
Multiset Random Context Grammars, Checkers,
and Transducers

Matteo Cavaliere1,3, Rudolf Freund2, Marion Oswald2,
Dragoş Sburlan3,4

1 Microsoft Research, University of Trento
Centre for Computational and Systems Biology
Trento, Italy
matteo.cavaliere@msr-unitn.unitn.it

2 Faculty of Informatics
Vienna University of Technology
Favoritenstr. 9–11, A–1040 Vienna, Austria
{rudi,marion}@emcc.at

3 Department of Computer Science and Artificial Intelligence
University of Sevilla,
Av. Reina Mercedes, 41012, Sevilla, Spain

4 Department of Informatics and Numerical Methods
Ovidius University of Constantza,
124 Mamaia Bd., Constantza, Romania
dsburlan@univ-ovidius.ro

Summary. We introduce a general model of random context multiset grammars as well
as the concept of multiset random context checkers and transducers. Our main results
show how recursively enumerable sets of finite multisets can be generated using these
models of computing; corresponding results for antiport P systems are established, too.

1 Introduction

The basic concepts of regulated rewriting can be found in [5], and especially the
concept of random context grammars is investigated there in detail for the string
case. In the emergent field of P systems we mostly deal with multisets, hence
several generating and accepting devices, and among them various models of P
systems, were investigated in several articles in [1]. Various interesting models of
grammars for generating multisets were considered in [13], multiset automata were
investigated in [3]. For the basic variants of P systems (introduced as membrane
systems in [15]) investigated so far we refer the reader to [16] for a comprehensive
overview as well as to [19] for the actual state of research. We assume the reader
to be familiar with the original definitions and explanations given there for these
models.

114 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

In this paper, we introduce a general model of random context grammars of
arbitrary type based on a partial order relation for the objects the grammar is
working on as well as the concept of random context checkers and random context
transducers; we show how recursively enumerable sets of finite multisets can be
generated using these models of computing. In the string case, we obtain the classic
variant of random context grammars when using the subword relation as the partial
ordering; for multiset grammars, the order relation is taken to be the multiset
inclusion. As a natural extension of multiset grammars we consider antiport P
systems and show how several results for multiset grammars with arbitrary rules
directly carry over to antiport P systems working in the sequential mode in only
one membrane. Finally, we discuss some open problems for future research.

2 Definitions

In this section we first recall some well-known definitions from formal language
theory; then we define our general model for random context grammars. Moreover,
we recall some notions for string grammars and languages in the general setting
of this paper and finally we give a short definition of antiport P systems working
in the sequential mode.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N. An
alphabet V is a finite non-empty set of abstract symbols. Given V , the free monoid
generated by V under the operation of concatenation is denoted by V ∗; the ele-
ments of V ∗ are called strings, and the empty string is denoted by λ; V ∗ − {λ} is
denoted by V +. Let {a1, . . . , an} be an arbitrary alphabet; the number of occur-
rences of a symbol ai in x is denoted by |x|ai

; the Parikh vector associated with
x with respect to a1, . . . , an is

(|x|a1
, . . . , |x|an

)
. The Parikh image of a language

L over {a1, . . . , an} is the set of all Parikh vectors of strings in L. For a family
of languages FL, the family of Parikh images of languages in FL is denoted by
PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, . . . , an}, is a mapping
f : V −→ N and represented as 〈f (a1) , a1〉 . . . 〈f (an) , an〉 or as any string x the
Parikh vector of which with respect to a1, . . . , an is (f (a1) , . . . , f (an)) . In the fol-
lowing we will not distinguish between a vector (m1, . . . ,mn) , its representation by
a multiset 〈m1, a1〉 . . . 〈mn, an〉 or its representation by a string x with Parikh vec-
tor

(|x|a1
, . . . , |x|an

)
= (m1, . . . , mn). Fixing the sequence of symbols a1, . . . , an in

the alphabet V in advance, the representation of the multiset 〈m1, a1〉 . . . 〈mn, an〉
as a string am1

1 . . . amn
n is unique. The set of all finite multisets over an alphabet

V is denoted by V o.
For more details of formal language theory we refer to [5] and [17].

Multiset Random Context Grammars, Checkers, and Transducers 115

2.2 Grammar Schemes and Grammars

In the following, we shall deal with various types of objects and grammars, hence,
we first define a general model of a grammar scheme:

A grammar scheme G is a construct (O, OT , P, =⇒G) , where:

• O is the set of objects;
• OT ⊆ O is the set of terminal objects;
• P is a finite set of productions;
• =⇒G⊆ O×O is the derivation relation of G induced by the productions in P .

The derivation relation =⇒G is obtained as the union of all =⇒p⊆ O×O, i.e.,
=⇒G:= ∪p∈P =⇒p, where each =⇒p is a relation which we assume at least to be
recursive. The reflexive and transitive closure of =⇒G is denoted by ∗=⇒G.

In the following we shall consider different types of grammar schemes depending
on the components of G, especially with respect to different types of productions.

Based on a grammar scheme of a specific type (in the following referred to as
grammar scheme of type X), we now define the notion of a (sequential) grammar.

Let G = (O, OT , P, =⇒G) be a grammar scheme of type X. Then the pair
(G,w) with w ∈ O is called a grammar of type X , w is the axiom (start object).

The language generated by (G,w) is the set of all terminal objects (we also
assume v ∈ OT to be decidable for every v ∈ O) derivable from the axiom, i.e.,

L (G,w) =
{

v ∈ OT | w ∗=⇒G v
}

.

The family of languages generated by grammars of type X is denoted by L (X) .

In many cases, the type X of the grammar scheme allows for the following
feature:

A type X of a grammar scheme is called a type with unit rules if for every
grammar scheme G = (O, OT , P, =⇒G) of type X there exists a grammar scheme
G′ = (O, OT , P ∪ P+,=⇒G′) of type X such that:

• P+ = {p+ | p ∈ P},
• for all x ∈ O, p is applicable to x if and only if p+ is applicable to x, and
• for all x ∈ O, the application of p+ to x – in case p+ is applicable to x – yields

x back again.

2.3 General Concepts for Random Context Grammars

In [11], the following general notion of a random context-grammar (scheme) was
introduced based on the applicability of rules; we here present this model in a
slightly different way in order to make it easier to be compared with the new
model introduced afterwards.

116 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

A random context grammar scheme (based on the applicability of productions)
GRCP

of type X is a construct
(
G,P ′, =⇒GRCP

)
,

where:

• G = (O, OT , P, =⇒G) is a grammar scheme of type X;
• P ′ is a set of rules of the form (q, R, Q) where q ∈ P , R ∪Q ⊆ P ;
• =⇒GRCP

is the derivation relation assigned to GRC such that for any x, y ∈ O,
x =⇒GRCP

y if and only if for some rule (q, R,Q) ∈ P ′, x =⇒G y by q and,
moreover, all productions from R are applicable to x as well as no production
from Q is applicable to x.

For short, we shall speak of an X-RCP (m,n) grammar scheme if for any
(q, R,Q) ∈ P ′ the set R contains at most m rules and the set Q contains at
most n rules.

Based on a partial order relation on the objects in O, we now are able to define
a different new notion for a random context grammar (scheme).

A random context grammar scheme GRCO of type X (based on an order relation
on the objects) is a construct

(
G,v, P ′, =⇒GRCO

)
,

where:

• G = (O, OT , P, =⇒G) is a grammar scheme of type X;
• (O,v) is a partially ordered set;
• P ′ is a set of rules of the form (q, R, Q) where q ∈ P , R ∪Q ⊆ O;
• =⇒GRCO

is the derivation relation assigned to GRC such that for any x, y ∈ O,
x =⇒GRCO

y if and only if for some rule (q, R,Q) ∈ P ′, x =⇒G y by q and,
moreover, r v x holds true for all r ∈ R as well as s v x does not hold true for
any s ∈ Q.

For short, we shall speak of an X-RCO (m,n) grammar scheme if for any
(q, R,Q) ∈ P ′ the set R contains at most m objects and the set Q contains at
most n objects.

Now let (O,v) be a partially ordered set such that O contains a unique minimal
element e with e v x for all x ∈ O. Moreover, we call an object x ∈ O k-minimal
if and only if any maximal chain between e and x contains at most k + 1 objects
from O (observe that e is the only object which is 0-minimal). Then we shall call
GRC an X-RCO (m/k, n/l) grammar scheme if and only if it is an X-RCO (m,n)
grammar scheme and, moreover, for any (q,R, Q) ∈ P ′, all objects in the set R
are k-minimal and all objects in the set Q are l-minimal.

Multiset Random Context Grammars, Checkers, and Transducers 117

In both cases, if any of the parameters m,n (and k, l) is not to be specified,
we replace it by ∗. Again in both variants, a random context grammar is a pair
(GRCP , w) / (GRCO , w) where w ∈ O is the axiom. A random context grammar
(scheme) is called a grammar (scheme) with permitting context if Q = ∅ for every
(q, R,Q) ∈ P ′ (i.e., n = 0) and a grammar (scheme) with forbidden context if
R = ∅ for every (q,R, Q) ∈ P ′ (i.e., m = 0). The families of languages generated
by random context grammars of the types Y as defined above are denoted by
L (Y).

2.4 String grammars

A string grammar scheme (i.e., a grammar scheme of type “string”) usually is
defined as a construct (N,T, P) where N is the alphabet of non-terminal symbols,
T is the set of terminal symbols, N ∩ T = ∅, P is a finite set of productions of the
form u → v with u ∈ V +, and v ∈ V ∗, where V := N ∪ T .

In the general notion as defined above, a string grammar scheme G would be
represented as (

(V ∪ T)∗ , T ∗, P, =⇒G

)
,

where the derivation relation for u → v ∈ P is defined as usual by xuy =⇒u→v xvy
for all x, y ∈ V ∗, thus yielding the well-known derivation relation =⇒G for the
string grammar scheme G. A string grammar then is a pair (G,S) where S ∈ V −T
is the start symbol.

As special types of string grammars we consider string grammars with arbitrary
productions, context-free productions of the form A → v with A ∈ N and v ∈ V ∗,
λ-free context-free productions of the form A → v with A ∈ N and v ∈ V +, and
(right-)regular productions of the form A → v with A ∈ N and v ∈ TN ∪ T ; the
corresponding types of grammars are denoted by RE, CF , CF−λ, and REG, thus
yielding the families of languages L (RE), i.e., the family of recursively enumerable
languages, as well as L (CF), L (CF−λ), and L (REG), i.e., the families of context-
free, λ-free context-free, and regular languages, respectively. Observe that the types
RE, CF , and CF−λ are types with unit rules (of the form w → w for w → v ∈ P),
whereas the type REG (in the definition given above) is not a type with unit rules
(therefore, we often allow regular productions to be of the general form A → v
with A ∈ N and v ∈ T ∗V ∪ T ∗).

A matrix grammar (with appearance checking) is a construct

G = (N, T, P,M,F, S) ,

where (N,T, P) is a string grammar scheme of type X, S ∈ N is the start sym-
bol, M is a finite set of sequences of the form (x1 → y1, . . . , xn → yn), n ≥ 1, of
productions of type X over N ∪ T in P (with xi ∈ (N ∪ T)+ , yi ∈ (N ∪ T)∗, in
all cases), and F ⊆ P .

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there are a matrix (x1 → y1, . . . ,
xn → yn) in M and strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1,
z = wn+1, and, for all 1 ≤ i ≤ n, either

118 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

(1) wi = w′ixiw
′′
i , wi+1 = w′iyiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T)∗, or

(2) wi = wi+1, xi → yi is not applicable to wi, and xi → yi ∈ F .
The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w},

where =⇒∗ is the reflexive and transitive closure of the relation =⇒. The fam-
ily of languages of this form is denoted by L (X-MATac). If the set F is empty,
then the grammar is said to be without appearance checking; the corresponding
family of languages is denoted by L (X-MAT). As is well-known, L (X-MAT) $
L (CF -MATac) = L (RE).

In the proofs given in the next section we will use a well-known normal form for
matrix grammars of type CF (context-free matrix grammar): a matrix grammar
G = (N, T, P,M,F, S) is said to be in binary normal form if N = N1∪N2∪{S, #},
with these three sets being mutually disjoint, and the matrices in M in one of the
following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y, A → #), with X, Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why we usually write
it in the form (S → X0A0), in order to fix the symbols X, A present in it), and
F consists exactly of all rules A → # appearing in matrices of type 3; # is a
trap-symbol, because once introduced, it is never removed. A matrix of type 4 is
used only once, in the last step of a derivation.

For each context-free matrix grammar (with or without appearance checking)
there is an equivalent matrix grammar in the binary normal form (e.g., see [5]).
In fact, in the next section we shall use a slightly modified version of this binary
normal form called f-binary normal form in [9], i.e., instead of the final matrices
of type 4 there is only one single final matrix of the form (f → λ), for some special
symbol f ∈ N1.

2.5 Multiset Grammars

For an introduction to multiset grammars, we refer the reader to [13]. In our
general notation, a multiset grammar scheme Gm is of the form (O, OT , P, =⇒m) ,
where:

• O is the set of all finite multisets over a finite alphabet V , denoted by V o,
• OT is the set of all finite multisets over an alphabet T ⊆ V , denoted by T o,

and
• P is a set of multiset productions yielding a derivation relation =⇒m on the

multisets over V ; the application of the production u → v to a multiset x has
the effect of replacing the multiset u contained in x by the multiset v, which
yields the well-known derivation relation =⇒m.

Multiset Random Context Grammars, Checkers, and Transducers 119

A multiset grammar then is a pair (Gm, w) where w ∈ V o is the axiom (the
initial multiset). We consider all derivations starting from the multiset w and using
productions from P and finally yielding a terminal multiset (i.e., a multiset only
consisting of objects from T); the set of terminal multisets generated in that way
is denoted by L (Gm).

As special types of multiset grammars we consider multiset grammars with
arbitrary productions, context-free productions of the form A → v with A ∈ V and
v ∈ V o, and regular productions of the form A → v with A ∈ N and v ∈ T ∗V ∪T ∗;
the corresponding types X of multiset grammars are denoted by mARB, mCF ,
and mREG, thus yielding the families of languages L (X). As it was shown in [13],

Ps (L (REG)) = L (mREG) = L (mCF) = Ps (L (CF))
$ L (mARB)
$ Ps (L (RE)) = Ps (L (MATac)) ,

i.e., even with arbitrary multiset productions we need some control mechanism to
get Ps (L (RE)).

A random context multiset grammar GRC with respect to the new model in-
troduced in this paper now is a construct of the form

(Gm,vm, P ′, =⇒GRC) ,

where:

• Gm = (V o, T o, P, =⇒m) is a multiset grammar scheme;
• (O,vm) is a partially ordered set with vm being the multiset inclusion (observe

that the unique minimal element for the multiset order relation is the empty
multiset);

• P ′ is a set of rules of the form (q,R, Q) such that q ∈ P is a multiset processing
rule on multisets over V and R, Q are sets of multisets over V ;

• =⇒GRC
is the derivation relation assigned to GRC such that for any x, y ∈ O,

x =⇒GRC
y if and only if for some rule (q,R, Q) ∈ P ′, x =⇒m y by the multiset

production q and, moreover, all r ∈ R are sub-multisets of x as well as no s ∈ Q
is a sub-multiset of x.

Now let us consider a very well-known example: Let

L =
{

a2n | n ≥ 0
}

.

Consider V = {A,B, S,X, Y, Z}, T = {a}, and the set of context-free (multiset)
rules (i.e., of type mCF)

P = {S → XA,X → Z,A → a, Z → λ,
A → BB,X → Y, B → a, Y → X}

120 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

as well as the set of random context multiset rules

P ′ = {(S → XA, ∅, ∅) , (X → Z, ∅, {B}) ,
{A → a, ∅, {X, Y }} , (Z → λ, ∅, {A}) ,
(A → BB, ∅, {Y, Z}) , (X → Y, ∅, {A}) ,
(B → a, ∅, {X, Z}) , (Y → X, ∅, {B})} .

Then obviously the mCF -RCO (0, 2/1) grammar

GRC = ((V o, {a}o
, P, =⇒m) ,vm, P ′, =⇒GRC

)

yields Ps (L). In order to get an mCF -RCO (1/1, 1/1) grammar G′RC we have to
replace the rule (A → BB, ∅, {Y, Z}) by the rule (A → BB, {X} , ∅) and the rule
(B → a, ∅, {X, Z}) by the rule (B → a, {Y } , ∅) thus obtaining P ′′ instead of P ′.
Moreover, as mCF is a type with unit rules, we may replace every symbol H in a
set of symbols in the random context grammars above by the corresponding unit
rules H → H; adding all these unit rules to P thus getting the set of rules P̃ , we
obtain the corresponding mCF -RCP grammars

G̃RC =
((

V o, {a}o
, P̃ , =⇒m

)
,vm, P̃ ′,=⇒GRC

)

and
G̃RC =

((
V o, {a}o

, P̃ , =⇒m

)
,vm, P̃ ′′, =⇒GRC

)
.

Hence, Ps (L) is a multiset language in all the families L (mCF -RCO (0, 2/1)),
L (mCF -RCO (1/1, 1/1)), L (mCF -RP C (0, 2)), and L (mCF -RCP (1, 1)).

In [3], a relation between mCF−λ-RCO (∗/1, ∗/1) multiset grammars and linear
bounded automata was established where CF−λ indicates that no erasing produc-
tions of the form H → λ are allowed. In the following, we shall restrict ourselves to
show the computational completeness of several models introduced in this paper.

2.6 Antiport P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [16]; comprehensive information can be found on the P systems web page
http://psystems.disco.unimib.it.

An (extended) antiport P system (of degree d ≥ 1) is a construct

Π = (V, T, µ, w1, . . . , wd, R1, . . . , Rd, i0) ,

where:

• V is the alphabet of objects,
• T is the alphabet of terminal objects,
• µ is the membrane structure (it is assumed that we have d membranes, labeled

with 1, 2, . . . , d, the skin membrane usually being labeled with 1),

Multiset Random Context Grammars, Checkers, and Transducers 121

• wi, 1 ≤ i ≤ d, are strings over V representing the initial multiset of objects
present in the membranes of the system,

• Ri, 1 ≤ i ≤ d, are finite sets of antiport rules of the form x/y, for some
x, y ∈ V ∗, associated with membrane i,

• i0 is the output membrane.

An antiport rule of the form x/y ∈ Ri means moving the objects specified by
x from membrane i to the surrounding membrane j (to the environment, if i = 1),
at the same time moving the objects specified by y in the opposite direction. (The
rules with one of x, y being empty are, in fact, symport rules, but in the following
we do not explicitly consider this distinction here, as it is not relevant for what
follows.) The weight of an antiport rule x/y is defined as max {|x| , |y|}. We assume
the environment to contain all objects in an unbounded number.

In this paper, we consider antiport P systems working in the sequential deriva-
tion mode (e.g., see [7]), i.e., a computation starts with the multisets specified by
w1, . . . , wd in the d membranes, and in each time unit, we choose a rule assigned to
some membrane in such a way that we can identify objects inside and outside the
corresponding membrane to be affected by the selected antiport rule. The com-
putation is successful if and only if it halts; the output of a halting computation
consists of the different terminal symbols in the designated output membrane i0
at the end of the computation.

The set of all multisets generated in this way by the system Π is denoted by
L(Π). The families of multisets L(Π) generated as above by systems with at most
d membranes and rules of weight at most g are denoted by L (Pd (antig)). When
any of these parameters d, g is not bounded, it is replaced by ∗.

An (extended) antiport P system with forbidden context is a construct

Πf = (V, T, µ, w1, . . . , wd, R
′
1, . . . , R

′
d) ,

where V, T, µ, w1, . . . , wd are defined as above and R′i, 1 ≤ i ≤ d, are finite sets of
antiport rules with forbidden context of the form (x/y, z), for some x, y, z ∈ V ∗,
associated with membrane i. In this case, the application of the antiport rule x/y
is only possible if z is not a sub-multiset of the multiset of objects inside the
membrane. (For a generalized variant of this model see [10]; for variants of P
systems with permitting and forbidden contexts also see [18].) A computation of
Πf is performed in a similar way as described for antiport systems. The families of
sets L (Π) of multisets computed by such systems with at most d membranes, rules
of weight at most g, and the forbidden multiset of length at most l are denoted by
L (flPd (antig)). When any of these parameters d, g, l is not bounded, it is replaced
by ∗.

122 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

3 Results for RC (Multiset) Grammars

In this section we prove some results for random context grammars working on
multisets or on strings and finally show a corresponding result for antiport P
systems:

Theorem 1 Ps (L (RE)) = L (mCF -RCO (1/1, 1/1))
= L (mCF -RCP (1, 1)) .

Proof. The theorem is proved by showing the two inclusions

L (mCF -RCO (1/1, 1/1)) ⊆ L (mCF -RCP (1, 1))

and
Ps (L (RE)) ⊆ L (msCF -ROC (1/1, 1/1)) .

Let us first show the inclusion

L (mCF -RCO (1/1, 1/1)) ⊆ L (mCF -RCP (1, 1)) .

Consider a random context multiset grammar (based on the multiset order
relation) GRC of type mCF -RCO (1/1, 1/1)

(G,P ′, =⇒GRC
, w) ,

where G = (O, OT , P, =⇒G) is a grammar scheme of type mCF ; then we define
the random context grammar G′RC (based on the applicability of productions) of
type X (

G′,v, P ′′, =⇒G′RC
, w

)

as follows: By adding all unit rules H → H for any symbol H ∈ O to P we
get the set of rules P̃ , thus obtaining the corresponding mCF grammar scheme
G′ =

(
O,OT , P̃ , =⇒G′

)
. Then we replace every symbol H in a set of symbols R

or Q in the productions (q, R,Q) of P ′ by the corresponding unit rules H → H;
in that way, we obtain the new set of productions P ′′. From this construction, we
immediately infer L (G′RC) = L (GRC).

Based on the results established in [13] and [8], for proving the second inclusion,

Ps (L (RE)) ⊆ L (mCF -RCO (1/1, 1/1)) ,

we may consider a recursively enumerable language L ∈ RE to be given by a matrix
grammar in f-binary normal form GM with GM = (N, T, P, M,F, S), N = N1 ∪
N2∪{S, #}, with these three sets being mutually disjoint, F ⊆ {A → # | A ∈ N2};
we assume the matrices in M to be uniquely labeled by elements of a set of labels
Lab ⊆ N such that the start matrix (S → X0A0) has label 1 and the final matrix
(f → λ) has the label 0. We then construct an mCF -RCO (1/1, 1/1) grammar
GRC generating Ps (L) as follows:

Multiset Random Context Grammars, Checkers, and Transducers 123

GRC = (Gm,vm, P ′, =⇒GRC
, S) ,

Gm = (V o, T o, P ′′, =⇒m) ,
V = N ∪ {[i, j] | i ∈ Lab, 1 ≤ j ≤ 3} ,
P ′′ = {S → X0A0} ∪ {f → λ}

∪ {Xr → [r, 1] , Ar → wr,1 [r, 2] ,
[r, 1] → [r, 3] , [r, 2] → wr,2 [r, 3] , [r, 3] → Yr

| r : (Xr → Yr, Ar → wr,1wr,2) ∈ M}
∪ {X → Y | r : (Xr → Yr, Ar → #) ∈ M} ,

P ′ = {(S → X0A0, ∅, ∅)} ∪ {(f → λ, ∅, ∅)}
∪ {(Xr → [r, 1] , {Ar} , ∅) , (Ar → wr,1 [r, 2] , {[r, 1]} , {[r, 2]}) ,

([r, 1] → [r, 3] , {[r, 2]} , ∅) , ([r, 2] → wr,2, {[r, 3]} , ∅) ,
([r, 3] → Yr, ∅, {[r, 2]})
| r : (Xr → Yr, Ar → wr,1wr,2) ∈ M}

∪ {(Xr → Yr, ∅, {Ar}) | r : (Xr → Yr, Ar → #) ∈ M} .

The initial matrix 1 : (S → X0A0) is simply simulated by the production
(S → X0A0, ∅, ∅), the final matrix 0 : (f → λ) by the production (f → λ, ∅, ∅).

For simulating a matrix r : (Xr → Yr, Ar → #) ∈ M used in the appearance
checking mode we use the production (Xr → Yr, ∅, {Ar}).

For simulating a matrix r : (Xr → Yr, Ar → wr,1wr,2) ∈ M we have to apply
the productions

(Xr → [r, 1] , {Ar} , ∅),
(Ar → wr,1 [r, 2] , {[r, 1]} , {[r, 2]}),
([r, 1] → [r, 3] , {[r, 2]} , ∅),
([r, 2] → wr,2, {[r, 3]} , ∅), and
([r, 3] → Yr, ∅, {[r, 2]})

in exactly this sequence in order to get rid of the newly introduced variables of the
form [r, j], r ∈ Lab, 1 ≤ j ≤ 3; the production (Ar → wr,1 [r, 2] , {[r, 1]} , {[r, 2]})
is the only one where we use both permitting and forbidden context, but in that
way we can guarantee that exactly one variable A is affected. In sum, it is easy to
see that L (GRC) = Ps (L). 2

The following results for strings are well known (e.g., see [5]); they can be
proved by using similar constructions as those elaborated in the proof of Theo-
rem 1:

Theorem 2 L (RE) = L (CF -RCO (1/1, 1/1))
= L (CF -RCP (1, 1)) .

We now turn back to multiset processing and consider arbitrary multiset pro-
ductions; for unary alphabets, the following result of computational completeness
is also shown in [12]:

Theorem 3 Ps (L (RE)) = L (mARB-RCO (0, 1/1))
= L (mARB-RCP (0, 1)) .

124 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

Proof. We again start with a context-free matrix grammar in f-binary normal
form. A matrix r : (Xr → Yr, Ar → wr) now can easily be simulated by the pro-
duction (XrAr → Yrwr, ∅, ∅) and a matrix (Xr → Yr, Ar → #) by the production
(Xr → Yr, ∅, {Ar}) or (Xr → Yr, ∅, {Ar → Ar}); all these forms of productions in
the random context multiset grammars fulfill the required conditions. The remain-
ing details of the construction are obvious and therefore omitted. 2

As already discussed in [12], multiset grammars with arbitrary multiset pro-
ductions nicely correspond to antiport P systems working in the sequential mode
in only one membrane; hence, from the preceding theorem we immediately infer
the following result:

Corollary 4 L (f1P1 (anti2)) = Ps (L (RE)) .

Proof. In order to fulfill the required conditions, a matrix r : (Xr → Yr, Ar → wr)
with wr = wr,1wr,2, wr,1, wr,2 ∈ N2 ∪T ∪{λ}, now has to be simulated by the two
antiport rules with forbidden context (XrAr/ (r, 1)wr,1, λ) and ((r, 1) /Yrwr,2, λ)
and a matrix r : (Xr → Yr, Ar → #) by the antiport rule with forbidden context
(Xr/Yr, Ar). The remaining details of the construction are similar to those in the
preceding proofs and therefore omitted. 2

4 RC Checkers and RC Transducers

Let (O,v) be a partially ordered set. Then a random context checker (an RC
checker) over (O,v) is of the form (R,Q) with R ∪ Q ⊆ O and R, Q both being
finite sets. Using RC checkers in a generating grammar means that we have to check
whether at least one checker is consistent with the current configuration before
continuing the computation. The idea of RC checkers reminds us of the checkers
used in Darwinian P systems (see [4] and [6]) where finite multiset automata are
used as checkers.

A grammar scheme GRCC with random context checkers of type X (based on
an order relation on the objects) is a construct

(G,v,H, =⇒GRCC
) ,

where:

• G = (O, OT , P, =⇒G) is a grammar scheme of type X;
• (O,v) is a partially ordered set;
• H is a set of RC checkers over (O,v);
• =⇒GRCC

is the derivation relation assigned to GRCC such that for any x, y ∈ O,
x =⇒GRCC

y if and only if for some rule q ∈ P, x =⇒G y by q and, moreover,
there exists a checker (R, Q) ∈ H such that r v x holds true for all r ∈ R as
well as s v x does not hold true for any s ∈ Q (i.e., x is consistent with one of
the checkers in H).

Multiset Random Context Grammars, Checkers, and Transducers 125

For short, we shall speak of an X-RCC (m, n) grammar scheme if for any
(R, Q) ∈ H the set R contains at most m objects and the set Q contains at most
n objects. Moreover, we shall call GRCC an X-RCC (m/k, n/l) grammar scheme
if and only if it is an X-RCC (m,n) grammar scheme and for any (R, Q) ∈ H,
all objects in the set R are k-minimal and all objects in the set Q are l-minimal.
If any of the parameters k, l, m, n is not to be specified, we replace it by ∗. A
grammar with random context checkers (an RCC grammar) is a pair (GRCC , w)
where w ∈ O is the axiom. The corresponding families of languages generated by
RCC grammars of types X are denoted by L (X-RCC (m/k, n/l)).

The notion of RC checkers can easily be extended to P systems (in some analogy
to Darwinian P systems, see [4] and [6]) where a checker for the whole system
consists of a checker for each membrane region:

An (extended) antiport P system with RC checkers is a construct

ΠRCC = (V, T, µ, w1, . . . , wd, R1, . . . , Rd,H) ,

where V, T, µ, w1, . . . , wd, R1, . . . , Rd are defined as for antiport P systems and H
is a finite set of membrane checkers, where each membrane checker is of the form
(h1, . . . , hd) with hi, 1 ≤ i ≤ m, being RC checkers over (V o,vm). In this case, the
application of the antiport rule x/y is only possible if for some membrane checker
(h1, . . . , hd) ∈ H the contents of each region i is consistent with the RC checker
hi. The families of sets L (Π) of multisets computed by such systems with at most
m membranes and rules of weight at most g such that for any (R, Q) occurring
in H the set R contains at most m objects and the set Q contains at most n
objects and all objects in the set R are k-minimal and all objects in the set Q
are l-minimal, are denoted by L (RCC (m/k, n/l)Pd (antig)). When any of these
parameters d, g, k, l, m, n is not bounded, it is replaced by ∗.
Theorem 5 Ps (L (RE)) = L (mCF -RCC (1/1, ∗/1)) .

Proof. We start with a context-free matrix grammar in f-binary normal form
GM = (N, T, P, M,F, S), N = N1 ∪ N2 ∪ {S, #}, with these three sets being
mutually disjoint, F ⊆ {A → # | A ∈ N2}; we assume the matrices in M to be
uniquely labeled by elements of a set of labels Lab ⊆ N such that the start matrix
(S → X0A0) has label 1 and the final matrix (f → λ) has the label 0. We then
construct an mCF -RCC (1/1, ∗/1) grammar GRCC generating Ps (L) as follows:

GRCC = (Gm,vm,H, =⇒GRCC , S) ,
Gm = (V o, T o, P ′′, =⇒m) ,
V = N1 ∪ {[i, j] | i ∈ Lab, 1 ≤ j ≤ 4} ∪N2 ∪ {S, #} ,
N ′ = N1 ∪ {[i, j] | i ∈ Lab, 1 ≤ j ≤ 4} ,
P ′′ = {S → X0A0} ∪ {(f → λ)}

∪ {Ar → [r, 1]wr,1, Xr → [r, 2] , [r, 1] → [r, 3] wr,2,
[r, 2] → [r, 4] , [r, 4] → λ, [r, 3] → Yr

| r : (Xr → Yr, Ar → wr,1wr,2) ∈ M}
∪ {Xr → [r, 1] , [r, 1] → Yr | r : (Xr → Yr, Ar → #) ∈ M} ,

126 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

H = {(∅, N ′ − {S})} ∪ {({X} , N ′ − {X}) | X ∈ N1}
∪ {({Xr} , (N ′ − {Xr, [r, 1]})) , ({[r, 1]} , (N ′ − {[r, 1] , [r, 2]})) ,

({[r, 2]} , (N ′ − {[r, 2] , [r, 3]})) , ({[r, 3]} , (N ′ − {[r, 3] , [r, 4]}))
| r : (Xr → Yr, Ar → wr,1wr,2) ∈ M}

∪ {({[r, 1]} , N ′ − {Ar}) | r : (Xr → Yr, Ar → #) ∈ M} .

The RC checker (∅, N ′ − {S}) is needed before starting a derivation with
applying the initial production S → X0A0. After the simulation of a ma-
trix exactly one of the control symbols from N1 is present, hence, we need
the RC checkers ({X} , N ′ − {X}) for X ∈ N1 to continue the derivation.
For checking the non-appearance of the symbol Ar (by a matrix of the form
r : (Xr → Yr, Ar → #)) we use the intermediate symbol [r, 1] together with the
RC checker ({[r, 1]} , N ′ − {Ar}); this new symbol [r, 1] only appears in this inter-
mediate step.

The simulation of a matrix r : (Xr → Yr, Ar → wr,1wr,2) needs a more complex
simulation procedure; in the following table, we list the productions in the first
column and the corresponding RC checkers used to check the underlying multiset
after the application of this rule; the sequence of productions listed in the table
below is constructed in such a way that these productions have to be applied in
exactly this sequence, otherwise the derivation will be blocked.

production RC checker
Ar → [r, 1]wr,1 ({Xr} , (N ′ − {Xr, [r, 1]}))
Xr → [r, 2] ({[r, 1]} , (N ′ − {[r, 1] , [r, 2]}))
[r, 1] → [r, 3] wr,2 ({[r, 2]} , (N ′ − {[r, 2] , [r, 3]}))
[r, 2] → [r, 4] ({[r, 3]} , (N ′ − {[r, 3] , [r, 4]}))
[r, 4] → λ ({[r, 3]} , (N ′ − {[r, 3]}))
[r, 3] → Yr ({Yr} , N ′ − {Yr})

The RC checkers in the table above are of the form (M ′, N ′ −M) where M ′ j
M and M contains the symbols from N ′ currently occurring in the multiset. If
the production Ar → [r, 1]wr,1 is applied more than once, then after the ap-
plication of Xr → [r, 2] we can apply the production [r, 1] → [r, 3]wr,2 only
once, because the resulting multiset is not valid for any of the RC checkers; the
RC checker ({[r, 2]} , (N ′ − {[r, 2] , [r, 3]})) can only be used if originally the pro-
duction Ar → [r, 1] wr,1 has been applied only once. On the other hand, this
production has to be applied, because otherwise we cannot apply Xr → [r, 2].
As the RC checker ({[r, 3]} , (N ′ − {[r, 3]})) is subsumed by the RC checker
({[r, 3]} , (N ′ − {[r, 3] , [r, 4]})), we need not take it into H. Finally we would like to
point out that the permitting contexts in our construction are needed to guarantee
that the production Ar → [r, 1] wr,1 has been applied before Xr evolves to Yr.

In sum, GRCC fulfills the required complexity parameters, and obviously we
have L (GRCC) = Ps (L), which observations complete the proof. 2

Multiset Random Context Grammars, Checkers, and Transducers 127

Adding the final RC checker (∅, N ′ ∪N2) in the proof elaborated above, we
could also consider a slightly different variant of a grammar with RC checkers
where we check the validity of the object after the application of a production.
The same observation holds true for the next results, too.

Theorem 6 Ps (L (RE)) = L (mARB-RCC (1/1, 1/1))
= L (mARB-RCC (0, ∗/1)) .

Proof. Once more we start with a context-free matrix grammar in f-binary nor-
mal form, with the matrices uniquely labelled by elements of some finite set
Lab ⊆ N. Moreover, for each label r ∈ Lab we introduce a new variable [r].
A matrix r : (Xr → Yr, Ar → wr) then can be simulated by using the pro-
duction XrAr → Yrwr together with the RC checker ({Xr} , ∅), and a matrix
r : (Xr → Yr, Ar → #) by using the productions Xr → [r] and [r] → Yr to-
gether with the RC checkers ({Xr} , ∅) and ({[r]} , {Ar}), respectively; all these
forms of productions in the mARB-RCC grammar fulfill the required condi-
tions, i.e., we have shown Ps (L (RE)) = L (mARB-RCC (1/1, 1/1)). For proving
Ps (L (RE)) = L (mARB-RCC (0, ∗/1)), let N ′

2 = N2 ∪ {[r] | r ∈ Lab}; then we
use the same productions as before, but we replace the RC checker ({Xr} , ∅)
by (∅, N ′

2 − {Xr}) and ({[r]} , {Ar}) by (∅, (N ′
2 − {Xr}) ∪ {Ar}). The remaining

details of the construction are rather obvious and therefore omitted. 2

As already discussed in the preceding section, multiset grammars using ar-
bitrary multiset productions can be interpreted as antiport P systems with one
membrane; each membrane checker then simply consists of only one RC checker
that checks the contents of the skin region:

Corollary 7 Ps (L (RE)) = L (RCC (1/1, 1/1) P1 (anti2))
= L (RCC (0, ∗/1) P1 (anti2)) .

Proof. We can use constructions quite similar to those elaborated in the preceding
proof; again start with a context-free matrix grammar in f-binary normal form.
The only difference is that a matrix r : (Xr → Yr, Ar → wr,1wr,2) now has to be
simulated by using the antiport rules Xr/ [r] wr,1 and [r] /Yrwr,2 together with the
RC checkers ({Xr} , ∅) and ({[r]} , ∅) or (∅, N ′

2 − {Xr}) and (∅, N ′
2 − {[r]}), respec-

tively. The remaining details of the construction again are obvious and therefore
omitted. 2

We now extend the idea of RC checkers to RC transducers having in mind
some results already elaborated, for example, in [2], with the main idea to observe
the steps in a derivation of a grammar and to take the collection of the outputs
of checking the current object before each derivation step as the result of the
derivation – instead of the result of the derivation itself.

Let (O,v) be a partially ordered set and (O′, +, e,v′) be a partially ordered
semi-group with the operation + and the unit element e. Then a random context
transducer (an RC transducer) over ((O,v) , (O′, +, e,v′)) is of the form (R,Q, t)

128 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

with R ∪ Q ⊆ O, t ∈ O′, and R,Q both being finite sets, i.e., (R, Q) is an RC
checker. Applying RC transducers in a grammar now means that if for an RC
transducer (R, Q, t) the checker (R, Q) is consistent with the current object, then
we may choose it and generate the output t. For example, we may take the com-
mutative semi-group (O′,+, e,v′) = (V o,∪m, λ,vm) where ∪m denotes the union
(addition) of multisets and λ denotes the empty multiset or the non-commutative
semi-group (O′, +, e,v′) = (V ∗, ◦, λ,vs) where ◦ denotes the concatenation of
strings, λ is the empty string, and vs denotes the substring relation. We now
may use RC transducers to generate subsets of O′ by collecting the outputs dur-
ing a computation of the corresponding RCC grammar obtained by using the RC
transducers as RC checkers; formally, we give the following definitions:

A grammar scheme GRCT with random context transducers of type X (based
on an order relation on the objects) is a construct

(G,v, (O′, +, e,v′) ,H,=⇒GRCT
) ,

where:

• G = (O, OT , P, =⇒G) is a grammar scheme of type X;
• (O,v) is a partially ordered set;
• (O′, +, e,v′) is a partially ordered semi-group with unit element e;
• H is a set of RC transducers over ((O,v) , (O′, +, e));
• =⇒GRCT

is the derivation relation assigned to GRCT such that for any x, y ∈ O,
x =⇒GRCT

y if and only if for some rule q ∈ P, x =⇒G y by q and, moreover,
there exists a transducer (R,Q, t) ∈ H such that r v x holds true for all r ∈ R
as well as s v x does not hold true for any s ∈ Q (i.e., x is consistent with the
checker in one of the transducers in H).

As the result of a successful derivation, i.e., a derivation yielding a terminal
object from OT , we do not take this terminal object, yet instead, if (R1, Q1, t1),
. . . , (Rj , Qj , tj) is a sequence of RC transducers that can be used during the
derivation, we take t1 + · · · + tj as a result of this derivation. For example, if
(O′, +, e,v′) = (V o,∪m, λ,vm), then the output consists of the multiset obtained
by collecting all outputs during the derivation or, if (O′, +, e,v′) = (V ∗, ◦, λ,vs),
then we consider the sequence of output strings as the string generated as a result
of the derivation. The union of all these elements t1 + · · ·+ tj yields the language
L (GRCT) ⊆ O′.

For (O′,+, e,v′) = (V o,∪m, λ,vm), the results of terminal derivations in
GRCT yield the multiset language Lm (GRCT) consisting of all multisets being
the union of all multisets produced by the RC transducers during a derivation
yielding a terminal object. On the other hand, for (O′, +, e,v′) = (V ∗, ◦, λ,vs),
we obtain the string language Ls (GRCT) consisting of all strings generated as the
sequence of strings produced by the RC transducers during a derivation yielding
a terminal object. As any string of Σ∗ can be interpreted as a multiset over Σ, in
the case O′ = Σ∗ we may consider both Ls (GRCT) and Lm (GRCT).

Multiset Random Context Grammars, Checkers, and Transducers 129

We then shall speak of an X-RCT (m,n, s) grammar scheme if for any
(R, Q, t) ∈ H the set R contains at most m objects, the set Q contains at most
n objects and t is s-minimal in (O′,v′). Moreover, we shall call GRCT an X-
RCT (m/k, n/l, s) grammar scheme if and only if it is an X-RCT (m,n, s) gram-
mar scheme and for any (R, Q) ∈ H, all objects in the set R are k-minimal and
all objects in the set Q are l-minimal. If any of the parameters k, l, m, n, s is not
to be specified, we replace it by ∗. A grammar with random context transducers
(an RCT grammar) is a pair (GRCT , w) where w ∈ O is the axiom. The corre-
sponding families of multiset and string languages generated by RCT grammars of
types X are denoted by Lm (X-RCT (m/k, n/l, s)) and Ls (X-RCT (m/k, n/l, s)),
respectively.

For antiport P systems, each membrane checker yields an output, i.e., we define
an (extended) antiport P system with RC transducers as a construct

ΠRCT = (V, T,Σ, µ,w1, . . . , wd, R1, . . . , Rd,H) ,

where V, T, µ, w1, . . . , wd, R1, . . . , Rd are defined as for antiport P systems, Σ is
the output alphabet, and H is a finite set of membrane transducers, where each
membrane transducer is of the form (h1, . . . , hd, t) with t ∈ Σ∗ and hi, 1 ≤ i ≤
m, being RC checkers over (V o,vm). With the parameters already explained
above and with s denoting the maximal length of t in a membrane transducer
(h1, . . . , hd, t), the resulting families of sets of multisets and of strings are denoted
by Lm (RCT (m/k, n/l, s)Pd (antig)) and Ls (RCT (m/k, n/l, s)Pd (antig)).

Theorem 8 Ps (L (RE)) = Lm (mCF -RCT (1/1, ∗/1, 1, 1)) .

Proof. The result directly follows from the proofs of Theorem 5: all the productions
there are of the form X → Y u with X ∈ N1 ∪N2 ∪ {S} ∪N ′

1, Y ∈ N1 ∪N ′
1 ∪ {λ}

and u ∈ N1 ∪T ∪{λ} . Hence, we immediately obtain the RCT grammar from the
RCC grammar constructed there by replacing the RC checker (R, Q) checking the
object after the application of the rule X → Y u as listed in the table in the proof
of Theorem 5 by the corresponding RC transducer (R,Q, u). 2

Corollary 9 L (RE) = Ls (mCF -RCT (1/1, ∗/1, 1, 1)) .

Proof. The result directly follows from the proof of Theorem 5 and of Theorem 8
as well as of the constructions given for matrix grammars in the proofs of [8] which
show that for every recursively enumerable language we can construct a matrix
grammar with appearance checking that generates the symbols of a terminal string
in the correct sequence. 2

The following results are obvious from the constructions elaborated in the
proofs above, hence, we omit their proofs:

Corollary 10 Ps (L (RE)) = Lm (mARB-RCT (1/1, 1/1, 1))
= Lm (mARB-RCT (0, ∗/1, 1)) .

130 M. Cavaliere, R. Freund, M. Oswald, D. Sburlan

Corollary 11 L (RE) = Ls (mARB-RCT (1/1, 1/1, 1))
= Ls (mARB-RCC (0, ∗/1, 1)) .

Corollary 12 Ps (L (RE)) = Lm (RCT (1/1, 1/1, 1)P1 (anti2))
= Lm (RCT (0, ∗/1, 1)P1 (anti2)) .

Corollary 13 L (RE) = Ls (RCT (1/1, 1/1, 1) P1 (anti2))
= Ls (RCT (0, ∗/1, 1) P1 (anti2)) .

5 Conclusion

We have introduced a new general model for random context grammars based on
a partial order relation on the objects the grammars deal with. Based on the idea
of checking the current object to be smaller than some given ones, but not to be
smaller than some other ones, we also introduced grammars with random context
checkers as well as grammars yielding as an output the multiset or sequence of
objects generated by random context transducers during a computation. These
ideas and notions were carried over to antiport P systems as well. For all these
models of generating sets of multisets or strings we established computational
completeness results, i.e., we proved that – even with some quite restricted bounds
on the complexity of these generating devices – we obtain Ps (L (RE)) or L (RE),
respectively.

On the other hand, we have not considered variants of the models introduced
in this paper which yield language classes below Ps (L (RE)) or L (RE), respec-
tively; for example, L (mCF -RCO (0, ∗)) $ Ps (L (RE)), because we know (e.g.,
see [5]) that L (CF -RCO (0, ∗)) $ L (RE). We think that especially the fami-
lies L (msCF -RCO (0, ∗/k)) and L (msCF -RCO (∗/k, 0)), especially for k = 1, 2,
should be investigated/characterized.

The idea of RC checkers and RC transducers can be carried over to many other
models of computation, especially to other models of P systems or tissue P systems
(e.g., see [14]). Hence, there seems to be a broad area for future research based on
the ideas and notions introduced in his paper.

Acknowledgements

The work of Marion Oswald is supported by FWF-project T225-N04.

References

1. C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing – Math-
ematical, Computer Science and Molecular Computing Points of View. LNCS 2235,
Springer, Berlin, 2001.

2. M. Cavalliere: Evolution, Communication, Observation: From Biology to Membrane
Computing and Back. PhD thesis, University of Sevilla, Spain, 2006.

Multiset Random Context Grammars, Checkers, and Transducers 131

3. E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana: Multiset automata. In [1], 69–84.
4. E. Csuhaj-Varjú, C. Mart́ın-Vide, Gh. Păun, A. Salomaa: From Watson-Crick L-

systems to Darwinian P systems. Natural Computing, 2 (2003), 299–318.
5. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,

Berlin, 1989.
6. J. Dassow, E. Csuhaj-Varjú: On the syntactic complexity of Darwinian membrane

systems. In volume II of the present proceedings.
7. R. Freund: Asynchronous P systems. Proceedings WMC5, 2004, 12–28.
8. R. Freund, Gh. Păun: On the number of nonterminal symbols in graph-controlled,

programmed and matrix grammars. In Machines, Computations, and Universality.
3rd MCU (M. Margenstern, Y. Rogozhin, eds.), LNCS 2055, Springer, 2001, 214–225.

9. R. Freund, Gh. Păun, M. J. Pérez-Jiménez: Tissue P systems with channel states.
Theoretical Computer Science, 330 (2005), 101–116.

10. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Informat-
icae, 49, 1–3 (2002), 81–102.

11. R. Freund, M. Oswald: Modelling grammar systems by tissue P systems working
in the sequential mode. In Proceedings of Grammar Systems Workshop, Budapest,
2004.

12. R. Freund, M. Oswald: Variants of small universal antiport P systems. In volume II
of the present proceedings.

13. M. Kudlek, C. Mart́ın-Vide, Gh. Păun: Toward a formal macroset theory. In [1],
123–134.

14. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodriguez-Paton: Tissue P systems. Theo-
retical Computer Science, 296, 2 (2003), 295–326.

15. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

16. Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.
17. A. Salomaa, G. Rozenberg, eds.: Handbook of Formal Languages. Springer, Berlin,

1997.
18. D. Sburlan: Promoting and Inhibiting Contexts in Membrane Computing. PhD thesis,

University of Sevilla, Spain, 2006.
19. The P systems webpage: http://psystems.disco.unimib.it

