
Decision P Systems and the P�=NP Conjecture

Mario J. Pérez Jiménez, Álvaro Romero Jiménez,
and Fernando Sancho Caparrini

Abstract. We introduce decision P systems, which are a class of P
systems with symbol-objects and external output. The main result of
the paper is the following: if there exists an NP–complete problem that
cannot be solved in polynomial time, with respect to the input length, by
a deterministic decision P system constructed in polynomial time, then
P �= NP . From Zandron-Ferreti-Mauri’s theorem it follows that if P �=
NP , then no NP–complete problem can be solved in polynomial time,
with respect to the input length, by a deterministic P system with active
membranes but without membrane division, constructed in polynomial
time from the input. Together, these results give a characterization of
P �= NP in terms of deterministic P systems.

1 Introduction

In [2] a new model of computation, called P Systems, is introduced within the
framework of Natural Computing (bio-inspired compu ting). It is based upon
the notion of membrane structure that is u sed to enclose computing cells in
order to make them independent computing units. Also, a membrane serves as a
communication channel between a given cell and other cells adjacent to it. This
model starts from the observation that the processes which take place in the
complex structure of a living cell can be considered as computations.

Since these compu ting devices were introdu ced several variants have been
considered. A fairly complete compendium about P systems can be found at [8].
In particular, P systems with external output are studied in [4].

The different variants of P systems found in the literature are in general gen-
erating devices. Many of them have been proved to be computationally complete:
they compu te all Turing compu table sets of natu ral numbers or all recursively
enumerable languages, depending on the variant considered.

The model we consider here works with symbol–objects and it has two charac-
teristics that have seldom been considered before: we work with decision devices
whose work is triggered by certain input data. The aim is to use this kind of P
systems to deal with decision problems.

The main goal of this paper is to show a sufficient condition for the relation P �=

NP to be verified: if there exists an NP–complete problem that cannot be

solved in polynomial time, with respect to the input length, by any family of
deterministic decision P systems, constructed in polynomial time, then P �= NP .

To achieve this, we prove that every decision problem which can be solved
by a deterministic Turing machine in polynomial time can also be solved by a
family of deterministic decision P systems in polynomial time.

The paper is organized as follows: Section 2 briefly presents some basic con-
cepts about P systems with external output; Section 3 introduces the new model
(with symbol–objects) of decision P systems; Section 4 shows how to simulate de-
terministic Turing machines by families of such P systems; Section 5 establishes
our main results about decision P systems and the P �= NP conjecture.

2 Multisets, Membrane Structures, Evolution Rules

A multiset over a set, A, is a mapping m : A → IN; m(a) is the number of copies
of a ∈ A in the multiset m. The set {a ∈ A : m(a) > 0} is called the support of m
and it is denoted by supp(m). A multiset, m, is said to be empty (resp. finite) if
its support is empty (resp. finite). If m is a finite multiset over A, we will denote
it m = {{a1, . . . , am}}, where the elements ai ∈ supp(m) are possibly repeated.
We write M(A) for the set of all the multisets over A. For two multisets m1, m2
over A we define their union by (m1 ∪m2)(a) = m1(a) +m2(a), for each a ∈ A.

The set of membrane structures, MS, is defined by recursion as follows:
1. [] ∈ MS; 2. If µ1, . . . , µn ∈ MS, then [µ1 . . . µn] ∈ MS.

A membrane structure, µ, can also be seen as a rooted tree,
(
V (µ), E(µ)

)
.

Then, the nodes of this tree are called membranes, the root node the skin mem-
brane, and the leaves elementary membranes. The degree of a membrane struc-
ture is the number of membranes in it.

The membrane structure with environment associated with the membrane
structure, µ, is µE = [

E
µ]

E
. If we consider µE as a rooted tree, then the root

node is called the environment of µ.
Given an alphabet, Γ , we associate with every membrane of a membrane

structure a finite multiset of elements of Γ , which are called the objects of the
membrane.

We also associate with every one of these membranes a finite set of evolution
rules. An evolution rule over Γ is a pair (u, v), usually written u → v, where u
is a string over Γ and v = v′ or v = v′δ, where v′ is a string over

Γ × ({here, out} ∪ {inl : l ∈ V (µ)})

and δ is a special symbol not in Γ . The idea behind a rule is that the objects
in u “evolve” into the objects in v′, moving or not to another membranes and
possibly dissolving the original membrane.

The length of a rule is the number of symbols involved in the rule (for instance,
the length of u → v is |u|+ |v|+ 1).

3 Decision P Systems

Definition 1. A decision P system is a construct

Π = (Γ,Σ, µ
Π
, i

Π
,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp)),

where:

– Σ is an alphabet, called the input alphabet.
– Γ is an alphabet such that Σ ⊆ Γ ; its elements are called objects; there are

two distinguished objects, Y ES,NO ∈ Γ −Σ.
– µ

Π
is a membrane structure of degree p, the membranes of which we suppose

labeled from 1 to p.
– i

Π
∈ {1, . . . , p} is the input membrane of Π.

– Mi is a multiset over Γ −Σ associated with the membrane labeled by i, for
every i = 1, . . . , p.

– Ri is a finite set of evolution rules over Γ associated with the membrane
labeled by i, and ρi is a strict partial order over Ri, for every i = 1, . . . , p.

To formalize the semantics of this model we define first what a configuration
of such a P system is, and then the notion of computation.

Definition 2. Let Π be a decision P system with external output.

1. A configuration of Π is a pair (µE ,M), where µ is a membrane structure
such that V (µ) ⊆ V (µ

Π
) and it has the same root than µ

Π
, and M is an

application from V (µE) into M(Γ). For every node nd ∈ V (µE) we denote
Mnd =M(nd).

2. The initial configuration of Π for the multiset m ∈ M(Σ) is the pair (µE ,M),
where µ = µ

Π
, ME = ∅, Mi

Π
= m ∪ Mi

Π
and Mj = Mj, for every j �= i

Π
.

The idea is that for every input multiset m ∈ M(Σ), we add that multiset
to the input membrane, i

Π
, of the P system and then start the work of Π.

We can pass, in a non-deterministic manner, from one configuration of Π
to another by applying to its multisets the evolution rules associated with their
corresponding membranes. This is done as follows: given a rule u → v of a
membrane i, the objects in u are removed from Mi; then, for every (ob, out) ∈ v
an object ob is put into the multiset associated with the parent membrane (or
the external environment if i is the skin membrane); for every (ob, here) ∈ v an
object ob is added to Mi; finally, for every (ob, inj) ∈ v an object ob is added to
Mj (if j is not a child membrane of i, then the rule cannot be applied). Finally,
if δ ∈ v, then the membrane i is dissolved (if i is the skin membrane, the rule
cannot be applied), that is, it is removed from the membrane structure. The
objects of a dissolved membrane remain in the region surrounding it, while the
rules are removed. Moreover, the priority relation among the rules forbids the
application of a rule if another one of higher priority is applied.

Given two configurations, C and C ′, of Π, we say that C ′ is obtained from C
in one transition step, and we write C ⇒ C ′, if we can pass from the first to the

second one by using the evolution rules appearing in the membrane structure of
C in a parallel and maximal way in each membrane, and for all the membranes
at the same time.

Definition 3. Let Π be a decision P system. A computation, C, of Π with input
m ∈ M(Σ) is a sequence, possibly infinite, of configurations of Π, C0 ⇒ C1 ⇒
. . . ⇒ Cq, q ≥ 0, such that

– C0 is the initial configuration of Π, with the multiset m placed in membra-
ne iπ.

– Each Ci (1 ≤ i ≤ q) is obtained from the previous configuration by one
transition step.

We say that C is a halting computation of Π if there is no rule applicable to
the objects present in its last configuration. In this case, we say that Cq is the
halting configuration of C.

We say that Π is deterministic if for each m ∈ M(Σ) there exists an unique
computation with input m.

The philosophy of the P systems with external output is that we cannot know
what is happening inside the membrane structure, but we can only collect the
information sent out from it to the environment. Thus, it is natural that the
halting computations of these P systems report to the environment when they
have reached their final configurations (accepting or rejecting). Furthermore, the
idea behind the decision P systems is to use them as languages decision devices.
These considerations lead us to the following notions.

Definition 4. A deterministic decision P system, Π, is said to be valid when
the following is verified:

– All computations of Π halt.
– For each computation of Π only one rule of the form u → v(ob, out), where
ob = Y ES or ob = NO, may be applied in the skin membrane of µ

Π
, and

only in the last step of the computation.

Definition 5. Let Π be a deterministic valid decision P system. We say that
a configuration (µE ,M) of Π is an accepting (resp., rejecting) configuration if
Y ES ∈ ME (resp., NO ∈ ME).

We say that C is an accepting (resp., rejecting) computation of Π if its as-
sociated halting configuration is an accepting (resp., rejecting) configuration.

Definition 6. A deterministic valid decision P system, Π, accepts (respectively,
rejects) a multiset m ∈ M(Σ) if the computation of Π with input m is an
accepting (resp. rejecting) computation.

We denote by D the class of all deterministic valid decision P systems.

4 Simulating Turing Machines by Decision P Systems

In what follows we are going to define what we mean by simulating a Turing
machine (as a languages generating device) through a family of deterministic
decision P systems. This has to be done in such a way that every solution for
a decision problem given by a Turing machine provides a solution for the same
problem by a decision P system. Moreover, the additional costs of the reduction
from one solution to another must be polynomial in terms of the input size.

We take as a model the concept of complexity classes in membrane systems
introduced by G. Păun in [1].

Definition 7. We say that a deterministic Turing machine, TM , is simulated
in polynomial time by a family of deterministic valid decision P systems ΠTM =
(ΠTM (1), ΠTM (2), . . . , ΠTM (k), . . .) if:

1. The family ΠTM is D–consistent; that is, for each k ∈ N+, ΠTM (k) is a
deterministic valid decision P system.

2. The family ΠTM is TM–uniform; that is, there exists a deterministic Turing
machine, TM ′, which constructs ΠTM (k) in polynomial time starting from
k ≥ 1 (there exists a polynomial p′(k) depending on TM such that for each
k, TM ′(k) halts in less than p′(k) steps and its output is ΠTM (k)).

3. The family ΠTM is polynomially bounded; that is, there exists a polynomial
p(k), depending on TM , such that every computation of ΠTM (k) always
halts in less than p(k) steps.

4. The family ΠTM is TM–sound; that is, the Turing machine TM accepts
(resp. rejects) the input string ai1 . . . aik

if and only if ΠTM (k) accepts (resp.
rejects) g(ai1 . . . aik

) (g is a suitable polynomial encoding of strings by mul-
tisets).

Note 1. The fact that the family ΠTM is D–consistent has the consequence
that for each k ≥ 1, the P system ΠTM (k) has a polynomial size in the following
sense: the size of the working alphabet, the number of membranes, the size of
the initial multisets, and the sum of the lengths of all the rules, is bounded by
kr, for some constant r depending on TM .

Note 2. A suitable polynomial encoding, g, of strings by input multisets of
ΠTM (k) means the following: there exists a Turing machine, TM ′′, and a poly-
nomial q(k) depending on TM such that for each input data w of TM we have
that TM ′′(w) halts in less than q(|w|) steps and its output is g(w) (an input
multiset of the P system ΠTM (|w|)).

Theorem 1. Each deterministic Turing machine can be simulated in polynomial
time by a family of deterministic valid decision P systems.

Proof. We consider deterministic Turing machines following [6].
Suppose we have QTM = {qN , qY , q0, . . . , qn}, ΓTM = {B, -, a1, . . . , am},

ΣTM = {a1, . . . , ap}, with p ≤ m, and δTM (qi, aj) = (qQ(i,j), aA(i,j), D(i, j)) as
set of states, working alphabet, input alphabet and transition function for TM ,
respectively. We denote aB = B and a0 = -.
We construct a family of deterministic decision P systems ΠTM = (ΠTM (1),
ΠTM (2), . . . , ΠTM (k), . . .) which simulates TM as follows: for each k ∈ N, the
decision P system ΠTM (k) is:
• Input alphabet: Σk = {〈a, i〉 : a ∈ ΣTM , 1 ≤ i ≤ k}
• Working alphabet: Γk = {〈a, i〉 : a ∈ ΣTM , 0 ≤ i ≤ k} ∪ {ti : 1 ≤ i ≤ k} ∪

{s−
i , s

+
i , si : i ∈ {T1, T2, F, S, 1, . . . , 9}} ∪

{qN , qY , h, h
′, Y ES,NO} ∪

{qi : 0 ≤ i ≤ n} ∪ {bi, b′i, b′′i , ci : 0 ≤ i ≤ m}
• Membranes structure: µ

Π
= [1]1 .

• Input membrane: i
Π
= 1.

• Initial multisets: M1 = {{q0, b0, s−
T1
, s−

T2
, s−

F , s
−
S , s

−
1 , . . . , s

−
9 , sT1}}.

• Evolution rules: R = R0 ∪R1 ∪R2 ∪R3 ∪R4, where:

• R0 = R0,1 ∪R0,2 ∪R0,3 ∪R0,4, with

R0,1 ≡ sT1s
−
T1

→ s+T1
> s−

T1
→ s−

T1
>

{
〈ai, j〉 → 〈ai, j〉tj (1≤i≤p,1≤j≤k)

s+T1
→ s−

T1
sT2

R0,2 ≡
{
sT2s

−
T2

→ s+T2
> s−

T2
→ s−

T2
> t21s

+
T2

→ s−
T2
sF > · · · >

> t2ks
+
T2

→ s−
T2
sF > t1 . . . tks

+
T2

→ s−
T2
sS > s+T2

→ s−
T2
sF

R0,3 ≡ sF s
−
F → s+F > s−

F → s−
F >



s−

T1
s−

T2
s−

S s
−
1 . . . s−

9 s
+
F q0b0 → (NO, out)

〈ai, j〉 → λ (1≤i≤p,1≤j≤k)

tj → λ (1≤j≤k)

R0,4 ≡



sSs

−
S → s+S > s−

S → s−
S >

{
〈ai, j〉 → 〈ai, j − 1〉2 (1≤i≤p,1≤j≤k)

〈ai, 0〉 → bi (1≤i≤p)

}

> s+S → s−
S s1

• R1 = R1,1 ∪R1,2 ∪R1,3, with

R1,1 ≡ s1s
−
1 → s+1 > s−

1 → s−
1 >



h → hh′

bi → bib
′
i (0≤i≤m)

s+1 → s−
1 s2

R1,2 ≡




h′s2s−
2 → s+2 > s2 → s3 > s−

2 → s−
2 >

> b′2i → b′′i (0≤i≤m) >



b′i → λ (0≤i≤m)

b′′i → b′i (0≤i≤m)

s+2 → s−
2 s2

R1,3 ≡ s3s
−
3 → s+3 > s−

3 → s−
3 >

{
b′2i → λ (0≤i≤m)

s+3 → s−
3 s4

• R2 = R2,1 ∪R2,2, with

R2,1 ≡ s4s
−
4 → s+4 > s−

4 → s−
4 >

{
h → hh′

s+4 → s−
4 s5

R2,2 ≡ s5s
−
5 → s+5 > s−

5 → s−
5 >



Rules for the transition
function
s+5 → s−

5 s6

The rules for the transition function, δTM , are the following:
Case 1: state qr, element as �= B

Movement Rules

left
qrb

′
sh → qQ(r,s)b

′
scA(r,s), if A(r, s) �= B

qrb
′
sh → qQ(r,s)b

′
s, if A(r, s) = B

stand
qrb

′
s → qQ(r,s)b

′
scA(r,s), if A(r, s) �= B

qrb
′
s → qQ(r,s)b

′
s, if A(r, s) = B

right
qrb

′
s → qQ(r,s)b

′
scA(r,s)h, if A(r, s) �= B

qrb
′
s → qQ(r,s)b

′
sh, if A(r, s) = B

Case 2: state qr, no element

Movement Rules

left
qrh → qQ(r,s)cA(r,s), if A(r, s) �= B
qrh → qQ(r,s), if A(r, s) = B

stand
qr → qQ(r,s)cA(r,s), if A(r, s) �= B
qr → qQ(r,s), if A(r, s) = B

right
qr → qQ(r,s)cA(r,s)h, if A(r, s) �= B
qr → qQ(r,s)h, if A(r, s) = B

To avoid conflicts, every rule in case 1 has higher priority than
any rule in case 2.

• R3 = R3,1 ∪R3,2, with

R3,1 ≡ h′s6s−
6 → s+6 > s6 → s7 > s−

6 → s−
6 >



b′i → b′2i (0≤i≤m)

ci → c2i (0≤i≤m)

s+6 → s−
6 s6

R3,2 ≡ s7s
−
7 → s+7 > s−

7 → s−
7 >



bib

′
i → λ (0≤i≤m)

ci → bi (0≤i≤m)

s+7 → s−
7 s8

• R4 = R4,1 ∪R4,2, with

R4,1 ≡ s8s
−
8 → s+8 > s−

8 → s−
8 >



qY → qY s9, qN → qNs9

qi → qis1 (0≤i≤n)

s+8 → s−
8

R4,2 ≡ s9s
−
9 → λ > s−

9 → s−
9 >




s−
1 . . . s−

8 → λ

qY → (Y ES, out)
qN → (NO, out)
h → λ

bi → λ (0≤i≤m)

Let us see that ΠTM = (ΠTM (1), ΠTM (2), . . . , ΠTM (k), . . .) is a family of de-
terministic valid decision P systems which simulates TM .

Obviously it is a family of deterministic valid decision P systems. Moreover,
ΠTM is an uniform family. Indeed, let TM be a deterministic Turing machine
such that the set of states has size n + 2, the working alphabet has size m + 2
and the input alphabet has size p (with p ≤ m). The necessary resources to
construct ΠTM (k) are the following:

1. The size of the working alphabet Γk is p · k + 4m + n + 45; that is, in the
order θ(k ·m+ n).

2. The degree of the P system is 1.
3. The size of the initial configuration for each x ∈ Σk

TM is k + 16 ∈ θ(k).
4. The total number of rules is in the order of

O(p · k + n ·m) = O(k ·m+ n ·m)
5. The greatest length of a rule is 16 ∈ O(1).

Let us see now that, for each k ∈ N, ΠTM (k) is sound: let L be the language
decided by TM . In order to decide if a string ai1 . . . aik

∈ ΣTM , of length k,
belongs to L, we encode it by the multiset {{〈ai1 , 1〉, . . . , 〈aik

, k〉}} which is the
input given to ΠTM (k). The rules of this P system have been carefully chosen
in such a way that its work goes through the following main stages:

1. Check that the multiset received as input codes a string of length k. For this,
we have to verify that for each j = 1, . . . , k there exists one and only one
pair whose second component is equal to j. Otherwise, the P system halts
and rejects the multiset.

2. Transform the input multiset into another multiset which encodes the string
in base 2 (in order to specify the symbol written in each cell of the tape).

3. Read the element in the cell scanned by the head.
4. Compute the new element to be writen in the cell, move the head and change

state (according to the transition function).
5. Erase the old element and write the new element.
6. Check if a final state is reached: if not, repeat from stage 2; if qY is the final

state reached, then accept the string; if qN is the final state reached, then
reject the string.

These stages will be carried out in several small steps, each of them managed by
a group of rules. To avoid rules from distinct steps being applied together, we
will use s−

j as forbidding objects and s+j as permitting objects; if s−
j is present

in the P system, then rules for step j cannot be executed; if, instead, s+j is the
object present, then rules for step j must be executed (if possible). Of course, at

any time, for each step only the corresponding forbidding or permitting object
will be present. Also, there will always exist only one permitting object in the
system.

To indicate that we want to perform a step, we will use sj as promoter
objects. When sj appears in the P system, it will transform its corresponding
forbidding object s−

j into the permitting one s+j , thus allowing the rules for step
j to be applied. Then the permitting object will transform itself again into the
forbidding one, and into a suitable promoter object.

The first two stages take care of filtering the input multisets: those which do
not encode a string of size k are rejected; those which do encode such strings are
transformed in such a way that we have a code in base 2 of the symbols in the
cells of the tape of the Turing machine. These operations are perfomed by the
rules in R0.

For a multiset to correctly encode a string of size k, it has to verify two
conditions: for each j = 1, . . . , k, it has to contain no more than one pair with
second component equal to j; for each j = 1, . . . , k, it has to contain at least
one pair with second component equal to j. These two conditions are checked
by rules in R0,1 and R0,2, using objects tj as signals for the second components
of the pairs.

If the check fails, all objects in the P system are eliminated and it sends out
the object NO, to reject the multiset. If the check passes, then we double j times
each pair of the form 〈a, j〉, changing them at the end by a bj .

For a detailed description of the simulation of the running of the Turing
machine over a correct multiset see [6]. We only recall here how we represent the
Turing machine inside the P system.

To represent the states we will use objects qN , qY , q0, . . . , qn.
During the simulation, objects b0, . . . , bm will represent, in base 2, the cells

which contain symbols a0, . . . , am, respectively (note that, at any time, the num-
ber of non-empty cells in the tapes of the Turing machine is finite); objects
b′0, . . . , b

′
m, b

′′
0 , . . . , b

′′
m will be used as working copies of the previous objects; the

single prime objects will also be useful to indicate the symbols read from the
cells, and objects c0, . . . , cm will be useful to indicate the new symbols to write
into them.

The cell scanned by the head, numbered from zero, will be represented by
the object h, in base one; object h′ will be used, when needed, as a working copy
of object h; it will be used as a counter.

Finally, let us see that the family ΠTM is polynomially bounded. Indeed, if
x ∈ Σk

TM is an input string of size k of the Turing machine, then we have:

1. The check for a multiset to correctly encode a string of size k needs four
steps in the affirmative case and six steps in the negative one (in this last
case, the P system halts).

2. The generation of the multiset encoding, in base 2, the non-empty cells in
the initial configuration of TM for x requires k + 3 steps of the P system.

3. The simulation of each transition step of the Turing machine requires a cost
in the order of O(5j+12), where j is the cell being read by the head of TM .

4. Checking if a final state has been reached requires 2 steps.
5. The output after the detection of a final state requires 2 steps.

Therefore, if TM accepts or rejects x in O(t(k)) steps, then the P systemΠTM (k)
needs O(k + t2(k)) steps to do the same. ��

5 The Main Result

In [7], C. Zandron, C. Ferretti, and G. Mauri prove the following result.

Theorem 2. If P �= NP , then no NP–complete problem can be solved in poly-
nomial time, with regard to the input length, by a deterministic P system (with
active membranes but without membrane division).

In this section we prove a kind of reciprocal result of the previous theorem
through the solvability of a decision problem by a family of deterministic valid
decision P systems.

Recall that a decision problem, X, is a pair (EX , fX) such that EX is a
language over a certain alphabet and fX is a boolean mapping over EX . The
elements of EX are called instances of the problem X. For each k ∈ N we note
Ek

X the language of all the instances of X with size k.

Definition 8. We say that a decision problem, X, is solvable in polynomial time
by a family of deterministic valid decision P systems ΠX = (ΠX(k))k∈N+ if:

1. The family ΠX is D–consistent; that is, for each k ∈ N, ΠX(k) is a deter-
ministic valid decision P system.

2. The family ΠX is X–uniform; that is, there exists a Turing machine, TM ′,
and a polynomial p′(k) depending on X such that for each k ∈ N+, TM ′(k)
halts in less than p′(k) steps and its output is the P system ΠX(k).

3. The family ΠX is polynomially bounded; that is, there exists a polynomial
p(k) depending on X such that every computation of ΠX(k) always halts in
less than p(k) steps.

4. The family ΠX is X–sound; that is, for every a ∈ Ek
X , fX(a) = 1 if and

only if ΠX(k) accepts the multiset g(a) (g is a suitable polynomial encoding
of elements of EX by input multisets of ΠX(k)).

Note 3. As in Note 1, from the fact that the family ΠX is D–consistent we infer
that for each k ≥ 1, the P system ΠX(k) has a polynomial size, in the following
sense: the size of the working alphabet, the number of membranes, the size of
the initial multisets, and the sum of the lengths of all the rules, is bounded by
kr, for some constant r depending on X.

Note 4. A suitable polynomial encoding, g, of elements of EX by input multi-
sets of ΠX(k) means the following: there exists a Turing machine, TM ′′, and a
polynomial q(k) depending on X such that for each input data w ∈ EX we have
that TM ′′(w) halts in less than q(|w|) steps and its output is g(w) (an input
multiset of the P system ΠX(|w|).

Note 5. Given a Turing machine, TM , as a languages generating device, we
consider the decision problem, XTM , associated with TM , as follows: XTM =
(Σ∗

TM , fTM), where fTM (w) = 1 if and only if TM accepts w. According with
this definition we infer that a Turing machine is simulated in polynomial time
by a family of deterministic valid decision P systems, ΠTM, if and only if the
associated decision problem, XTM is solvable in polynomial time by the family
ΠTM.

Theorem 3. If there exists an NP-complete problem that cannot be solved in
polynomial time, with regard to the input length, by a family of deterministic
decision P systems, then P �= NP .

Proof. Let us suppose that P = NP . Then, there exists an NP–complete pro-
blem, X, and a deterministic Turing machine, TMX , solving X in polynomial
time with regard to the input length (actually, all NP–complete problem verifies
this property). From Theorem 1, TMX is simulated in polynomial time by a
family of deterministic valid decision P systems, ΠTMX . Then, according with
Definition 8, ΠTMX solves the problem X in polynomial time with regard to
the input length. This leads to a contradiction. ��

6 Final Remarks

In this paper we made clear an apparent theoretical interest of P systems without
membrane division as a tool which allows us to attack the P �= NP conjecture.
The search of an adequate NP–complete problem and the study of its solvability
through such P systems will give us a direct answer to the conjecture. If the
considered problem is solvable in polynomial time, then the conjecture will have
an affirmative answer; otherwise, it will have a negative answer.

We think that this result provides an additional attractiveness to the research
of P systems because it allows us to attack the P �= NP conjecture within this
model.

References

1. Păun, G.: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
2. Păun, G.: Computing with Membranes, Journal of Computer and System Sciences,

61(1), 2000, 108–143.
3. Păun, G.; Rozenberg, G.: A Guide to Membrane Computing, Theoretical Computer
Sciences, 287, 2002, 73–100.

4. Păun, G.; Rozenberg, G.; Salomaa, A.: Membrane Computing with External Out-
put, Fundamenta Informaticae, 41(3), 2000, 313–340.

5. Pérez Jiménez, M.J.; Romero-Jiménez, A.; Sancho Caparrini, F.: Teoría de la Com-
plejidad en modelos de computación celular con membranas, Editorial Kronos,
Sevilla, 2002.

6. Romero-Jiménez, A.; Pérez-Jiménez, M.J.: Simulating Turing Machines by P Sys-
tems with External Output, Fundamenta Informaticae, 49(1-3), 2002, 273–287.

7. Zandron, C.; Ferretti, C.; Mauri, G.: Solving NP-Complete Problems Using P Sys-
tems with Active Membranes, in Unconventional Models of Computation (I. Anto-
niou, C.S. Calude, M.J. Dinneen, eds.), Springer-Verlag, London, 2000, 289–301.

8. The P Systems Web Page: http://psystems.disco.unimib.it/

	1 Introduction
	2 Multisets, Membrane Structures, Evolution Rules
	3 Decision P Systems
	4 Simulating Turing Machines by Decision P Systems
	5 The Main Result
	6 Final Remarks
	References

