrative
approach that provides a unified perspective to users config-
uring products in multi product line environments, regardless
of the different modeling methods and tools used internally.
We also present a technical infrastructure and a prototypic
implementation based on Web Services. We show the feasibility
of the approach and its implementation by using it with two
different variability modeling approaches (i.e., one feature-based
and one decision-oriented approach) on an example derived from
industrial experience.

I. INTRODUCTION AND MOTIVATION

Software product lines (SPL) are increasingly developed
beyond the boundaries of a single organization [1]. Distributed
teams create software products in a collaborative effort. Vari-
ability management and product configuration in such contexts
need to reconcile the different modeling approaches, notations
and tools in use. Due to significant differences in practices in
different domains it is unlikely that there will ever be just one
standardized variability modeling approach. The increasing
number of “island solutions” to variability modeling and
product configuration restricts communication and hinders col-
laboration between distributed product line engineers. Hence,
there is a strong need for an integrative infrastructure enabling
the collaboration between different organizations developing
multi product lines. In particular, the approach must support
different variability modeling languages, notations, and tools.

This paper focuses on the product configuration aspects of
such an infrastructure. We propose an approach to facilitate

the integration of variability models1 created with different
modeling approaches and potentially by different teams. The
specific tools or data formats (cf. [2], [3], [4] for an overview)
used when creating the variability models are not relevant for
an end-user who only cares about the available choices and
their implications.

Therefore, we make the internal technical aspects of using
variability models for configuration transparent to the stake-
holders performing the configuration. We unify configuration
operations on variability models and give the freedom of
data representation to the modeler by allowing variability
models to be accessed through Web Services. We do not force
organizations to overly integrate their configuration tools (in
the sense of deep integration where internals of the tools
have to be adapted). Instead, we allow them to compose
their configuration mechanisms using wrappers and interface
definitions.

The remainder of this paper is structured as follows: In
Section II we present an example of multi product lines.
Section III describes our Invar approach that facilitates the
use of heterogeneous variability models during product con-
figuration. In Section IV we present our Invar prototype
for two different variability modeling tools. In Section V
we present a preliminary validation of our approach using
different scenarios of applying the approach. We then present
related work in Section VI and conclude the paper with a
summary and discussion of future work in Section VII.

II. MULTI PRODUCT LINES: A MOTIVATING EXAMPLE

We illustrate the challenges related to software variability
management and product configuration in multi product line
environments using an example of an Enterprise Resource
Planning (ERP) system. Though fictitious, the example is
based on a real-world product line of an industry partner – a
medium-sized vendor from the ERP domain [5]. The company

1Throughout this paper, we use the term “variability model” to refer to
product line models regardless of the specific approach and notation used,
e.g., feature models, decision models, OVM models, COVAMOF models, etc.



Fig. 1. Example of interrelated multi product lines in the ERP domain. Vendors and suppliers depend on each others’ products, hence the variability models
are related to each other in different ways. In our approach, the relationships between the models are expressed as IMDI links (see Table II). We have included
an OVM model in this example for illustrative purposes only. OVM is not yet supported by the proposed approach.

offers enterprise software products to about 20.000 customers
and 50.000 active users in central Europe. Software products
include applications for customer relationship management,
accounting, payroll, ERP, as well as production planning and
control. Customized products are an essential part of the
company’s marketing strategy.

In the example depicted in Figure 1, the main vendor of the
ERP application integrates several suppliers providing specific
encapsulated functionality. The vendor uses a feature model
to present the set of available choices and to communicate
extension and integration possibilities for other systems. The
suppliers use different approaches and tools to deal with
variability. For example, some suppliers use feature modeling
tools, while others apply orthogonal variability modeling or
decision modeling. Nevertheless, the models are related to
each other or depend on each other. Such relationships may
be the result of technical dependencies among the software
products the variability models define. Dependencies among
models may also occur because of the role taken by the
product, e.g., the position in a supply chain or the specific
purpose of the model (technical configuration, marketing, or
documentation). These relationships play an important role
when the models are used together during end-user product
configuration of the ERP application.

The example model presents a common scenario: The ERP
vendor defines in her feature model that a Calendar can be
selected to support project management. Two suppliers provide
different alternatives for the Calendar feature with diverse,
more detailed configuration choices. One supplier uses an
OVM model to describe the variability of her calendar, the
other supplier uses a feature model (possibly in a different
notation than the vendor feature model).

For the configuration of an ERP solution in such a con-
text, an integrative infrastructure is needed, which works

on shared concepts among the different modeling notations.
This imposes several research and practical challenges: When
attempting to integrate different variability models, one also
has to consider interfaces between the models. For instance,
there should be mechanisms for defining dependencies across
models. It is important to allow unrelated models to change
independently and minimize coupling between related models.
Our solution to these problems is to allow the variability
model providers to manage and evolve the models themselves.
A configuration front-end for end-users makes use of the
available models in a repository.

III. THE Invar APPROACH

In this section, we present the Invar2 framework which al-
lows to “plug-and-play” variability models. “Plugging” refers
to simply adding new variability models to a shared repos-
itory. “Playing” refers to presenting the options to the end-
user allowing her to configure the required product. For
this purpose, a variability model is seen as an autonomous
entity, which can be plugged into the configuration space to
provide configuration options. Autonomous however does not
necessarily mean independent, because variability models may
be related to each other as we have shown in the motivating
example in Section II. Our approach allows using variability
models distributed across multiple repositories by accessing
them through Web Services providing configuration choices.
An end-user works with a front-end for product configuration

2Invar is a nickel-steel alloy notable for its uniquely low coefficient of
thermal expansion. In metallurgy, it is a good example of how one can
profit by combining different metals, to achieve special desired properties.
We chose the name Invar for our approach to reflect on the need to com-
bine/integrate/compose different variability modeling approaches, notations
and tools in the context of multi product lines. Alternatively, Invar stands
for “integrated view on variability”.



Fig. 2. A highly simplified view of model-based product configuration:
current state of practice (left) and Invar approach (right).

and can use the configuration services without knowing details
about the concrete variability models “behind” the services.

Figure 2 depicts the Invar approach compared with the
current state of practice. Currently (left side) multiple hetero-
geneous variability modeling approaches are used by different
organizations. Different reasoning and analysis engines (e.g.,
SAT solvers [6], rule engines[7]) are adopted for interpreting
the models’ semantics. There is no integration of the diverse
tools supporting different notations. In some organizations
variability may also be managed “manually” using textual
descriptions or spreadsheets; these “tools” are typically not
integrated with other variability modeling tools due to the lack
of formal semantics of their approach or simply because they
are not dedicated tools for configuration.

With Invar (cf. right side in Figure 2), stakeholders create
variability models using an approach of their choice. Invar
defines key operations and queries (configuration primitives)
on variability models to allow the integration of heterogeneous
configuration approaches. These configuration primitives are
implemented as Web Services to allow uniform access to
the models. Participating units using different modeling ap-
proaches are able to reuse the variability models from other
units. Invar provides a single and transparent configuration
tool to end-users. This ensures interoperability and allows
reusing variability models in different contexts (e.g., one
model may be shared between several companies and each
one may use it to create different products). It would also be
possible to integrate manual approaches using Excel or Text
Files into Invar by defining new web services. However that
would require specification of semantics for each approach,
which is why we have not yet integrated any such approach.

A. Assumptions

Regardless of the variability modeling approach used, these
approaches share some common characteristics. A Variability
Model consists of Variables and Constraints over these vari-
ables. Each variable has a Type (e.g., Boolean, Integer, String).
Depending on the particular approach there are different Types
of Constraints, e.g., “Optional Sub-features” and “Alternative
Groups”. A modeler creates a list of variables and a list of con-
straints. An Assignment of values to the variables corresponds
to a Configuration of the model. For a given configuration,
we can decide whether it satisfies the constraints defined in
the model. Hence, a model defines a set of configurations
complying with it. The user implicitly or explicitly adds more
constraints, as she takes the configuration decisions. Then, we
can determine the possible values for each variable. Adding
more constraints eventually leads to a model which has exactly
one valid assignment and each variable has exactly one value.
This represents the configured product, for instance in terms
of selected and deselected functionality. If no valid assignment
is possible the model is unsatisfiable.

Based on these assumptions, we have defined a set of Web
Services for accessing variability models. The set of primitive
operations and queries on the models required for developing
such Web Services are based on our experience of developing
product configuration applications [8], [7], [6], [9], [10], [11].

B. Configuration Primitives

There are typical operations needed by end-user product
configuration tools that “execute” or evaluate variability mod-
els. These operations are provided as methods by most of the
existing APIs [7], [10], [8], [11], [6] allowing model-based
product configuration. For example, the end-user may query
the set of all available options at a time, or send a request
to select one of the options. The basic concepts in most of
these APIs revolve around options or choices for the model
consumer. Typical operations on the models are:

Loading and initializing models: load() gets models from
their persistent storage to memory, while reload() loads the
model again. The operation init() is used to start a new
configuration session based on a model. save() persists the
session for future use.

Querying the model for available options: For instance,
nextQuestion() gets the next available question to be answered
by the user (regardless if this is a feature, decision, or variation
point). Analogously, previousQuestion() allows to obtain the
previous question. peek() allows previewing the next available
question, without having to answer it.

Operating on the available options: The operation set-
Value() sets the value of feature attributes or defines the
answer to a decision question. The primitives select() and
deselect() allow choosing or eliminating (i.e., deciding not to
buy) elements in a list of presented options. undo() and redo()
allow canceling the last action or replaying the last selection.
addOption() adds new options to available questions.

Notifications: The success() method shows if an operation
was carried out successfully while error() indicates problems.



The primitive contradiction() shows whether the choices of the
user are consistent with the model’s semantics. The operations
selected() and deselected() are used to inform other tools or
users about user actions.

Obviously, this set of primitive operations is not complete
or fixed. For instance, in some cases, several questions can
be proposed at the same time, i.e., depending on the end-user
application there may be other operations that are useful in
building complex user interfaces. Our approach can easily be
extended to include new operations or queries on the models.
The list of currently supported operations is presented in
Table I.

C. Inter-model Dependencies

Whenever a variability model is plugged into the configu-
ration environment, it needs to explicitly define its relation-
ships to the other models. This is done by adding an inter-
model dependency information (IMDI) packet together with
the model. Dependencies between models are defined using
if condition then action clauses. These can be compared to
conventional cross–tree constraints within one model. IMDI
packets do not affect the internal semantics of the models in
use. An IMDI action is executed when its condition evaluates
to TRUE.

A summary of conditions and actions, currently supported
by the Invar framework is listed in Table I. In the following
we describe the basic types:

Inter-model constraints: If selecting or deselecting an option
in one model has implications on other models, an inter-model
constraint needs to be defined. To specify such constraints,
the conditions isSelected() and isDeSelected() are used. The
corresponding actions are doSelect() and doDeSelect(). For
example, in our example in Figure 1, one could specify the link
between Vendor.Accounting and Supplier.Account as if Ven-
dor.Accounting.isSelected() then Supplier.Account.doSelect().

Informative actions: One can also define actions that do not
change the models. Some actions like inform(), recommend()
or warn() are used to simply present information such as
recommendations or warnings to the user.

Conditional inclusion of models: If several variability mod-
els are used for product configuration the order of presenting
the models to the end-user has to be defined. We define
the action includeModel() which changes the presentation
order. This influences the model navigation strategy (i.e.,
which model is configured in which order). For example,
in Figure 1 the link between Calendar Supplier1 and ERP
Vendor can be specified as if Vendor.Calendar.isSelected() then
Supplier1.includeModel().

D. Invar Architecture

An overview of the architecture of our integrative infras-
tructure is presented in Figure 3, which depicts five main
components (numbered in the figure).

(1) Vendor model repositories: Product vendors or suppliers
add their variability models to model repositories. The models

may or may not contribute to the same product and are not
necessarily dependent on each other.

(2) Configuration Web Services: The different models re-
siding in (possibly distributed) repositories are accessed by
configuration Web Services. The Web Service provides a stan-
dard interface for different configuration front-ends (websites,
mobile devices, stand-alone applications, etc.). For each type
of model, designated configuration services are developed (by
implementing an interface) that can read the data formats,
interpret the content, and perform operations on the models.

(3) Invar repository: The Invar repository defines aggre-
gations of different models from the vendor repositories by
logically grouping them. For instance, one particular model
may be part of multiple product lines, as it may contribute to
more than one product.

(4) Configuration broker: The configuration broker enables
the communication between the Web Services. It reads the
inter-model dependency information to determine which Web
Services are affected when products are configured. The
configuration broker also translates events from the end-user
configuring and passes them on to the Web Services that need
to react to the end-user’s interactions.

(5) End-user product configuration front-ends: The config-
uration choices defined in the variability models are presented
to the end-user in a product configuration front-end. This can
be a website or a stand-alone application. We provide an
example user-interface through the Invar framework website
at http://invar.lero.ie, which is shown in Figure 4.

Fig. 3. Architecture of the integrative Invar infrastructure.

http://invar.lero.ie


TABLE I
A SUMMARY OF CURRENTLY SUPPORTED CONDITIONS AND ACTIONS, WHICH CAN BE USED TO CREATE IMDI FOR THE Invar APPROACH TO MANAGE

INTER-MODEL-DEPENDENCIES. THIS LIST MAY BE EXTENDED AS REQUIRED TO BUILD MORE COMPLEX RELATIONSHIPS BETWEEN MODELS.

Keyword Type Description
isInit() condition This condition is only true when a user starts configuring a model for the first time. The actions

connected with isInit() conditions are executed immediately after each model has been initialized on
its Web Service.

isSelected() condition This conditions evaluates to true whenever a specified option of a given question in a specific model
is in the state selected. The condition is evaluated after each change of a user to a model, i.e., after
the user answers a question related to the link.

isDeSelected() condition This conditions evaluates to true whenever a specified option of a given question in a specific model
is in the state deselected. The condition is evaluated after each change of a user to a model, i.e., after
a user answers a question.

doSelect() action Set a specified option, of a given question in a specific model to the state selected.
doDeSelect() action Set a specified option, of a given question in a specific model to the state deselected.
includeModel() action Add a model to the list of included models of the current navigation strategy, if it was not yet initially

included or included by another action. Each model can only be included once.
addOption(. . . ) action Adds an option to one model as a child of an existing feature. This is usually required, when a model

extends another model.
inform() action Display a specified message to the user, which can have the type information, recommendation or

warning.

TABLE II
EXAMPLES OF IMDI LINKS, THAT COULD BE USE TO MODEL THE INTER MODEL DEPENDENCIES DEPICTED IN FIGURE 1. THIS IS NOT AN EXHAUSTIVE

LIST, AS THE IMDI LINKS CAN BE USED TO MODEL MORE COMPLEX RELATIONSHIPS AS DEPICTED HERE.

Intermodel dependency Example of IMDI link in Invar
Modelx and Modely are alternative models, the choice
of the model depends on Featurea in Modelparent

if Modelparent.Featurea.isSelected() then Modelx.includeModel()

Modelx extends model Modely by adding Featurea1 as
a child of Featurea

if Modelx.isInit() Modely.Featurea.addOption(Featurea1)

Modelx provides feature Modely .Featurea if Modely.Featurea.isSelected() then Modelx.Featurea.doSelect()

E. Invar Configuration Service

Central to the implementation of Invar is the generic
configuration interface defined for accessing the diverse vari-
ability models. The configuration service definition has to
be implemented once for each modeling notation. The Web
Service is designed such that the configuration options are
presented as questions to the end-user. Questions are only
a means to render the variation point to present it to the
user. This means the user is asked questions about a certain
“feature” (in the wider sense) or a property of the system
which she configures. The possible answers to the question
(the available alternatives) are presented to the user such that
she may choose one or many of them depending on the type
of variability. The notion of “questions” and possible answers
as options is therefore key to the Invar configuration service.

The interface consists of two parts: A variability model
query part providing basic information about models (e.g.,
the set of available questions and the possible answers) and
an operational part directly interacting with models to assign
answers to specific questions (e.g., when selecting a particular
feature).

The configuration service also defines a set of predefined
question types. The types have been defined based on how
the end-user is supposed to answer them. For example, the
question type Alternative refers to questions where the user
can select exactly one option (rendered using radio buttons
or comboboxes in the UI); for Optional the user can pick

multiple items (rendered using checkboxes in the UI) and
MoreThanOne refers to cardinality (1..*) (rendered using multi-
selection checkboxes in the UI).

IV. IMPLEMENTATION

Our current implementation of Invar allows creating and
maintaining repositories for sharing variability models and
supports end-user configuration based on these models. The
infrastructure relies on the Web Services for accessing vari-
ability models and on the configuration front-end. Any Web
Service API can be used to generate Web Services, which can
be plugged into the Invar framework based on a provided
WSDL-description.

We have implemented the Invar service configuration
interface for two different modeling approaches, i.e., the
feature-oriented FaMa tool suite [8] and the decision-based
DOPLER [7] tool suite. We chose these approaches as we
have gained several years of experience of applying them in
academic and industrial settings including large-scale product
lines and they cover diverse “flavors” of variability model-
ing [8], [7], [6], [9], [10], [11].

A. Plugging in FaMa Feature Models to Invar

1) FaMa Background: A feature model describes a set
of products of a SPL in terms of features and relationships
among them. A feature model is represented as a hierarchically
arranged set of features composed by relationships between
a parent feature and its child features as well as cross–tree



Fig. 4. The Invar prototype: Presentation of questions from heterogenous models (left), definition and visualization of inter-model dependencies (right).

constraints that are typically inclusion or exclusion statements
in the form: if feature F is included, then features X and Y
must also be included (or must be excluded).

The FaMa approach [8] allows using different solvers in the
back-end to perform analysis operations on feature models.
Currently it implements analysis using constraint program-
ming, SAT and BDD solvers. Other solvers can easily be
plugged–in. FaMa also provides capabilities to automatically
test new implementations [12].

The implementation of the FaMa modeling approach to
provide Invar configuration services had to consider several
issues: (i) the FaMa approach itself was not designed to be
used for questionnaire-based product configuration, (ii) FaMa
was primarily implemented as a framework to perform auto-
mated analysis of feature models, i.e., automated extraction
of information from feature models and not concretely for
product configuration. Nevertheless, the adaptation to Invar
Web Service interfaces was almost straightforward. Some of
the key mappings between the Invar configuration steps and
FaMa can be summarized as follows:

Question Types: FaMa supports cardinality-based feature
models [13] where group relationships can include UML–
like cardinalities. For the sake of simplicity, here we only
considered feature models with four kinds of relationships,
which were mapped to Invar question types as follows: A
mandatory relationship in a feature model is a relationship
between a parent and a child where the child has to be selected
whenever the parent is selected. Hence, in this case, no
question is asked to the user. An optional relationship between
a parent and a child means that the child can be selected or
deselected whenever the parent feature is selected. We mapped
an optional relationship to an Alternative question type in
Invar with only one option, this is, a single check box. An or-
relationship between a parent and a set of children determines
that at least one child has to be selected whenever the parent
is selected. Any combination of children is also allowed. We

mapped the or-relationship to a MoreThanOne question type in
Invar with multiple check boxes. An alternative relationship
between a parent and a set of children determines that one
and only one child has to be selected whenever the parent is
selected. An alternative relationship maps to the Alternative
question type in Invar.

Order of Questions: Feature models are not conceived for
question–based configuration. Hence, there is no predefined
order of presenting questions to the end–user. In our imple-
mentation we decided to traverse the tree in a pre–order–like
style. Other options can be contemplated like adding an at-
tribute to the relationships assigning priorities for configuration
purposes. This would allow the modeler to introduce question
orders.

Feedback: In FaMa, at any time a configuration can give
some feedback to the Invar configuration service. The feed-
back supported includes: (i) inform whether a given feature
(component) is selected or deselected, (ii) determine whether
the current configuration is valid, i.e., it is possible to extend
the configuration to a valid product, (iii) calculate the total
number of potential configurations of the model, (iv) inform
about the number of questions that have not been decided yet,
(v) calculate the number of potential configurations available
according to the current selection/deselection of features (com-
ponents), and (vi) determine whether the current configuration
is valid as a final product.

B. Plugging in DOPLER Decision Models to Invar

1) DOPLER Background: A decision model describes a
set of available configuration variables, i.e., a decision arises
whenever for a given goal there exist two or more options
for achieving it. A decision model is represented as multiple
hierarchies of decisions that need to be taken by the user
when configuring a set of reusable artifacts. A number of
decision modeling approaches have been proposed over the
years, see [14] for a comparative analysis.



The DOPLER approach [7] allows defining the reusable
assets of a product line (e.g., the components in the product
line) and mapping them to the available decisions describing
their variability. A domain-specific meta-model defines the
possible types of assets, their attributes and dependencies.
In addition to hierarchical dependencies among decisions,
other dependencies (comparable to cross–tree constraints) are
modeled using rules of the form if condition then action [7].
The DOPLER tool suite [7] uses a Java-based Rule Language
(JRL) and execution engine as a back-end for evaluating
the rules defined in models. For a description of different
application examples refer to [7], [15].

The implementation of the DOPLER decision modeling
approach to provide Invar configuration services was rather
straightforward, as the DOPLER approach itself was designed
to be used for questionnaire-based product configuration [10].
The mapping from Invar to DOPLER in many cases only
required calling the respective method in the DOPLER API.
Some of the key mappings between the Invar configuration
steps and DOPLER can be summarized as follows:

Question Types: We had to map the Invar question types to
DOPLER decision types. DOPLER decision types are Boolean,
String, Number and Enumeration. Enumeration decisions can
be defined with a cardinality defining the subset of the set of
possible answers to the decision that might be selected (e.g.,
1:1, 1:n, 2:6). For the sake of simplicity, we have only imple-
mented the mapping for Boolean and Enumeration decision
types. This is sufficient as String and Number decisions can
also be presented as an Enumeration decision with one option
(being a string or a number). More specifically, we mapped
the DOPLER Boolean decisions to the Alternative question type
with the options yes or no, the DOPLER enumeration decisions
with cardinality 1:1 or 0:1 were also mapped to the question
type Alternative (with the enumeration literals as options), and
the DOPLER enumeration decisions with all other possible
cardinalities were mapped to the Invar question type Optional.

Order of Questions: In DOPLER, the order of taking de-
cisions is defined by the decisions’ dependencies. Top level
decisions (which are not dependent on other decisions) are
presented and answered first. Decisions which directly depend
on top level decisions can be answered next, and so forth. In
addition to these hierarchical dependencies, DOPLER allows
defining logical dependencies that cross–cut the hierarchical
tree structure. For example, answering a particular decision
might require changing the value of another decision lo-
cated somewhere else in the hierarchy. In the Invar con-
figuration service interface, the methods getFirstQuestion(),
getNextQuestion() and getPreviousQuestion() implement the
navigation strategy. When initializing a DOPLER decision
model with Invar, first a sorted list is built based on the
decision hierarchy. This list is frequently updated when new
decisions are added or the order of decisions is changed due
to some rule defined in the DOPLER decision model. The
order of decisions on one level (e.g., top level) is randomly
defined. Logical dependencies are currently not considered
by the first/next/previous methods because they would require

“jumping” within the model. Whenever taking a decision has
an effect on another decision, this effect has to be presented
separately, e.g., by informing the user that the other decision
was changed and asking her whether she wants to jump to that
decision in the list.

Feedback: In DOPLER, making decisions leads to the inclu-
sion and/or parametrization of assets related to the decisions.
For example, selecting the document management solution by
answering a decision question might lead to the inclusion of
the respective software component(s) implementing document
management. Answering a lower level decision (e.g., on which
type of scanner is required) might parameterize the document
management software component. Feedback to the user of
the Invar service implementation for DOPLER is given by
presenting her with the assets that are required for the product
currently being configured.

V. PRELIMINARY VALIDATION

We have tested our approach by creating the variability
models for the ERP example with FaMa and DOPLER. We
composed these product line models and configured products
using the Invar product configuration Web Service infras-
tructure. More specifically we have tested three different
settings representing different typical scenarios of how vendors
and suppliers may interact, collaborative, a competitive, and
complementary settings. These examples are similar but not
the same as in Figure 1.

A. Collaborative Setting

Figure 5 depicts a collaborative setting, where the main ERP
vendor relies on two suppliers for calendar and journal com-
ponents. The configuration application needs to integrate the
three models. The end-user configuring the ERP application
would not be aware of the three models in the background.
She would also not care about the modeling notation used in
the models because the configuration options are presented as
questions and possible answers.

Fig. 5. Example application of a collaborative setting: One main model from
the vendor and individual models for the sub-systems in different modeling
notations.

We conducted the following steps to set up the configuration
application for this scenario in Invar.



1) Web Services capable of reading the two feature models
and the decision model are registered to Invar.

2) A configuration application is defined by referencing
the three models. All three models are included in the
configuration process by default. The start model is
defined to be the ERP vendor feature model.

3) Inter-model dependency links are defined. In
the example models, there are two such links
if vendor.calender.isSelected() then calendarSup-
pler.D1.doSelect() and if vendor.journa.isSelected() then
journalSupplier.journal.doSelect().

During product configuration, firstly the questions from the
feature model of the vendor are presented to the user (cf.
Section III-E for how these questions are created). Inter-model
dependency links are resolved by the configuration broker as
soon as the calendar or the journal options are selected. The
corresponding Web Services are informed about the selection
of the feature (as the user answers the questions). The output
of the configuration process is the list of selected features and
assets delivered by the corresponding Web Services.

B. Competitive Setting

Figure 6 presents a competitive setting, where two suppliers
provide functionality related to archiving documents. One of
these needs to be chosen for the end-product. The selection
of the supplier can be based on complex metrics and criteria
as described in [16], [17]. In Invar, we are currently not
considering such metrics. We provide mechanisms to select
different suppliers based on the decisions taken by the end-
user during product configuration.

Fig. 6. Example application of a competitive setting: One main model from
the vendor and individual alternative models for the same sub-system.

We conducted the following steps to set up such a config-
uration application in Invar for this scenario.

1) As in the previous scenario, Web Services capable of
reading the two feature models and the decision model
need to be registered.

2) The configuration application is defined by referencing
the three models. However, not all three models are
included in the configuration process by default. The

supplier models are embedded into the configuration
process using conditional inclusion actions defined in
IMDI packets. The start model is defined to be the ERP
vendor decision model.

3) Inter-model dependency links are defined using
conditional inclusion actions if vendor.D3.isSelected()
then DatabaseArchive.includeModel() and
if vendor.D3.isDeSelected() then FileSys-
temArchive.includeModel().

During product configuration, firstly the questions from the
feature model of the vendor are presented to the user. As
soon as question D3 is answered, the configuration broker
determines which other models should be included in the
configuration process by evaluating the IMDI packets. The
correct supplier is chosen “behind the scenes” and the end-user
is presented with a seemingly tailored configuration interface
(showing only the relevant questions). The output of the
configuration process, just like in the previous scenario is the
list of selected features.

C. Complementary Setting

In order to provide support for complementary relationships
(if one model extends other models) special dependency links
must be defined to provide an integrated view to the configur-
ing end-user. For example in Figure 7, the bank transfer add-
in extends the available payment methods in the accounting
package.

Fig. 7. Example application of a complementary setting: One main model
is extended by another model, resulting in an additional option.

We conducted the following steps to set up such a config-
uration application in Invar for the complementary setting.

1) Again, Web Services capable of reading the two feature
models and the decision model are registered in Invar.

2) A configuration application is defined by referencing the
three models. Two models (Vendor and Accounting) are
included in the configuration process by default. The
start model is defined to be the ERP vendor feature
model.

3) The option payment in the accounting package is
extended by one option “bank transfer” in the be-
ginning. This is done by adding two links initial-
ized() Accounting.Payment.addOption(BankTransfer) and



if Accounting.BankTransfer.isSelected() then BankTrans-
fer.includeModel().

During the configuration process, the user has to select
between two options of the question related to payment type.
Upon selection of BankTransfer, the Bank Transfer model
is added to the configuration process. The output of the
configuration process is the list of selected features just like
in the previous scenario.

VI. RELATED WORK

We structure our discussion of related work in the areas
of variability in large-scale software development, coordina-
tion during product derivation, software integration, software
ecosystems, and standardization efforts.

a) Variability in large-scale software development: Deel-
stra et al. [18] classify different types of approaches along the
dimensions of scope of reuse and domain scope. Hierarchical
product lines [19] can be applied when there is a broad family
with a number of focused product categories. Bühne et al. [20]
extend an existing meta-model for variability modeling to
structure product lines into a hierarchy. Van Ommering [21]
introduced the concept of Product Populations. Dhungana et
al. [22] explore how to structure the modeling space for large
product lines on multiple levels of abstraction. Reiser and
Weber [23] suggest to model complex product lines with
a hierarchy of feature models, which they call multi-level
feature trees. In contrast to all these approaches, Invar focuses
explicitly on enabling the integration of different variability
modeling approaches to support and coordinate end-user
configuration. Schmid [24] presents some examples of existing
distributed variability modeling mechanisms in real-world,
large-scale projects. This paper however, does not provide a
solution to integrating heterogenous modeling approaches.

b) Coordination during product derivation: Czarnecki et
al. [25] present an approach allowing the staged configuration
of features models. Reiser et al. [26] address the problem
of modeling and supporting feature selections in large-scale
embedded systems and propose product sets and configuration
links to define dependencies between different feature models
at the time of their selection. Hubaux et al. [27] propose fea-
ture configuration workflows as a new formalism for support-
ing configuration of large-scale systems. They also propose
a technique to specify concerns in feature diagrams and to
build automatically concern-specific configuration views [28].
The issue of multi-level configuration is also addressed by [5]
who demonstrate how decision models can be used to support
the configuration of a complex system across multiple levels
of software vendor, customers and end-users. Czarnecki et
al. [29] discuss the customization in application engineering
over multiple levels. Metzger et al. [30] have presented an
approach to integrate feature models and orthogonal variability
models, by differentiating between product variability and soft-
ware variability. The Invar approach is different, as we focus
on variability of different subsystems, rather than different
abstractions of the same subsystem.

c) Software integration: Our work is also related to
integrating complex software solutions and tools. In the area of
EAI (enterprise application integration) Hohpe and Woolf [31]
present fundamental patterns for integrating heterogeneous and
asynchronous systems. More recently, this issue has also been
addressed in the area of software and systems engineering. For
instance, Moser et al. [32] propose an engineering service bus
to integrate arbitrary tools in the engineering life cycle.

d) Software ecosystems: Bosch [1] discusses the tran-
sition from product lines to software ecosystems. He
identifies three types of ecosystems (operating system-
centric, application-centric, and end-user programming soft-
ware ecosystems) and their characteristics, success factors, and
challenges. One could argue that our approach is related to the
intention of end-user programming ecosystems, in the sense
that the ultimate goal is to allow an end-user to create the
required application himself. In contrast to end-user program-
ming, however, we focus on the configuration of a solution
and abstract from the programming or composition of its
implementation. Similar to the “formalization of interoperabil-
ity” discussed by Bosch, our approach ensures interoperability
through the definition of an integrative architecture and the
interfaces between system components.

e) Standardization efforts: There is an ongoing effort
to standardize a variability modeling approach based on the
common variability modeling language (CVL) [33] which is a
generic language to define variability. The goal of CVL stan-
dardization is to create a new standard notation. In contrast,
the goal of Invar is to integrate existing notations, rather than
defining a new one. This is the main difference between CVL
and Invar. Nevertheless, some CVL concepts like configurable
units(consisting of a variability interface) and their compo-
sition with other configurable units can be compared to the
composition of different configuration services in Invar.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to facilitate ex-
change of variability models during product configuration
(regardless of the techniques, notations and tools in use in
an organization) and to make these models available across
organizational boundaries. Based on an illustrative example,
we defined the basic user interactions required for configura-
tion in general and mapped these interactions to the concrete
semantics of individual modeling approaches, i.e., an approach
for feature modeling and an approach for decision model-
ing. We provide a technical infrastructure and a prototypic
implementation of an integrative approach based on Web
Services. We have shown the feasibility of the approach and
its implementation by applying it for two different variability
modeling approaches and showing that we are able to integrate
them in the context of an example ERP system.

In the future we plan to formalize the dependencies specified
using the IMDI links, improve and extend the Invar approach
to support more complex scenarios: (i) The participating
teams may work at rather different levels of abstraction and
may consider variability at different levels of granularity. It



should be possible to aggregate the different models, e.g.,
by merging or splitting decision points. (ii) Organizations
may not be willing to share their models, e.g., to protect
their intellectual property. Hence, there should be mechanisms
allowing the protection or limited visibility of models. (iii) It
is equally important to identify and establish ownership of
the models and governing model maintenance by establishing
change management processes. There might be situations
where variability that appears to be the same at the surface
(e.g., when configuration options are presented to the end-user)
differs when analyzing its implementation. Such semantic
dissonances can be very difficult to detect and reconcile. We
also plan to integrate more modeling approaches to Invar. This
will allow us to fully validate the approach and the platform.

ACKNOWLEDGEMENTS

This work was supported, in part, by Science Foundation
Ireland grant 03/CE2/I303 1 to Lero; by the Christian Doppler
Forschungsgesellschaft, Austria and Siemens VAI Metals
Technologies; by the European Commission (FEDER) and
Spanish Government under project SETI (TIN2009-07366);
by the Andalusian Government under ISABEL and THEOS
projects (TIC-2533, TIC-5906) and by Siemens Corporate
Technology CT T CEE.

REFERENCES

[1] J. Bosch, “From software product lines to software ecosystems,” in SPLC
2009. San Francisco, CA, USA: ACM ICPS Vol. 446, Carnegie Mellon
University, 2009, pp. 111–119.

[2] M. Sinnema and S. Deelstra, “Classifying variability modeling tech-
niques,” Information & Software Technology, vol. 49, no. 7, pp. 717–
739, 2007.

[3] L. Chen, M. Babar, and N. Ali, “Variability management in software
product lines: A systematic review,” in SPLC 2009. San Francisco,
CA, USA: ACM ICPS Vol. 446, Carnegie Mellon University, 2009, pp.
81–90.

[4] L. B. Lisboa, V. C. Garcia, D. L. dio, E. S. de Almeida, S. R.
de Lemos Meira, and R. P. de Mattos Fortes, “A systematic review of
domain analysis tools,” Information and Software Technology, vol. 52,
no. 1, pp. 1 – 13, 2010.

[5] R. Rabiser, R. Wolfinger, and P. Grünbacher, “Three-level customization
of software products using a product line approach,” in 42nd Annual
Hawaii International Conference on System Sciences. Waikoloa, Big
Island, HI, USA: IEEE CS, 2009, p. 10.

[6] D. Benavides, S. Segura, and A. Ruiz-Corts, “Automated analysis of
feature models 20 years later,” Information Systems, vol. 35, no. 6, pp.
615–636, 2010.

[7] D. Dhungana, P. Grünbacher, and R. Rabiser, “The DOPLER meta-
tool for decision-oriented variability modeling: A multiple case study,”
Automated Software Engineering, vol. 18, no. 1, pp. 77–114, 2011.

[8] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A.Jimenez,
“FaMa framework, http://www.isa.us.es/fama,” in SPLC 2008, 2008, p.
359.

[9] R. Rabiser, P. Grünbacher, and D. Dhungana, “Requirements for product
derivation support: Results from a systematic literature review and an
expert survey,” Information and Software Technology, vol. 52, no. 3, pp.
324–346, 2010.

[10] R. Rabiser, P. Grünbacher, , and D. Dhungana, “Supporting product
derivation by adapting and augmenting variability models,” in SPLC
2007, 2007, pp. 141–150.

[11] G. Botterweck, M. Janota, and D. Schneeweiss, “A design of a con-
figurable feature model configurator,” in VaMoS, ser. ICB Research
Report, D. Benavides, A. Metzger, and U. W. Eisenecker, Eds., vol. 29.
Universität Duisburg-Essen, 2009, pp. 165–168.

[12] S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés, “Automated
metamorphic testing on the analyses of feature models,” Information
and Software Technology, vol. In Press, Corrected Proof, pp. –, 2011.

[13] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” Software Process: Im-
provement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[14] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision
modeling approaches in product lines,” in 5th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2011).
Namur, Belgium: ACM Press, 2011, pp. 119–126.

[15] R. Rabiser, D. Dhungana, W. Heider, and P. Grünbacher, “Flexibility and
end-user support in model-based product line tools,” in EUROMICRO-
SEAA. IEEE Computer Society, 2009, pp. 508–511.

[16] H. Hartmann and T. Trew, “Using feature diagrams with context vari-
ability to model multiple product lines for software supply chains,” in
SPLC 2008. IEEE Computer Society, 2008, pp. 12–21.

[17] H. Hartmann, T. Trew, and A. Matsinger, “Supplier independent feature
modelling,” in SPLC 2009. San Francisco, CA, USA: ACM ICPS Vol.
446, Carnegie Mellon University, 2009, pp. 191–200.

[18] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software, vol. 74,
no. 2, pp. 173–194, 2005.

[19] J. Bosch, “The challenges of broadening the scope of software product
families,” Commun. ACM, vol. 49, no. 12, pp. 41–44, 2006.

[20] S. Bühne and K. Lauenroth, “Modelling requirements variability across
product lines,” in 13th International Conference on Requirements Engi-
neering. IEEE CS, 2005, pp. 41– 50.

[21] R. C. van Ommering, “Software reuse in product populations,” IEEE
Trans. Software Eng., vol. 31, no. 7, pp. 537–550, 2005.

[22] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer, “Structuring
the modeling space and supporting evolution in software product line
engineering,” Journal of Systems and Software, vol. 83, no. 7, pp. 1108–
1122, 2010.

[23] M.-O. Reiser and M. Weber, “Managing highly complex product families
with multi-level feature trees,” in 14th IEEE International Requirements
Engineering Conference (RE’06). Minneapolis, MN, USA: IEEE CS,
2006, pp. 149–158.

[24] K. Schmid, “Variability modeling for distributed development - a com-
parison with established practice,” in SPLC 2010, 2010, pp. 151–165.

[25] K. Czarnecki, S. Helson, and U. Eisenecker, “Staged configuration using
feature models,” in SPLC 2004, R. Nord, Ed. Springer-Verlag, 2004,
vol. LNCS 3154, pp. 266–283.

[26] M.-O. Reiser, R. T. Kolagari, and M. Weber, “Compositional variabili-
tyconcepts and patterns,” in 42nd Hawaii International Conference on
System Sciences. Waikoloa, Hawaii, USA: IEEE Computer Society,
2009, pp. 1–10.

[27] A. Hubaux, A. Classen, and P. Heymans, “Formal modelling of feature
configuration workflows,” in SPLC 2009. Pittsburgh, PA, USA: ACM
ICPS Vol. 446, Carnegie Mellon University, 2009, pp. 221–230.

[28] A. Hubaux, P. Heymans, and D. D. Pierre-Yves Schobbens, “Towards
multi-view feature-based configuration,” in 16th International Working
Conference on Requirements Engineering, REFSQ 2010). Essen,
Germany: Springer, 2010, pp. 106–112.

[29] K. Czarnecki, M. Antkiewicz, and C. H. P. Kim, “Multi-level customiza-
tion in application engineering,” Commun. ACM, vol. 49, no. 12, pp.
60–65, 2006.

[30] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and G. Saval, “Dis-
ambiguating the documentation of variability in software product lines:
A separation of concerns, formalization and automated analysis,” in
15th IEEE International Requirements Engineering Conference (RE’07).
New Delhi, India: IEEE CS, 2007, pp. 243–253.

[31] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[32] T. Moser, F. Waltersdorfer, A. Zoitl, and S. Biffl., “Version management
and conflict detection across heterogeneous engineering data models,”
in Proc. 8th IEEE International Conference on Industrial Informatics
(INDIN 2010), Osaka, Japan, 2010, pp. 928–935.

[33] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey, Ø. Haugen,
B. Møller-Pedersen, and G. K. Olsen, “Developing a software product
line for train control: A case study of CVL,” in SPLC, 2010, pp. 106–
120.

View publication statsView publication stats

http://www.isa.us.es/fama
https://www.researchgate.net/publication/220789875

	Introduction and Motivation
	Multi Product Lines: A Motivating Example
	The Invar Approach
	Assumptions
	Configuration Primitives
	Inter-model Dependencies
	Invar Architecture
	Invar Configuration Service

	Implementation
	Plugging in FaMa Feature Models to Invar
	FaMa Background

	Plugging in Dopler Decision Models to Invar
	Dopler Background


	Preliminary Validation
	Collaborative Setting
	Competitive Setting
	Complementary Setting

	Related Work
	Conclusions and Future Work
	References



