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1. Introduction 
While the literature on scheduling models and solution procedures is extensive, very little has 
been written on how to bring these models and procedures into practice. This has given rise to 
the so-called “gap” between the theory and practice of scheduling (see McCarthy and Liu 
1993), which has been widely documented in several studies, such as e.g. Ford et al. (1987). 
In order to close this gap between scheduling models and procedures, and their 
implementation in a real setting, the former should be translated into a piece of software 
supporting scheduling decisions in a company. This implies carrying out a software 
development process to obtain a final product, i.e. a scheduling system at work. As such a 
software development process, there are a number of technical, human and organisational 
issues which are critical and should be adequately managed to ensure a successful result.  

Despite the importance of the process of developing such systems, scheduling research has 
often overlooked the topic, as there are hardly references providing guidance or 
recommendations to successfully accomplish the development of a manufacturing scheduling 
system, or at least case studies describing this development process for a particular 
application so lessons and insights for future developments can be learned. 

Our paper is aimed towards these two important issues. To do so, we first review the existing 
literature on case studies regarding the application of scheduling systems. From this review, 
we derive and classify a number of guidelines for developing scheduling models for industrial 
practice based on our experience and on the analysis of the relevant literature. While we do 
not claim that the proposed guidelines are universally valid nor should be strictly followed, 
we hope that they will help orienting the design of scheduling models towards a greater 
applicability. 

2. Background 
Scheduling systems can be considered as a particular case of business information systems. 
Usually, business information systems can be divided into packaged (standard) software, and 
customised software (see e.g. Kirchmer 1999). Although there are several available standard 
scheduling systems, the technological peculiarities of different production environments make 
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difficult to come up with a general purpose scheduling approach (Brandimarte 2000), and 
quite often the code developed for the customisation of a packaged scheduling software turns 
to be more than half the code of the final version (Pinedo 2005). As a result, the development 
of a generic scheduling tool that can be widely installed has eluded the many vendors who 
have tried (McKay, 2000). Therefore, in the following we will focus on customised 
scheduling systems, although most of the discussion could also apply to standard scheduling 
systems. 

Broadly speaking, the development of a customised information system encompasses the 
following activities, which are independent from the adopted software development process 
(Kurbel, 2008): 

� Requirement analysis (or requirements engineering), i.e. determining the needs of the 
information system to be developed. Requirements are usually classified into functional 
requirements (those defining a function of the software), and non functional requirements 
(those imposing constraints on the system such as performance requirements, security, or 
reliability). 

� System design, i.e. providing a conceptual solution to the requirements that have been 
identified. Usually, system design is broken down into the description of the software 
components of the system and their relationships (what it is called the architecture of the 
system), and the detailed design of these software elements (Jacobson 1999). 

� System implementation, i.e. transforming the conceptual solution into a piece of software. 

� System testing, i.e. carrying out a validation and verification of the implemented system. 

Although customised manufacturing scheduling systems are, by definition, different for each 
company, it is clear that some activities in the development process may be common to all 
companies, as they refer to high-level descriptions of the purpose of the system. This is 
illustrated in Figure 1, where generic (common) and specific activities are depicted. While 
there are a number of company-dependent purposes for which a scheduling system can be 
implemented (see e.g. Aytug 2005 for a classification of the different purposes of scheduling), 
most scheduling systems share a number of requirements, as all of them must have a number 
of common functionalities. Since these requirements are reflected into components of the 
architecture of the system, it is clear that some parts of this architecture may also be common 
to most manufacturing scheduling systems. The re-use of an efficient, validated architecture 
instead of designing a new system from scratch has a number of advantages: 

� It shortens the development cycle, as it saves time (and money) that otherwise should 
have been allocated to requirements analysis and design. 

� It ensures that the main functionalities of a scheduling system are adequately covered, 
thus acting the architecture both as checklist and design guide for the developers. 

� It allows the re-utilization for future systems of part of the code developed, provided that 
the architecture is described in terms of blocks or function-specific modules. 
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Figure 1. Generic and specific activities in the development of a manufacturing 

scheduling system. 

In this paper, we are interested in the so-called generic activities, from which we can obtain a 
number of insights regarding the deployment of manufacturing scheduling systems. 

There are several papers dealing with the description of manufacturing scheduling systems 
and their implementation. These contributions range from high-level descriptions of the main 
components of a general-purpose architecture of these systems (such as in e.g., Pinedo and 
Yen 1997, Ecker 1997, T'kindt et al. 2005, or Yen 2004), to detailed discussions about 
specific systems for a particular context (such as e.g., Numao and Morishita 1989, or Hadavi 
et al. 1990). Some papers concentrate on describing the structure of data handled by different 
scheduling systems with certain level of detail (such as in Blazewicz et al. 2001 or Rossi et al. 
1998), while others describe a hierarchy of classes referring to some of the persistent elements 
mentioned before (such as Sauer 1993, Maturana et al. 1997, or Pinedo 2007). Given the lack 
of homogeneity among these contributions, a paper-by-paper description would offer little 
insight on the components discussed by the different authors. Instead, we have analysed these 
contributions and derived a number of guidelines (which are discussed in the next section), 
citing the corresponding references whenever appropriate. These guidelines also serve as 
conclusions of the analysis. 

3. Guidelines 
In this section we provide a number of conclusions derived from the analysis of the related 
literature, and from our hands-on experience. We have grouped them into specific topics. 
These are: 

� Model layout. The focus should be kept on modelling relatively simple layouts. Even if 
the physical layout of the factory may be very complex, there are a number of reasons 
indicating the suitability of focusing onto simpler structures, at least on the initial stages 
of the life cycle of the scheduling system. These reasons include: 
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x Incremental deployment of the scheduling system. As just any other business 
information system, scheduling systems are more suitable to be implemented in 
companies by employing an incremental approach where progress can be rapidly 
visualised rather than “big-bang” approaches. Therefore, even if the final goal would 
be the detailed modelling of the plant layout, a simpler model would suffice for 
launching the scheduling system and making the first results of its adoption visible. 
Despite their potential shortcomings, the literature on implementation of business 
information systems is clearly stressing the suitability of an incremental approach and 
particularly when these information systems contain company-specific features, 
which is precisely the case for most scheduling systems.  

x A-B-C analysis. Scheduling is about making and monitoring plans, not about capturing 
and responding to all possible exceptions and alternative scenarios, which are virtually 
infinite. With the ever increasing number of product variants manufactured by 
companies due to the rise of mass customisation, nearly all real-life shop floors would 
be open shops in strict terms. However, most of these settings result in much simpler 
layouts for most variants after a Pareto (A-B-C) analysis. As a result, it seems sensible 
to develop a system to schedule “just” 80% of the jobs rather than considering a much 
more complex layout in order to handle the other remaining 20%, particularly if we 
adopt the aforementioned incremental approach. 

x Dynamic nature of the business. Whereas theoretical scheduling models assume a set 
of fixed resources, this is hardly the usual situation in practice. Quite often, additional 
resources can be moved, purchased, or removed, provoking changes in the physical 
layout that detailed, low level models cannot easily accommodate. Asides, the current 
shortening of product life cycles and their corresponding technological processes 
make such changes more likely. This means that detailed scheduling models should be 
updated, validated, fed with data and put into production at a pace that their 
maintenance cost could be simply so high that they may never pay off. 

x Preprocessing/What-if analysis. As mentioned in an earlier section, a preprocessing of 
the scheduling problem is usually required, which can be used both to set the scope of 
the scheduling decision problem and for what-if analysis. Pinedo’s architecture 
(Pinedo and Yen 1997) suggests using a preprocessor for this purpose. It is assumable 
that this preprocessor may contain a simplify model of the plant, including a 
simplified layout, as it is used prior to a detailed modelling. The need of the what-if 
analysis is also mentioned by McKay and Wiers (2003). 

� Data acquisition and manipulation. Many authors (including most of the references 
cited in the previous section) have consistently stated how hard is to collect and keep all 
data needed by a complex scheduling system. The following issues must be addressed: 

x Development of a database interface. Usually, some data will be already present in the 
ERPs of the company. However, it is unlikely that all data needed are present. As a 
result, both an interface with the database as well as a graphical interface for new data 
introduction is necessary. A good advice is to abstract internal data structures from 
the databases and data tables in order to speed up development and implementation. 

x Maintenance of data. Given how hard is to gather the data, an equally detailed system 
should be placed in order to update and modify existing data. SCADA systems 
integration is a promising method of automating data maintenance. This is 
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particularly true if the scope of the scheduling system includes the shop floor control 
of the schedules (see e.g. McKay and Wiers 2003). 

x Keeping interfaces simple. The ERP of the company hardly needs to know the full 
sequencing with all the start and finish times of the production sequence. 
Furthermore, providing the ERP with all this data could prove challenging. Probably, 
only the estimated finishing date for each product is needed. As a result, when 
connecting a scheduling system with existing ERP software, a good idea is to 
interface only the most basic information and extend the amount of communication as 
the needs arise. An analysis of the suitable interfaces for manufacturing scheduling 
systems is carried out by Higgins (1996). 

x Performance. Advanced models will require extensive datasets that have to be 
retrieved from the database as needed. Special care should be put in the performance 
of queries to the databases. Modern distributed tables and threaded queries are 
necessary. 

� Objectives. It is difficult to overestimate the importance of coming to terms with the 
scheduling objectives. At the first glance, virtually all objectives that one may pose could 
be of interest for the decision maker, as single objective optimisation is controversial in 
practice. Nevertheless, our experience indicates that it is difficult to visualize and 
understand more than 2-3 objectives, as the decision maker can hardly make sense of the 
economic impact of more than 2-3 conflicting operational measures. Therefore, the main 
issue here is how to prioritize/select among these. There are several approaches to do it: 

x Prioritisation of objectives. Scheduling encompasses rather short-term decisions, and 
it is rarely linked to strategic, long-term or medium-term issues. Therefore, 
considering objectives linked to long-term goals makes little sense for some 
situations. One typical example would be the maximisation of machine usage. While 
from a costs accounting perspective machine utilisation helps cutting the unit 
production costs, this objective could be rarely more critical than fulfilling due dates, 
which is a pure, short-term objective. Hence, there is no need to consider both 
objectives simultaneously. Note that we do not claim that machine utilisation (or 
other medium or long term objectives) are not important: we just stress that 
operational decisions should be made according to operational measures, and that it is 
the output of these operational decisions what should feed strategic models, which as 
a result would determine whether machine utilisation (or any other medium-long term 
measure) is sufficient to adjust capacity. 

x Taking out non-conflicting objectives. Some of the proposed objectives may not be 
conflicting among them, but are simply different ways to express the goals of the 
decision makers. Even in some objectives could be theoretically conflicting, it has to 
be checked whether this happens in the industrial setting where the model is to be 
deployed. Typical examples are the number of late jobs and maximum tardiness. It 
seems clear that one may theoretically reduce the number of late jobs by 
systematically delaying a small set of jobs, which will in turn generate big tardiness 
values. However, this alternative cannot be accepted by many companies for which 
customer reliability is their key competitive advantage. If this results to be the only 
available option, the company would find a way to renegotiate their commitments and 
immediately will modify its order acceptance policy to ensure that this situation will 
not happen again. Therefore, one of the two indicators may suffice as a scheduling 
objective. In addition to the additional burden on evaluating a non relevant objective, 
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in a multi-objective optimisation context, it has the additional risk of generating 
biased solutions, thus not providing the decision maker with an appropriate set of 
solutions. 

x Postponement. Another approach could be to delay the decision on which objectives 
should be considered. This approach may make sense in some cases, as usually the 
objectives of scheduling are not an input of the development of the scheduling 
system, but an output. Therefore, developing the model could serve to better 
understand the objectives of the scheduling model. In addition, for some scheduling 
situations, finding a feasible (and understandable) solution may suffice, at least 
during the first stages of the development, therefore the decision on the objectives 
may not be so critical at the early stages. While developing the scheduling model, the 
implicit insights of the decision maker become explicit and he/she can state the 
objectives in a clearer way. 

x Transforming objectives into constraints. In practice, some objectives can be safely 
transferred into constraints. Our experience is that this may apply to many penalty- or 
cost (profit) -related objectives, as it may not be so easy to derive an accurate 
penalty/cost (profit) function. A typical example are due dates: some companies 
accept the violation of committed due dates, and recognise that this should imply a 
sort of penalty which is approximately related to the number of violations (service 
level) and to the difference between the promised due dates and the completion times 
(average waiting time). However, establishing such relation in a meaningful function 
that adequately weights them and can be easily calculated for all jobs and customers 
is not so easy. Therefore, a simple alternative is to establish a maximum tardiness 
allowed and/or a maximum fraction of jobs late. Since most production departments 
include objectives or indicators linked to service level and lead times, obtaining these 
maximum levels of allowance is straightforward in many situations. 

� Solution procedures. A great effort in the scheduling field has been devoted to solution 
procedures, at least from the most theoretical side. A general problem is that most existing 
solution procedures have been tightly linked to the models, therefore generally resulting in 
algorithms with low performance outside the original models for which they were 
conceived, if applicable at all. Since no algorithm can outperforms the rest for all 
scheduling models, building specific algorithms may be justified from a theoretical 
viewpoint, but it should be also clear that no scheduling system can 1) store the myriad of 
specific algorithms, and 2) select the most suitable one among them for any scheduling 
decision. In addition, we have already discussed the relatively short life-cycle of 
scheduling models in view of the extremely dynamic nature of manufacturing. As a 
consequence, the advantages of designing specific algorithm in terms of quality of the 
solutions should be balanced against their cost of development and deployment In 
addition, we note the following issues: 

x Focus on feasibility. It is quite necessary to balance the effort in developing the 
solution procedures against their advantages. As mentioned before, in some cases the 
problem is so restricted that there are few feasible solutions (Hopp and Spearman 
1996). In these cases, most of the computational effort may be wasted in checking 
that no better feasible solutions are available. In addition, in some cases, the objective 
function is rather flat as compared to ``classical'' objective functions. Again, in this 
case most of the computational effort is spent on confirming optimal values. This not 
only speaks for the need of balancing the effort in developing the solution procedures, 
but also for the need of developing solution procedures whose quality of solutions is 
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scaled with the decision interval. As the decision interval is very context specific 
(also within a single company, depending on the shift, workload, etc.), it would be 
extremely interesting to build algorithms that their performance is (roughly) linear 
with time (i.e., they do not stall after a number of iterations or require very long 
decision intervals to obtain acceptable solutions). The focus towards this type of 
algorithms also implies the need of re-assessing the way some computational 
experiences of scheduling algorithms are carried out: Usually, a new solution 
procedure for a specific scheduling problem is labelled as ``efficient'' problem 
because it yields better solutions than existing ones when all of them are allowed the 
same CPU time. However, the relative performance of this new solution procedure 
for different CPU times is unknown. 

x Providing a set of alternative solutions. Even in the best-defined industrial scheduling 
problems, some aspects cannot be captured by the objectives or the constraints of the 
problem, even if they remain important in decision maker's eyes. Therefore, it is 
interesting providing him/her with a set of ``good'' solutions, or at least all solutions 
with equal objective values found by the algorithm. This would clearly help him/her 
to safely pick the one fitting best into these ``implicit goals'', and at the same time, it 
would allow him/her to make these goals more explicit so they can later be 
incorporated into the system. 

x Understanding solution procedures. It does not seem reasonable to believe that 
decision makers with years of practice in an specific production shop floor would 
immediately accept any solution packaged into a scheduling system, particularly if it 
does not follows his/her intuition. Therefore, the understanding of the logic behind 
the solution procedures, even at a rough level, will surely increase trust in the system 
and will incentivize its use. As a consequence, solution procedures based on well-
defined manufacturing principles (such as focusing on bottleneck resources, 
aggregation of non critical resources, restricting moves to non critical jobs, etc.) are 
the key for acceptance. In addition, such procedures generally require less data and 
are more robust to shop floor variability than their more complex counterparts. The 
widespread success of dispatching rules despite their relatively poor performance 
speaks for the need of carefully balancing the sophistication in the design of solution 
procedures against their understanding and acceptance by decision makers. In this 
sense, it is perhaps interesting to draw the attention onto research on general 
frameworks to develop heuristics, such as the one by Pinedo and Yen (1997). 

x Design of algorithms. Many approximate algorithms (i.e., meta-heuristics) employ a 
number of parameters that must be tuned in order to accomplish a good performance.  
The usual procedure for tuning the algorithms in a laboratory is to collect a set of 
instances and try different values of their parameters (using a Design of Experiments) 
and pick the one yielding the best performance. While these procedures may not 
represent a big issue in a laboratory, it is somehow problematic in a real setting. First, 
such set of instances may not be available, or it may be outdated with respect e.g.\ to 
the processing times of the jobs to be scheduled in the future. Secondly, the logic of 
these parameters may not be clear to the decision maker and thus may be use them, or 
misuse them (see bullet before). Therefore, we believe that either algorithms with 
many parameters should be discarded, or the details or their tuning should be made 
transparent to the decision maker. Clearly, this does not include the running time of 
the algorithm, as we have already discussed its importance. 
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x Manipulation of solutions. If we accept that no mathematical model can pretend 
capturing all possible scenarios and exceptions, it follows that we should allow the 
decision maker to manipulate the solutions obtained by the different procedures. This 
aspect is mentioned, among others, by Pinedo and Yen (1997).Several approaches 
could be adopted. One option would be to allow drag and drop the solutions on the 
Gantt chart. Another option, more complex, would be to allow partly freezing jobs 
and/or partial schedules. This latter option is also very suitable for considering jobs 
that are being manufactured, and for reducing the nervousness of changes in the 
schedule, and it brings the interesting problem of the advantages of rescheduling / 
partly scheduling the non frozen jobs. In this regard, lessons from the application of 
production planning systems, such as MRP and MRPII could be learnt.  

x Using already available technology. As more and more complex scheduling settings 
result in slow algorithms, possible solutions are parallelisation and cooperative 
computing. By using grids in a much simpler level, the available multiple CPU cores 
of modern computers, results of very high quality can be obtained in a fraction of 
CPU time. Similarly, very complex scheduling problems can be solved in fast CPU 
times. Research in this field is rather scarce as compared on the large body of 
research on ``sequential'' scheduling. 

� Modular design. While the integration of scheduling with related decisions (such as e.g.\ 
lot sizing or material flow control) has attracted a wealth of interest in the last years, such 
complex models are difficult from the implementation viewpoint. First, they require more 
data. Also, more decision makers could be involved in the process, making more difficult 
to agree on constraints and objectives. Finally, given the dynamic nature of companies, 
integrated models exhibit a shorter life and require substantial upgrading when 
manufacturing conditions change. Instead, simple, modular approaches may be reusable. 

� Constraints. While scheduling literature is rich in dealing with certain types of 
constraints, there are constraints that are so common in real environments that it is 
surprising that most existing models do not deal with them. In the following we 
mentioned some of them grouped in different categories: 

x Machine constraints. Apart from specific machine constraints, most shops are 
characterised by the non availability of machines for all purposes. On one hand, not 
all machines may be amenable to process all jobs (or even if this is the case from a 
technological viewpoint, there may be economic reasons preventing that). Therefore, 
there is a problem of machine eligibility. On the other hand, in most cases, eligible 
machines are not available during all planning period. This is not only motivated by 
breakdowns or planned maintenance, but also because machines are busy processing 
already scheduled jobs. 

x Staff constraints. Staff is almost an ignored resource in many scheduling models. 
However, it is of utmost importance for many real shops. Even in automatic or semi-
automatic processes, staff plays an important role in set ups times. Existing literature 
on scheduling with additional resources is rather scarce. More specifically, there are 
some studies for parallel machines like the one by Chen (2006) but not for complex 
scheduling problems like the ones approached in this paper. 

x Routing constraints. Many shop floors require some type of job re-entrance and/or 
precedence constraints. The reasons vary from pure process-related to quality 
(including scraps and the need for reworking). 
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x Transportation constraints. Transportation times in between stages and the control of 
the AGVs is also necessary for many systems. 

x Capacity constraints. Storage capacity (number of boxes) in between each stage is 
also a key concern as in some cases this is a limited resource. 
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