
Performing Arithmetic Operations
with Spiking Neural P Systems

Miguel A. Gutiérrez-Naranjo1, Alberto Leporati2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es

2 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
alberto.leporati@unimib.it

Summary. We consider spiking neural P systems as devices which can be used to per-
form some basic arithmetic operations, namely addition, subtraction, comparison and
multiplication by a fixed factor. The input to these systems are natural numbers ex-
pressed in binary form, encoded as appropriate sequences of spikes. A single system
accepts as inputs numbers of any size. The present work may be considered as a first
step towards the design of a CPU based on the working of spiking neural P systems.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [5] as
a new class of distributed and parallel computing devices. They were inspired by
membrane systems (also known as P systems) [9, 10, 12], in particular by tissue–
like P systems [8], and are based on the neurophysiological behavior of neurons
sending electrical impulses (spikes) along axons to other neurons.

In SN P systems the processing elements are called neurons, and are placed
in the nodes of a directed graph, called the synapse graph. The contents of each
neuron consists of a number of copies of a single object type, namely the spike.
Neurons may also contain firing and/or forgetting rules. The firing rules allow
a neuron to send information to other neurons in the form of electrical impulses
(also called spikes) which are accumulated at the target cell. The application of the
rules depends on the contents of the neuron; in the general case, applicability is
determined by checking the contents of the neuron against a regular set associated
with the rule. As inspired from biology, when a neuron sends out spikes it becomes
“closed” (inactive) for a specified period of time, that reflects the refractory period



182 M.A. Gutiérrez-Naranjo, A. Leporati

of biological neurons. During this period, the neuron does not accept new inputs
and cannot “fire” (that is, emit spikes). Another important feature of biological
neurons is that the length of the axon may cause a time delay before a spike
arrives at the target. In SN P systems this delay is modeled by associating a delay
parameter to each rule which occurs in the system. If no firing rule can be applied
in a neuron, there may be the possibility to apply a forgetting rule, that removes
from the neuron a predefined number of spikes.

Formally, an SN P system of degree m ≥ 1, as defined in [6], is a construct of
the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), with 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0
are integer numbers. If E = ac, then it is usually written in the following
simplified form: ac → a; d; similarly, if a rule E/ac → a; d has d = 0,
then we can simply write it as E/ac → a. Hence, if a rule E/ac → a; d
has E = ac and d = 0, then we can write ac → a;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d of
type (1) from Ri, we have as 6∈ L(E) (where L(E) denotes the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

The rules of type (1) are called firing (also spiking) rules, and they are applied
as follows. If the neuron σi contains k ≥ c spikes, and ak ∈ L(E), then the rule
E/ac → a; d ∈ Ri can be applied. The execution of this rule removes c spikes from
σi (thus leaving k − c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0, then the spike is immediately emitted,
otherwise it is emitted after d computation steps of the system. (Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.)
If the rule is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d− 1 the
neuron is closed, so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send a spike along it, then that particular spike is
lost), and cannot fire new rules. In the step t + d, the neuron spikes and becomes
open again, so that it can receive spikes (which can be used starting with the step
t + d + 1) and select rules to be fired.

Rules of type (2) are called forgetting rules, and are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi. Note that, by definition, if a firing
rule is applicable then no forgetting rule is applicable, and vice versa.



Performing Arithmetic Operations with SN P Systems 183

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1 : ac1 → a; d1 and E2 : ac1 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in
a neuron. In such a case, only one of them is nondeterministically chosen. Thus,
the rules are used in the sequential manner in each neuron, but neurons function
in parallel with each other.

The initial configuration of the system is described by the numbers n1, n2, . . .,
nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the number of steps to wait until it becomes open (this
number is zero if the neuron is already open). A computation in a system as above
starts in the initial configuration. A positive integer number is given in input to a
specified input neuron. This number may be encoded in many different ways, for
example as the interval of time steps elapsed between the insertion of two spikes
into the neuron (note that this is a unary encoding). Other possible encodings are
discussed below. To pass from a configuration to another one, for each neuron a
rule is chosen among the set of applicable rules, and is executed. The computation
proceeds in a sequential way into each neuron, and in parallel among different
neurons. Generally, a computation may not halt. However, in any case the output
of the system is usually considered to be the time elapsed between the arrival of
two spikes in a designated output cell. Defined in this way, SN P systems compute
functions of the kind f : N→ N; they can also indirectly compute functions of the
kind f : Nk → N by using a bijection from Nk to N.

As discussed in [6], there are other possibilities to encode natural numbers read
from and/or emitted to the environment by SN P systems; for example, we can
consider the number of spikes contained in the input and in the output neuron,
respectively, or the number of spikes read/produced in a given interval of time.
Also, an alternative way to compute a function f : Nk → N is to introduce k
natural numbers n1, n2, . . . , nk in the system by “reading” from the environment
a binary sequence z = 0b10n110n21 . . . 10nk10g, for some b, g ≥ 0; this means that
the input neuron of Π receives a spike in each step corresponding to a digit 1 from
the string z. Note that we input exactly k+1 spikes, and that this is again a unary
encoding. Sometimes we may need to impose that the system outputs exactly two
spikes and halts (sometimes after the second spike) hence producing a spike train
of the form 0b′10r10g′ , for some b′, g′ ≥ 0 and with r = f(n1, n2, . . . , nk). In
what follows we will also consider systems which have k input neurons. For these
systems, the input values n1, n2, . . . , nk will arrive simultaneously to the system,
each one entering through the corresponding input neuron. Moreover, the input
numbers will be sometimes encoded in binary form, using the same number of bits
in order to synchronize the different parts of the systems: the sequence of bits that
encodes a natural number will be represented as a spike train such that, at each
time step, the presence of a spike denotes 1 in the corresponding position, whereas
the absence of a spike denotes 0. For further details, we refer the reader to the
next sections.



184 M.A. Gutiérrez-Naranjo, A. Leporati

If we do not specify an input neuron (hence no input is taken from the envi-
ronment) then we use SN P systems in the generative mode; we start from the
initial configuration, and the distance between the first two spikes of the output
neuron (or the number of spikes, etc.) is the result of the computation. Note that
generative SN P systems are inherently nondeterministic, otherwise they would
always reproduce the same sequence of computation steps, and hence the same
output. Dually, we can neglect the output neuron and use SN P systems in the
accepting mode; for k ≥ 1, the natural number n1, n2, . . . , nk are read in input
and, if the computation halts, then the numbers are accepted.

In [5] it was shown that generative SN P systems are universal, that is, can
generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets was obtained by spiking neural P systems with a
bounded number of spikes in the neurons. SN P systems are universal also in their
computing version (that is, when they compute functions f : N → N), as it can
be easily shown by simulating register machines [6]. These results can also be ob-
tained with even more restricted forms of spiking P systems; for example, [4] shows
that at least one of these features can be avoided while keeping universality: time
delay (refractory period) greater than 0, forgetting rules, outdegree of the synapse
graph greater than 2, and regular expressions of complex form. These results have
been further extended in [3], where it is shown that universality is kept even if we
remove some combinations of two of the above features. Finally, in [11] the behav-
ior of spiking neural P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [1] spiking neural P systems
were studied as language generators (over the binary alphabet {0, 1}).

Spiking neural P systems have also been used to solve decision problems, both
in a semi–uniform and in a uniform way [7]. When solving a problem Q in the
semi–uniform setting, for each specified instance I of Q we build in a polynomial
time (with respect to the size of I) an SN P system ΠQ,I , whose structure and
initial configuration depend upon I, that halts (or emits a specified number of
spikes in a given interval of time) if and only if I is a positive instance of Q. On
the other hand, a uniform solution of Q consists of a family {ΠQ(n)}n∈N of SN
P systems such that, when having an instance I ∈ Q of size n, we introduce a
polynomial (in n) number of spikes in a designated (set of) input neuron(s) of
ΠQ(n) and the computation halts (or, alternatively, a specified number of spikes
is emitted in a given interval of time) if and only if I is a positive instance.
The preference for uniform solutions over semi–uniform ones is given by the fact
that they are more strictly related to the structure of the problem, rather than
to specific instances. Indeed, in the semi–uniform setting we do not even need
any input neuron, as the instance of the problem is embedded into the structure
(number of spikes, graph of neurons and synapses, rules) from the very beginning.

In this paper, we consider SN P systems in a completely different way. We
will view SN P systems as components of a restricted Arithmetic Logic Unit in
which one or more natural numbers are provided in binary form, some arithmetic
operation is performed and the result is sent out (to the environment) also in bi-



Performing Arithmetic Operations with SN P Systems 185

Fig. 1. An SN P system that performs the addition among two natural numbers expressed
in binary form

nary form. The arithmetic operations we will consider are addition, subtraction
and multiplication among natural numbers. Each number will be provided to the
system as a sequence of spikes: at each time step, zero or one spike will be sup-
plied to the input neuron, depending upon whether the corresponding bit of the
number is 0 or 1. Also the output neuron will emit the computed number to the
environment in binary form, encoded as a spike train.

The paper is organized as follows. In Section 2 we present an SN P system
which can be used to add two natural numbers expressed in binary form, of any
length (that is, composed of any number of bits). In Section 3 we present an anal-
ogous SN P system, that computes the difference (subtraction) among two natural
numbers. Section 4 contains the description of a very simple system that can be
used to compare two natural numbers. Section 5 first extends the system presented
in Section 2 to perform the addition of any given amount of natural numbers, and
then describes a spiking neural P system that performs the multiplication of any
natural number, given as input, by a fixed factor embedded into the system. Fi-
nally, section 6 concludes the paper and suggests some possible directions for future
research.

2 Addition

In this section we describe a simple SN P system that performs the addition of
two natural numbers. We call such a system the SN P system for 2-addition. It
is composed of three neurons (see Figure 1): two input neurons and an addition
neuron, which is also the output neuron. Both input neurons have a synapse to the
addition neuron. Each input neuron receives one of the numbers to be added as a
sequence of spikes, that encodes the number in binary form. As explained above,
no spike in the sequence at a given time instant means 0 in the corresponding po-
sition of the binary expansion, whereas one spike means 1. Note that the numbers
provided as input to the system may be arbitrarily long. The input neurons have
only one rule, a → a, which is used to forward the spikes to the addition neuron
as soon as they arrive. The addition neuron has three rules: a → a, a2/a → λ and
a3/a2 → a, which are used to compute the result.

Formally, the SN P system for 2-addition is defined as a structure:



186 M.A. Gutiérrez-Naranjo, A. Leporati

ΠAdd = (O, σInput1 , σInput2 , σAdd, syn, in1, in2, out)

where:

• O = {a};
• σInput1 = (0, RInput1), with RInput1 = {a → a};
• σInput2 = (0, RInput2), with RInput1 = {a → a};
• σAdd = (0, RAdd), with RAdd = {a → a, a2/a → λ, a3/a2 → a};
• syn = {(Input1, Add), (Input2, Add)};
• in1 = Input1, in2 = Input2;
• out = Add.

The following theorem holds.

Theorem 1. The SN P system for 2-addition outputs the addition in binary form
of two non-negative integers, provided to the neurons σInput1 and σInput2 in binary
form.

Proof. Let t denote the current time step. In the initial configuration (t = 0), the
system does not contain any spike. At t = 1, a binary digit has been provided
to each of the input neurons, in the form of absence or presence of a spike. Such
a digit is associated with the power 20 in the binary representation of the input
numbers. At t = 2 these spikes are placed in neuron σAdd. We can now divide the
future behavior of σAdd in three cases, depending upon the number of spikes it
contains, that may be 0, 1 or 2.

• If there are no spikes, no rules are activated and in the next step 0 spikes are
sent to the environment. This encodes the operation 0 + 0 = 0.

• If there is 1 spike, then the rule a → a is triggered. The spike is consumed and
one spike is sent out. This encodes 0 + 1 = 1 + 0 = 1.

• If there are 2 spikes, then the rule a2/a → λ is triggered. This means that no
spike is sent out, which can be interpreted as a 0 in the binary form of the
output. Note that only one spike is consumed in the application of the rule.
This means that in the next computation step the spikes in the addition neuron
will be the spikes provided from the input neuron plus the one which has not
been consumed. This encodes 1 + 1 = 10.

In the general case, we observe that the spikes in the addition neuron either
come from the input neurons or remain in the neuron from the previous step. Since
only one spike can remain, the number of spikes contained in σAdd can be 0, 1, 2 or
3 at each computation step. The cases for 0, 1, or 2 spikes are treated as described
above. If there are 3 spikes, then the rule a3/a2 → a is applied. One spike is sent
out, two of them are consumed and one remains for the next step. This encodes
the operation 1 + 1 + 1 = 11. ut

As an example, let us consider the addition 28 + 21 = 49, that in binary form
can be written as 111002 + 101012 = 1100012. Table 1 reports the number of
spikes contained in each neuron of ΠAdd, as well as the number of spikes sent to



Performing Arithmetic Operations with SN P Systems 187

Time step Input1 Input2 Add Output

t = 0 0 0 0 0

t = 1 0 1 0 0

t = 2 0 0 1 0

t = 3 1 1 0 1

t = 4 1 0 2 0

t = 5 1 1 2 0

t = 6 0 0 3 0

t = 7 0 0 1 1

t = 8 0 0 0 1

Table 1. Number of spikes in each neuron of ΠAdd, and number of spikes sent to the
environment, at each time step during the computation of the addition 111002+101012 =
1100012

the environment, at each time step during the computation. The input and the
output sequences are written in bold. Note that the first instant of time for which
the output is valid is t = 3, due to the time needed for the first input bits to reach
the output neuron and to be processed.

3 Subtraction

The subtraction SN P system, illustrated in Figure 2, consists of ten neurons. The
first input number, the minuend, is provided to neuron σInput1 in binary form,
encoded as a spike train as described above. Similarly, the second input number
(the subtrahend) is supplied in binary form to neuron σInput2 . Neuron σInput1 is
linked to three auxiliary neurons, called σaux1 , σaux2 and σaux3 , whereas σInput2

is connected with another auxiliary neuron called σaux4 . The set of neurons σaux1 ,
σaux2 and σaux3 act as a multiplier of the minuend: they multiply by 3 the number
of spikes provided by neuron σInput1 . The system contains also a neuron called
σgen, which is connected with σaux flow and σaux5 . These latter neurons are also
mutually connected by two synapses. The target of the subsystem built by the
neurons σgen, σaux flow and σaux5 is to provide a constant flow of spikes to σSub.
All the neurons mentioned up to now have only one rule: a → a. The neurons
σauxi , for 1 ≤ i ≤ 5, are connected with neuron σSub; this is both the output
neuron and the neuron in which the result of the subtraction is computed, by
means of six rules: a → λ, a2/a → a, a3/a2 → λ, a4 → a, a5 → λ and a6/a5 → a.
At the beginning of the computation all neurons are empty except σgen, which
contains one spike.

Formally, the subtraction SN P system is defined as a structure:

ΠSub = (O, σInput1 , σInput2 , σaux1 , σaux2 , σaux3 , σaux4 , σaux5 , σgen,

σaux flow, σSub, syn, in1, in2, out)



188 M.A. Gutiérrez-Naranjo, A. Leporati

Fig. 2. An SN P system that performs the subtraction among two natural numbers
expressed in binary form

where:

• O = {a};
• σInput1 = (0, RInput1), with RInput1 = {a → a};
• σInput2 = (0, RInput2), with RInput1 = {a → a};
• σauxi = (0, Rauxi), with Rauxi = {a → a}, for all 1 ≤ i ≤ 5;
• σaux flow = (0, Raux flow), with Raux flow = {a → a};
• σgen = (1, Rgen), with Rgen = {a → a};
• σSub = (0, RSub), with RSub = {a → λ, a2/a → a, a3/a2 → λ, a4 → a, a5 → λ,

a6/a5 → a};
• syn = {(Input1, aux1), (Input1, aux2), (Input1, aux3), (Input2, aux4), (gen,

aux5), (gen, aux flow), (aux5, aux flow), (aux flow, aux5), (aux1, Sub),
(aux2, Sub), (aux3, Sub), (aux4, Sub), (aux5, Sub)};

• in1 = Input1, in2 = Input2;
• out = Sub.

The following theorem holds.

Theorem 2. The subtraction SN P system outputs the subtraction, in binary form,
of two non-negative integer numbers, provided in binary form to neurons σInput1

(the minuend) and σInput2 (the subtrahend).

Proof. At the beginning of the computation (time t = 0) all the neurons of the
system are empty but neuron σgen, that contains one spike. Let us focus first on
the subsystem composed of the neurons σgen, σaux flow and σaux5 . At time t = 1,
one spike is placed in each of the neurons σaux flow and σaux5 , whereas neuron σgen

contains no spikes. Since this neuron has no incoming synapses, it will not receive



Performing Arithmetic Operations with SN P Systems 189

spikes and thus it will be empty along all the computation. At time t = 2, σaux5

has sent one spike to σSub and another one to σaux flow. Meanwhile, σaux flow

has sent a spike to σaux5 . This means that at t = 2 the spikes in both neurons
σaux flow and σaux 5 are the same as those at time t = 1, and one spike has been
sent to the subtraction neuron. Therefore, starting from t = 2, in each time unit
neuron σSub receives one spike from σaux5 .

Now let us focus on the input neurons. At the beginning of the computation
they are empty. At time t = 3, neuron σSub can receive 0 or 3 spikes from σInput1

(through σaux1 , σaux2 and σaux3), and 0 or 1 spike from σInput2 (through σaux4).
This means that, at time t = 3, σSub may contain 1, 2, 4 or 5 spikes. We can thus
consider the following four cases.

• If σSub contains 1 spike, then it comes from σaux5 . The rule a → λ is trig-
gered, so that the spike is consumed and no spike is sent out. This encodes the
operation 0− 0 = 0.

• If σSub contains 2 spikes, then one of them comes from σaux5 and the other
one from σaux4 . The rule a2/a → a is triggered; as a consequence, one spike is
sent out and one spike is consumed, so one spike remains in σSub for the next
step. This encodes x0− y1 = z1 where x, y and z are numbers in binary form
such that x− (y + 1) = z.

• If σSub contains 4 spikes, then one of them comes from σaux5 and the other
three from σaux1 , σaux2 and σaux3 . The rule a4 → a is triggered, so that all the
spikes are consumed and one spike is sent out. This encodes 1− 0 = 1.

• If σSub contains 5 spikes, then each of them comes from σaux1 to σaux5 . The
rule a5 → λ is triggered; as a consequence, all the spikes are consumed and no
spike is sent out. This encodes the operation 1− 1 = 0.

In the general case, we consider that the spikes in neuron σSub come from the
input neurons, or remains in the neuron from the previous step. Since only one
spike can remain at each computation step, the number of spikes can be 1, 2, 3,
4, 5 or 6.

• If σSub contains 1 spike, then it comes from σaux5 . No spike has remained
from the previous step, nor comes from the input neurons. The rule a → λ
is applied. As a result, the spike is consumed and no spike is sent out. This
encodes 0− 0 = 0.

• If σSub contains 2 spikes, then one of them comes from σaux5 and the other
one either comes from σaux4 or remains from the previous step (no both cases
may occur at the same time). The case in which the second spike comes from
σaux4 has already been considered above. If it remains from the previous step,
then it comes from the operation in the second digit in x00− y01 = z11 where
x− (y + 1) = z. The rule a2/a → a is triggered; as a consequence, one spike is
sent out and one spike is consumed, thus leaving one spike in the neuron for
the next step.

• If σSub contains 3 spikes, then one of them comes from σaux5 , the other one
from σaux4 and the last one remains from the previous step. This situation



190 M.A. Gutiérrez-Naranjo, A. Leporati

comes from the operation on the second digit of x00 − y11 = z01, where
x − (y + 1) = z1. The rule a3/a2 → λ is applied. This means that two spikes
are consumed, no spike is sent out and one spike remains in the neuron for the
next step.

• If σSub contains 4 spikes, then one of them comes from σaux5 and the other
three come from σaux1 , σaux2 and σaux3 . This case has been already considered
above: the rule a4 → a is triggered, which consumes all the spikes and sends
out one spike. This encodes 1− 0 = 1.

• If σSub contains 5 spikes, then one of them comes from σaux5 and three of them
come from σaux1 , σaux2 and σaux3 . The fifth spike can come from σaux4 or can
remain from the previous step (the two events cannot occur both at the same
time). The case in which it comes from σaux4 has already been considered
above. If it remains from the previous step, then the situation comes from
x10 − y01 = z01, where x − y = z1. The rule a5 → λ is applied, which
consumes all the spikes. No spike is sent out and no spike remains for the next
step.

• If σSub contains 6 spikes, then one of them remains from the previous step and
the others come from σaux1 , σaux5 , σaux2 and σaux3 . The situation comes from
x10 − y11 = z11 where x − (y + 1) = z. The rule a6/a5 → a is triggered; as
a consequence, five spikes are consumed, one spike is sent out and one spike
remains for the next step. ut

Time step Input1 Input2 aux1 aux2 aux3 aux4 aux5 Sub Output

t = 0 0 0 0 0 0 0 0 0 0

t = 1 0 1 0 0 0 0 1 0 0

t = 2 0 1 0 0 0 1 1 1 0

t = 3 1 0 0 0 0 1 1 2 0

t = 4 1 0 1 1 1 0 1 3 1

t = 5 0 1 1 1 1 0 1 5 0

t = 6 1 1 0 0 0 1 1 4 0

t = 7 1 0 1 1 1 1 1 2 1

t = 8 0 0 1 1 1 0 1 6 1

t = 9 0 0 0 0 0 0 1 5 1

t = 10 0 0 0 0 0 0 1 1 0

Table 2. Number of spikes in each neuron of ΠSub, and number of spikes sent to the
environment, at each time step during the computation of the subtraction 11011002 −
1100112 = 1110012

As an example let us calculate 108 − 51 = 57, that in binary form can be
written as 11011002 − 1100112 = 1110012. Table 2 reports the number of spikes
that occur in each neuron of ΠSub, at each time step during the computation.
Note that at each step only one rule is active in the subtraction neuron, and thus



Performing Arithmetic Operations with SN P Systems 191

the computation is deterministic. At time t = 0, the eight neurons of ΠSub are
empty and the system has not yet emitted any spike to the environment. At time
t = 1, the minuend and the subtrahend start to be supplied to σInput1 and σInput2 ,
respectively. From this moment, σaux5 always contains one spike. At t = 4 the first
digit of the output is emitted to the environment. The computation continues until
the binary sequence 1110012, which is the binary representation of 57, has been
emitted.

4 Checking Equality

Checking the equality of two numbers is a different task with respect to computing
addition or subtraction. When comparing two numbers the output should be a
binary mark, which indicates whether they are equal or not. Since an SN P system
produces a spike train, we will encode the output as follows: starting from an
appropriate instant of time, at each computation step the system will emit a spike
if and only if the two corresponding input bits (that were inserted into the system
some time steps before) are equal. So doing, the system will emit no spike to the
environment if the input numbers are equal, and at least one spike if they are
different. Stated otherwise, if we compare two n-bit numbers then the output will
also be an n-bit number: if such an output number is 0, then the input numbers
are equal, otherwise they are different.

Bearing in mind these marks for equality and inequality, the design of the SN
P system is trivial. It consists of three neurons: two input neurons, having a → a
as the single rule, linked to a third neuron, the checking neuron. This checking
neuron is also the output neuron, and it has only two rules: a2 → λ and a → a.

Formally, the SN P system for checking equality is defined as a structure:

ΠComp = (O, σInput1 , σInput2 , σComp, syn, in1, in2, out)

where:

• O = {a};
• σInput1 = (0, RInput1), with RInput1 = {a → a};
• σInput2 = (0, RInput2), with RInput1 = {a → a};
• σComp = (0, RComp), with RComp = {a → a, a2 → λ};
• syn = {(Input1, Comp), (Input2, Comp)};
• in1 = Input1, in2 = Input2;
• out = Comp.

The system is illustrated in Figure 3. Due to its simplicity, we just give an
informal justification of its working and correctness.

Both σInput1 and σInput2 send the information of the corresponding input digits
simultaneously. Such information consist of 0 or 1 spike for each of the two inputs,
so at each computation step there can be 0, 1 or 2 spikes in neuron σComp. If there
are 0 or 2 spikes, then no difference has been found and no spike is sent to the



192 M.A. Gutiérrez-Naranjo, A. Leporati

Fig. 3. An SN P system that compares two natural numbers of any length, expressed in
binary form

environment. A spike is emitted only when a single spike is placed in σComp. As
explained above, this will be considered as a mark of inequality of the two binary
numbers given as input, independent of any following bits.

5 Multiplication

In this section we present a first approach to the problem of computing the mul-
tiplication of two binary numbers by means of SN P systems. The main difference
between multiplication and the addition or subtraction operations presented in the
previous sections is that in addition and subtraction the n-th digit in the binary
representation of the inputs is used exactly once, to compute the n-th digit of
the output, and then it can be discarded. On the contrary, in the usual algorithm
for multiplication the different digits of the inputs are reused several times; hence
the design of a device that executes such algorithm needs some kind of memory.
Other algorithms for multiplication, such as Booth’s algorithm (see, for example,
[2]) also need some kind of memory, to store the intermediate results.

We propose a family of SN P systems for performing the multiplication of two
non-negative integer numbers. In these systems only one number, the multiplicand,
is provided as input; the other number, the multiplier, is instead encoded in the
structure of the system. The family thus contains one SN P system for each possible
multiplier.

In the design of our systems, we exploit the following basic fact concerning
multiplication by one binary digit: any number remains the same if multiplied by
1, whereas it produces a 0 if multiplied by zero. Bearing this fact in mind, an SN
P system associated to a fixed multiplier only needs to add different copies of the
multiplicand, by feeding such copies to an addition device with the appropriate
delay. Before presenting this design, we extend the 2-addition SN P system from
section 2 to an n-addition SN P system.

5.1 Adding n numbers

In this section we present a family {ΠAdd(n)}n≥2 of SN P systems which allows
to add numbers expressed in binary form. Precisely, for any integer n ≥ 2 the



Performing Arithmetic Operations with SN P Systems 193

Fig. 4. An SN P system that performs the addition among five natural numbers expressed
in binary form

system ΠAdd(n) computes the sum of n natural numbers. In what follows we will
call ΠAdd(n) the SN P system for n-addition. For n = 2 we will obtain the SN P
system for 2-addition that we have described in Section 2.

The system ΠAdd(n) consists of n+1 neurons: n input neurons and one addition
neuron, which is also the output neuron. Each input neuron has only one rule,
a → a, and is linked to the addition neuron. This latter neuron computes the
result of the computation by means of n rules ri, i ∈ {1, . . . , n}, which are defined
as follows:

ri ≡ ai/ak+1 → a if i is odd and i = 2k + 1
ri ≡ ai/ak → λ if i is even and i = 2k

Formally, the SN P system for n-addition is defined as a structure:

ΠAdd(n) = (O, σInput1 , . . . , σInputn , σAdd, syn, in1, . . . , inn, out)

where:

• O = {a};
• σInputi = (0, RInputi), with RInputi = {a → a} for all i ∈ {1, 2, . . . , n};
• σAdd = (0, RAdd), with RAdd =

⋃n
i=1{ri}, where:

– ri ≡ ai/ak+1 → a if i is odd and i = 2k + 1;
– ri ≡ ai/ak → λ if i is even and i = 2k;

• syn =
⋃n

i=1{(Inputi, Add)};
• ini = Inputi, for all i ∈ {1, 2, . . . , n};
• out = Add.

As an example, Figure 4 shows ΠAdd(5), the SN P system for 5-addition. The
following theorem holds.

Theorem 3. The SN P system for n-addition outputs the addition in binary form
of n non-negative integer numbers, provided to the neurons σInput 1, . . . , σInput n

in binary form.



194 M.A. Gutiérrez-Naranjo, A. Leporati

Proof. Let A1, . . . , An be the n numbers to be added, and let ap
i a

p−1
i . . . a0

i be
the binary expression of Ai, 1 ≤ i ≤ n, padded with zeros on the left to obtain
(p + 1)-digit numbers (where p + 1 is the maximum number of digits among the
binary representations of A1, . . . , An). Hence we can write Ai =

∑p
k=0 ak

i 2k for all
i ∈ {1, 2, . . . , n}.

For each i ∈ {1, . . . , n}, let A′i be the number with binary expression ap
i . . . a1

i ,
i.e., A′i =

∑p
k=1 ak

i 2k−1. Moreover, let U =
∑n

i=1 a0
i and let k ∈ N and α ∈ {0, 1}

such that U = 2k + α (α = 1 is U is odd and α = 0 if U is even). The addition of
A1, . . . , An can be written as:

n∑

i=1

Ai =
n∑

i=1

p∑

k=0

ak
i 2k =

(
n∑

i=1

p∑

k=1

ak
i 2k

)
+

n∑

i=1

a0
i

= 2

(
n∑

i=1

p∑

k=1

ak
i 2k−1

)
+ 2k + α = 2

(
n∑

i=1

A′i + k

)
+ α

According to this formula, if br . . . b0 is the binary expression of
∑n

i=1 Ai, then
b0 = α and br . . . b1 is the binary expression of

∑n
i=1 A′i + k.

Let us assume now that at the time instant t there are i spikes in neuron σAdd.
These spikes can come from the input neurons, or they may have remained from
the previous computation step. Let us compute the t-th digit bt of the output,
dividing the problem in the following two cases.

• Let us assume that i is odd and i = 2k + 1. Then, according to the previous
formula, bt = 1 and k units should be added to the computation of the next
digit. This operation is performed by the rule ai/ak+1 → a. By applying this
rule, one spike is sent to the environment (bt = 1) and k+1 spikes are consumed,
so that i− (k + 1) = 2k + 1− (k + 1) = k spikes remain for the next step.

• Let us assume that i is even and i = 2k. Then, according to the previous
formula, bt = 0 and k units should be added to the computation of the next
digit. This operation is performed by the rule ai/ak → λ. By applying this
rule, no spike is sent to the environment (bt = 1) and k spikes are consumed,
so that i− k = 2k − k = k spikes remain for the next step. ut
As an example, let us consider the addition of the numbers 3, 4, 2, 7 and 1,

whose binary representations are 112, 1002, 102, 1112 and 12, respectively. Table
3 shows the evolution of the number of spikes in the neurons of the SN P system
ΠAdd(5) (illustrated in Figure 4), as well as the number of spikes sent to the
environment at each computation step, when performing such an addition. The
input and the output sequences are written in bold. Note that the first instant of
time for which the output is valid is t = 3. According with the computation, the
result of the addition is 17 = 100012.

5.2 Multiplication by a fixed multiplier

We now describe a family {ΠMult(n)}n∈N of SN P systems, one for each natural
number n, that operate as multiplier devices. Precisely, the system ΠMult(n) takes



Performing Arithmetic Operations with SN P Systems 195

Time step Input1 Input2 Input3 Input4 Input5 Add Output

t = 1 1 0 0 1 1 0 0

t = 2 1 0 1 1 0 3 0

t = 3 0 1 0 1 0 4 1

t = 4 0 0 0 0 0 4 0

t = 5 0 0 0 0 0 2 0

t = 6 0 0 0 0 0 1 0

t = 7 0 0 0 0 0 0 1

Table 3. Number of spikes in each neuron of ΠAdd(5) (the system illustrated in Figure 4)
and number of spikes sent to the environment, at each time step during the computation
of the addition 112 + 1002 + 102 + 1112 + 12 = 100012

as input a number in binary form, and outputs the input multiplied by n. The
output is also expressed in binary form.

Given a natural number n, the SN P system ΠMult(n) is described as follows.
It consists of one input neuron, σInput, linked to k neurons σaux11 , . . . , σauxk1 ,
where k is the number of occurrences of the digit 1 in the binary representation of
n. For each i ∈ {1, . . . , k}, neuron σauxi1 is connected with a new neuron σauxi2 ,
which is connected with σauxi3 , etc. This sequence of neurons is a path of linked
neurons that extends until reaching σauxiji

, where ji is the number of order of
the corresponding digit in the binary representation of n, where the first digit
corresponds to 20, the second one corresponds to 21, and so on. All the last neurons
of the k sequences are connected with a final neuron σAdd, which is the same as
the output neuron of the k-addition SN P system ΠAdd(k) described above. This
neuron has the rules for the addition of k natural numbers. All the other neurons
have only the rule a → a.

For example, let us consider n = 26, whose binary representation is 110102.
Such a representation has three digits equal to 1, at the positions 2, 4 and 5. The
system ΠMult(26), illustrated in Figure 5, has 13 neurons: σInput, σAdd, and three
sequences of neurons associated with the three digits equal to 1:

• σaux11 and σaux12 , corresponding to the 1 in the second position (corresponding
to the power 21);

• σaux21 , σaux22 , σaux23 and σaux24 , corresponding to the 1 in the fourth position
(corresponding to the power 23);

• σaux31 , σaux32 , σaux33 , σaux34 and σaux35 , corresponding to the 1 in the fifth
position (corresponding to the power 24).

The last neurons of these sequences, namely σaux12 , σaux24 and σaux35 , are linked
to neuron σAdd, which is also the output neuron. The rules of this neuron are
a → a, a2/a → λ and a3/a2 → a, which are the same as in the addition neuron of
the 3-addition SN P system ΠAdd(3) described in the previous section.

Theorem 4. The SN P system ΠMult(n) built as above takes as input a number
m in binary form and outputs the result of the multiplication m ·n in binary form.



196 M.A. Gutiérrez-Naranjo, A. Leporati

Fig. 5. An SN P system that computes the product among the natural number given as
input (in binary form) and the fixed multiplier 26 = 110102, encoded in the structure of
the system

Proof. Since we already proved that the neuron σAdd performs the addition of
several numbers in binary form, it only remains to transform the multiplication
m ·n (where n is a fixed parameter) into an appropriate addition. To this aim, let
n =

∑q
j=0 nj2j . Then we can write:

m · n = m ·



q∑

j=0

nj2j


 =

q∑

j=0

(
m · 2j

)
nj

=
∑ {

m · 2j | j ∈ {0, . . . , q} ∧ nj = 1
}

According to this expression, m · n can be calculated as the addition of as
many copies of m as the number of digits nj equal to 1 that appear in the binary
representation of n. Such copies have to be padded with j zeros on the right (that
is, they have to be multiplied by 2j), to take into account the correct weight of nj .
Hence, if k =

∑q
j=0 nj then to compute m ·n it suffices to provide k copies of m –

each shifted in time of a number of steps that corresponds to the weight of a bit
nj equal to 1 – to a neuron that computes the addition of k natural numbers. ut

We conclude this section with an example of multiplication. We will take n = 26
as the multiplier (hence the system ΠMult(26) illustrated in Figure 5) and we will
supply the number 29 = 111012 as input. Table 4 reports the number of spikes
contained in neurons σaux12 , σaux24 , σaux35 and σAdd of ΠMult(26) during the
computation, as well as the number of spikes sent to the environment. According
to this computation, the output of the multiplication is 10111100102, which is the
binary representation of 754.

6 Conclusion and Future Work

In this paper we have presented some simple SN P systems that perform the
following operations on natural numbers: addition, multiple addition, comparison,
and multiplication by a fixed factor. All the numbers given as inputs to these



Performing Arithmetic Operations with SN P Systems 197

Time step Input aux12 aux24 aux35 Add Out

t = 1 1 0 0 0 0 0

t = 2 0 0 0 0 0 0

t = 3 1 1 0 0 0 0

t = 4 1 0 0 0 1 0

t = 5 1 1 1 0 0 1

t = 6 0 1 0 1 2 0

t = 7 0 1 1 0 3 0

t = 8 0 0 1 1 3 1

t = 9 0 0 1 1 3 1

t = 10 0 0 0 1 3 1

t = 11 0 0 0 0 2 1

t = 12 0 0 0 0 1 0

t = 13 0 0 0 0 0 1

Table 4. Number of spikes in neurons σaux12 , σaux24 , σaux35 and σAdd of ΠMult(26) (the
system illustrated in Figure 5) and number of spikes sent to the environment, at each
time step during the computation of the multiplication 111012 · 110102 = 10111100102

systems are expressed in binary form, encoded as a spike train in which at each
time instant the presence of a spike denotes 1, and the absence of a spike denotes
0. The outputs of the computations are also expelled to the environment in the
same form.

The motivation for this work lies in the fact that we would like to implement
a CPU using only spiking neural P systems. To this aim, the first step is to design
the Arithmetic Logic Unit of the CPU, and hence to study a compact way to
perform arithmetical and logical operations by means of spiking neural P systems.
Ours is certainly not the unique possible way to approach the problem: other two
possibilities, that we leave as two directions for future research, are:

• Simulating by means of SN P systems the widely known Boolean circuits that
perform the desired arithmetical and logical operations. However, so doing we
need one system for each possible input size: as an example, we need one system
to add 2-bit numbers, another one to add 3-bit numbers, and so on. On the
contrary, the systems presented in this paper are able to process inputs of any
length;

• Simulating by means of SN P systems the programs of register machines that
perform the desired arithmetical and logical operations. This solution would
overcome the need to have one system for each possible input size. But, on the
other hand, the simulating SN P systems would probably be much larger than
those presented in this paper.

In any case, an interesting extension to the present work is to try to design
an SN P system for the multiplication, where both the numbers m and n to be
multiplied are supplied as inputs. And, of course, we would also need a system



198 M.A. Gutiérrez-Naranjo, A. Leporati

to compute the integer division between two natural numbers; probably, this last
system is the most difficult to be designed.

Acknowledgement

The first author wishes to acknowledge the support of the project TIN2006–13425
of Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds and
the support of the Project of Excellence with Investigador de Reconocida Vaĺıa of
the Junta de Andalućıa, grant P08-TIC-04200. The second author was partially
supported by the MIUR project “Mathematical aspects and emerging applications
of automata and formal languages” (2007).

References

1. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In M.A. Gutiérrez-Naranjo, Gh. Păun,
A. Riscos-Núñez, F.J. Romero-Campero, eds., Fourth Brainstorming Week on Mem-
brane Computing, Vol. I RGCN Report 02/2006, Research Group on Natural Com-
puting, Sevilla University, Fénix Editora, 169–194.

2. M.J. Flynn: Advanced Computer Arithmetic Design. John Wiley Publisher, 2001.
3. M. Garćıa-Arnau, D. Peréz, A. Rodŕıguez-Patón, P. Sośık: Spiking neural P systems:

stronger normal forms. In M.A. Gutiérrez-Naranjo, Gh. Păun, A. Romero-Jiménez,
A. Riscos-Núñez, eds., Fifth Brainstorming Week on Membrane Computing, RGCN
Report 01/2007, Research Group on Natural Computing, Sevilla University, Fénix
Editora, 157–178.

4. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth:
Normal forms for spiking neural P systems. Theoretical Computer Science, 372, 2-3
(2007), 196–217.

5. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

6. M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Computing with spiking neural
P systems: Traces and small universal systems. In DNA Computing, 12th Interna-
tional Meeting on DNA Computing (DNA12), Revised Selected Papers, LNCS 4287,
Springer, 2006, 1–16.

7. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete
problems with spiking neural P systems. In Membrane Computing, LNCS 4860,
Springer, 2007, 336–352.

8. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón: A new class of symbolic
abstract neural nets: Tissue P systems. In Proceedings of COCOON 2002, LNCS
2387, Springer, 2002, 290–299.

9. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61 (2000), 108–143.

10. Gh. Păun: Membrane Computing. An Introduction. Springer–Verlag, 2002.
11. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-

tems. Intern. J. Foundations of Computer Science, 17, 4 (2006), 975–1002
12. The P systems website: http://ppage.psystems.eu/


