
A MzScheme Implementation
of Transition P Systems

Delia Balbont́ın Noval, Mario J. Pérez Jiménez,
and Fernando Sancho Caparrini

Abstract. The main goal of this paper is to present the design of an
MzScheme program that allows us to simulate the behavior of transition
P systems. For that, a library of procedures have been developed that
work in two stages. In the first one, the parsing/compiling stage, the input
P system is checked, and if it is well defined, then it is represented by
means of an internal grammar. In a second stage, the simulation, the
computation tree associated to the P system is generated until a prefixed
level.

1 Introduction

In October 1998, Gheorghe Păun [1] introduced a new computability model of
a non-deterministic and highly parallel type, the membrane systems. They are
based on the synchronized work of several units, called membranes, structured
in a dynamic hierarchy (understood as vesicles in a space) embedded in a skin
membrane that separates the system from the environment. When a membrane
has no membrane inside, it is called elementary. Each membrane encloses a space
between it and the membranes directly included in it (if any). This space (the
region of the membrane) can contain a multiset (a set where the elements can
be repeated) of objects (represented by symbols of a given alphabet) and a set
of (evolution) rules for them. Each membrane defines an unique region.

This model, called transition P systems, is inspired from the observation that
the processes which take place in the complex structure of a living cell can be
viewed as computation–like processes.

We present here a library of MzScheme procedures [5], that allows us both
to input easily a transition P system and to simulate its non-deterministic and
highly parallel behavior. It reads, analyzes and compiles the input data defining
a P system; then, it generates the subsequent computations.

Our implementation is based on the formalization given in [3].
The program runs in two independent stages: parsing/compiling and simula-

tion/running.

Π − input
parser/compiler−−−−−−−−−−→ Π

simulator−−−−−−→ Comp(Π)

At stage one, parsing/compiling, the input data are read and the respective
P system is rewritten as an element of the language generated by a proposed
internal grammar. To get it, the input data have to be syntactically correct
according to the input grammar. Moreover, they have to define a well defined P
system (according to the formalization above mentioned).

Stage two, simulation/running, starts when the parsing/compiling is finished.
Starting from the P system initial configuration, the associated computation tree
is generated. The expansion of that computation tree is made in a progressive
way, level by level (breadth expansion), until to a given depth level. To get it
we follow a breadth-expansion-tree scheme based on the definitions and steps
proposed in [3]:

applicable-rules →
applicability-vectors →

applicability-matrices → configurations

This paper is organized as follows: Section 2 briefly presents some basic con-
cepts about a formalization of transition P systems, following [3]. Section 3 de-
scribes briefly the whole simulator scheme. Section 4 is about the way to input a
P system, showing the proposed input grammar. Section 5 presents the internal
grammar and describes the parser/compiler performance. Section 6 describes the
simulator behavior properly. Finally, in Section 7 we present a complete example
to illustrate the way of working of the program.

2 Preliminaries about a Formalization
of Transition P Systems

Following [3], we recall here the basic concepts and definitions about P systems.

2.1 Membrane Structure and Cells

A membrane structure is a rooted tree, where the nodes are called membranes,
the root is called skin, and the leaves are called elementary membranes.

A cell over an alphabet, A, is a pair (µ,M), where µ = (V (µ), E(µ)) is a
membrane structure, and M is an application, M : V (µ) −→M(A) (the set of
multisets over A).

2.2 Evolution Rules

Let C = (µ,M) be a cell over an alphabet A. Let x ∈ V (µ). An evolution rule
associated to x is a 3-tuple r = (dr, vr, δr) where dr is the left-side of the rule,
vr is the right-side of the rule, and δr ∈ {¬δ, δ} indicates if the application of
the rule dissolves the membrane.

A collection R of evolution rules associated to C is a function with domain
V (µ) such that for every membrane x ∈ V (µ), Rx = {rx,1, . . . , rx,sx

} is a finite

set (possibly empty) of (evolution) rules associated to x. A priority relation over
R is a function, ρ, with domain V (µ) such that for every membrane x ∈ V (µ),
ρx is a strict partial order over Rx (possibly empty).

2.3 Transition P Systems

A transition P system is a 4-tuple Π = (A,C0,R, i0), where:

– A is a non-empty finite set (usually called base alphabet).
– C0 = (µ0,M0) is a cell over A.
– R is an ordered pair (R, ρ) where R is a collection of (evolution) rules asso-

ciated to C0, and ρ is a priority relation over R.
– i0 is a node of µ0, which specifies the output membrane of Π.

The number |V (µ0)| is called the degree of Π.

2.4 Configurations

A configuration, C, of a P system, Π = (A,C0,R, i0) with C0 = (µ0,M0), is a
cell C = (µ,M) over A, where V (µ) ⊆ V (µ0), and µ has the same root as µ0.
The configuration C0 will be called the initial configuration of Π.

2.5 Applicability

Let x ∈ V (µ0). We say that the (evolution) rule r ∈ Rx is semi-applicable to C
if the membrane associated to node x exists in C (dissolution is not allowed in
the root node), the membrane associated to x has all the necessary objects to
apply the rule, and nodes where the rule tries to send objects (by means of iny)
are children of x.

We say that the rule r ∈ Rx is applicable to C, if it is semi-applicable to C
and there is no semi-applicable rules in Rx with higher priority.

We say that p ∈ NN is an applicability vector over x ∈ V (µ) for C, and we
will denote it as p ∈ Ap(x,C), if it has correct size (that is, for all j greater the
number of rules associated to x we have p(j) = ∅), every rule can be applied as
many times as the vector p indicates, all the rules can be applied simultaneously,
and it is maximal.

We will say that P : V (µ0) −→ NN is an applicability matrix over C, denoted
P ∈MAp(C), if for every x ∈ V (µ0) we have that P (x) ∈ Ap(x,C).

2.6 Transitions

The execution of P over C = (µ,M), denoted P (C), returns a new configuration
C ′ = (µ′,M ′) of Π, that can be considered acting in two stages: (µ,M) →
(µ,M ′′)→ (µ′,M ′).

In the first stage we suppose that the rules are applied without attending
dissolving actions, and in the second one dissolution and distribution of contents
are carried out.

We will say that a configuration C1 of a P system Π yields a configuration C2
by a transition in one step of Π, denoted C1 ⇒Π C2, if there exists a non–zero
applicability matrix over C1, P , such that P (C1) = C2.

2.7 Computation Tree

The computation tree of a P system Π, denoted Comp(Π), is a rooted labeled
maximal tree defined as follows: the root of the tree is the initial configuration,
C0, of Π; the children of a node are the configurations that follow in one step
of transition; nodes and edges are labeled by configurations and applicability
matrices, respectively, in such way that two labeled nodes C,C ′ are adjacent in
Comp(Π), by means of an edge labeled with P , if and only if P ∈MAp(C)−{0}
and C ′ = P (C). The maximal branches ofComp(Π) will be called computations
of Π. We will say that a computation of Π halts if it is a finite branch. The
configurations verifying MAp(C) = {0} will be called halting configurations.

3 Preliminaries about the P Systems Simulator

We consider that the basic features of a computing program able to simulate
transition P systems should be the following:

1. To have a formal definition of transition P systems to be based on.
2. To choose a suitable programming language to implement the simulation.
3. To have an easy way to input the data describing the P system.
4. To choose an efficient internal representation of P systems.
5. To design a parser/compiler to analyze the input data and to obtain the P

system internal representation.
6. To design a P system simulator of computations to generate the respective

computation tree.

As we said previously, the implementation we present here has been deve-
loped on MzScheme (a functional language from Lisp family), and it is based
on the formalization given in the above section, but slightly modified. This mo-
dification arises from the convenience to identify the applicable rules to a given
configuration.

The rules of a P system are static elements. Nevertheless, to determine if a
rule r = (dr, vr, δr) is applicable to an arbitrary configuration C, a new compo-
nent αr ∈ {#t,#f} has been added, getting r∗ = (dr, vr, δr, αr). Initially, αr will
be set to #f; it will be modified to #t if (and only if) the rule r is applicable to
C. Consequently, if we denoted for every x ∈ V (µ0), Rx = {rx,1, . . . , rx,sx}, then
we have R∗

x = {r∗
x,1, . . . , r

∗
x,sx
}, with r∗

x,j = (dx,j , vx,j , δx,j , αx,j) and αx,j = #f;
then, R∗ =

⋃
x∈V (µ0) R

∗
x, and R = (R∗, ρ).

Moreover, for every configuration, C = (µ,M) and every x ∈ V (µ0), we will
denote byRC

x = {rC
x,1, . . . , r

C
x,sx
}, with rC

x,j = (dx,j , vx,j , δx,j , αx,j) and αx,j = #t
if and only if the rule rx,j is applicable to C, the tagged-rules of x to C. Finally,
we will note RC =

⋃
x∈V (µ0) R

C
x .

4 The Input of a Transition P System

To define a P system we need to input its membrane structure and describe the
content of every membrane. Each membrane has symbols from a given alphabet,
transition rules and priority relations over them. The membrane structure has
to be a rooted tree and the priority between rules must be a strict partial order.

4.1 Default Settings

In order to introduce easily any P system we have considered, by default, that:

1. Only finite alphabets A will be used, and the elements of A are symbols.
2. A word ∈ A∗ is a string of symbols of A. We will represent the empty word

by ().
3. The membranes will be labeled with the the first N natural numbers, where

N is the degree of the P system.
4. The skin membrane is labeled with 1.
5. A distinguished membrane is considered as the output membrane.
6. We will input the membrane structure of a P system as a list of contain-pairs

(i j), representing the relation “membrane i contains membrane j”.
7. Every rule has a word as its antecedent, and a set of actions as its consequent.

Only the last action could be “delete”. The other ones have the form (word
target).

8. A target could be “here”, “out” or a membrane label.
9. If a membrane has k > 0 rules, then their labels go from 1 to k.

10. We represent the relation “rule r runs before rule s” by the preference-pair
(r s).

11. Every membrane contains a word, a list of rules, and a list of preference-pairs.

4.2 The Input Grammar

With the default settings provided above, any P system of degree N , over an
alphabet A, is recognized by the input grammar defined as follows:
< input − ps > ::= (A N < struct >< objects >< rules >< orders >< output >)
< struct > ::= (< arc >< arc > · · · < arc >)
< arc > ::= (< memb − ref >< memb − ref >)
< memb − ref > ::= 1 | 2 | 3 | . . . |N

< objects > ::= [< word >< word > N. . .< word >]
< word > ::= ∀ w ∈ A∗

< rules > ::= [< memb − rules > N. . .< memb − rules >]
< memb − rules > ::= (< rule >< rule > · · · < rule >)
< rule > ::= (< word > → (< action > · · · < action > delete)) |

(< word > → (< action > · · · < action >))

< action >
< target >

::= (< word >< target >)
::= here | out | < memb − ref >

< orders > ::= [< memb − or >< memb − or > N. . .< memb − or >]
< memb − or > ::= (< pref − pair >< pref − pair > · · · < pref − pair >)
< pref − pair > ::= (< rule − ref >< rule − ref >)
< rule − ref > ::= 1 | 2 | 3 . . .
< output > ::= < memb − ref >

Here, (a b . . . z) stands for a list (standard MzScheme list), and [a b N). . . z] stands
for a vector of N elements (standard MzScheme vector).

5 The Parser/Compiler

The parser/compiler reads the input data describing a P system and analyzes:
if they are syntactically correct according to the input grammar, if they define
a well defined P system according to the chosen formalization, and, if no error
appears, it returns the P system according to the proposed internal grammar.

Even if the input system is syntactically correct, we cannot conclude that
any input data recognized by the input grammar, define a well-defined P system.
In fact, it could happen that the structure < struct > defined as a list of arcs
(< arc >∗) were not a rooted tree with root at membrane label 1; or, that there
exists a membrane, such that the order relation (< mem − or >) defined as a
list of preference pairs (< pref − pair >∗) were not a strict partial order.

The MzScheme sentence to execute the parser/compiler is:

(parser-ps N A <struct> <objects> <rules> <orders> <output>)

This process of parsing/compiling works as follows:

– The alphabet A is checked.
– The rooted tree µ, associated to the membrane structure, is created.
– For every membrane x, its objects are encoded as a multiset Mx, getting

M : V (µ) −→M(A).
– Then, the initial configuration, C0 = (µ,M), is built.
– Every rule, r, from the input data is encoded by r∗ = (dr, vr, δr, αr), where

αr is set initially to #f. Then, one gets R∗.
– For every membrane x a strict partial order ρx : Rx × Rx −→ {#t,#f} is

returned, with: ρx(r, t) = #t⇔ “ r runs before s” at x. So, we obtain ρ.
– From R∗ and ρ we have R = (R∗, ρ).
– The output membrane is checked to be in V (µ), getting i0.

If no error occurs, the parser-ps procedure returns a well-defined P system
Π = (A,C0,R, i0) as an element recognized by the internal grammar below.

5.1 Internal Grammar

The grammar to represent internally and to deal with P systems of degree N is
the following:

< ps > ::= [< alph > ; < conf > ; < Rules > ; < orders > ; < output >]

< alph > ::= [a1,a2, . . . , aK]

< conf > ::= [< tree > ; < multisets >]

< tree > ::= [< vertices > ; < arcs > ; < root >]
< vertices > ::= {< x > , . . . , < x >}
< arcs > ::= {< arc > , < arc > , . . . , < arc >}
< arc > ::= [< x > ; < x >]
< x > ::= ∀ n ∈ N+ | n ≤ N
< root > ::= 1

< multisets > ::= [< multiset >< multiset > N). . . < multiset >]
< multiset > ::= [< nat >< nat > K). . . < nat >]
< nat > ::= ∀ n ∈ N

< Rules > ::= [< rules >< rules > N). . . < rules >]
< rules > ::= [< rule >< rule > . . . < rule >]
< rule > ::= [< anteced > ; < actions > ; < dissol > ; < app − tag >]
< anteced > ::= < multiset >
< actions > ::= (< action >< action > · · · < action >)
< action > ::= [< multiset > ; < target >]
< target > ::= here | out | < x >
< dissol > ::= #t | #f
< app − tag > ::= #t | #f

< orders > ::= [< test > < test > N). . . < test >]
< test > ::= λ : rules × rules −→ {#t,#f}

< output > ::= < x >

6 The Simulator

Once the parsing/compiling task is finished, we have a well-defined P system,
namely Π = (A,C0,R, i0), and we have to generate the computation tree
Comp(Π). To do that we use the procedure configurations:

Π
configurations−−−−−−−−−→ Comp(Π)

We get the computation tree Comp(Π) through the MzScheme sentence
(configurations Π level).

The procedure configurations is based on the breadth-expansion-tree
procedure that, starting from the initial configuration C0, generates level by level
the computation tree. It uses the auxiliary procedures applicability-vectors,
tag-rules and apply-matrix. Here we present a brief outline. We will give in
the next sections a detailed description of every one.

The operators to compute the successor configurations of a given configura-
tion, C, are the applicability matrices. The process to generate the elements of
MAP(C) works as follows:

– RC (that is, the tagged-rules of x to C) is obtained by the tag-rules pro-
cedure. For every rule r∗ = (dr, vr, δr, αr) ∈ R∗, it sets αr = #t iff r is
applicable to C.

– Every RC
x , for every membrane x in C, is easily obtained from RC .

– Every Ap(x,C) (that is, the applicability vectors of membrane x in C) is
generated from RC

x , by means of the applicability-vectors procedure.
– Finally, MAp(C) is constructed as a cartesian product from the set of ap-

plicability vectors Ap(x,C), of every membrane x in C.

x1↗ RC
x1

applicability−vectors−−−−−−−−−−−−−−→ Ap(x1, C)↘
C tag−rules−−−−−−→ RC x2−→ RC

x2
applicability−vectors−−−−−−−−−−−−−−→ Ap(x2, C)→MAP(C)

x3↘ RC
x3

applicability−vectors−−−−−−−−−−−−−−→ Ap(x3, C)↗

Then, every P ∈MAp(C) is applied to C to obtain the successor configuration
P (C). To do that the apply-matrix procedure is used.

↗ P1 ∈MAP(C)
apply−matrix−−−−−−−−→ C1 = P1(C)

MAP(C)→ P2 ∈MAP(C)
apply−matrix−−−−−−−−→ C2 = P2(C)

↘ P3 ∈MAP(C)
apply−matrix−−−−−−−−→ C3 = P3(C)

6.1 The Breadth-Expansion-Tree Procedure

This procedure is based on a dynamic breadth-search scheme; this means that
for every node of the tree to be built, the applicable operators are generated
dynamically.

To start, the breadth-expansion-tree procedure needs: (1) an initial node,
n0, (2) a test final-node? to check if a node n is or not a final node, (3) a
function generate-op, that, taking a node n, returns the set of operators Opn

to be applied to n and, finally, (4) another function apply-op that, taking a node
n and an operator op ∈ Opn, returns the successor node of n by this operator
op.

The breadth-expansion-tree procedure expands the tree and returns the
set of final nodes.

Procedure breadth-expansion-tree (n0 final-node? generate-op
apply-op)
final-nodes ← {}
open-nodes ← {n0}
Repeat until open-nodes = ∅ do
n← the first node in open-nodes
succn ← {}
If (final-node? n) = #t

then final-nodes ← {n}∪ final-nodes
else

Opn ← (generate-op n)
For every op ∈ Opn do

suc← (apply-op op n)
If suc �= #f ∧ suc /∈ open-nodes then
succn ← succn ∪ {suc}

open-nodes ← (open-nodes−{n}) ∪ succn

Return final-nodes

The procedures configurations and applicability-vectors, to generate
configurations and applicability vectors, respectively, are based on this proce-
dure.

6.2 The Configurations Procedure

For a given P system Π = (A,C0,R, i0), we generate Comp(Π) (until a level
given by the user), through the MzScheme sentence (configurations Π level).
This procedure works as follows:

1. It starts defining locally:

– The node-structure as < node > ::= [C;RC ; pathC], where C ia a con-
figuration; RC , the tagged-rules for C; and pathC , the list of operators
applied to reach the actual node from the initial one.

– The final-node? test. A node n = [C;RC , path] is a final node if either
it is a halting node, or the path length has reached the value of level.

– The generate-op function. It takes a node n = [C;RC ; path] and re-
turns the applicability matrices MAp(C). It needs the procedure appli-
cability-vectors.

– Finally, the procedure apply-op, which, taking a node n = [C;RC , path]
and an applicability matrix P ∈ MAp(C), returns the successor node
n′ = [C ′;RC′

;P ∪ path]. It needs the procedures apply-matrix and
tag-rules.

2. Then, it builds the init-node: n0 = [C0;RC0 ; ()], making use of the procedure
tag-rules to get RC0 .

3. It expands the tree through the sentence:
(breadth-expansion-tree

init− node final-node? generate-op apply-op)
4. Finally, it returns the list of final-nodes [C;RC ; pathC].

Procedure configurations (Π level)

1. Local definitions
< node > ::= [C;RC ; pathC]
final− node? ::= λ1 : < node > −→ {#t,#f}
generate− op ::= λ2 : < node > −→MAp(C) = (P1, P2, . . .)
apply− op ::= λ3 : k ×< node > −→ [C ′;RC′

; pathC′]
with C ′ = Pk(C)
and, pathC′ = Pk ∪ pathC

2. The initial node
RC0 ← (tag− rules C0 R∗ ρ)
pathC0 ← ()
n0 ← [C0;RC0 ; pathC0]

3. The final-nodes
final-nodes ← (breadth-expansion-tree

n0 final-node? generate-op apply-op)
4. Return final-nodes

Notes:

– λ1([C;RC ; pathC]) = #t↔ (αr = #f ∀r ∈ RC) ∨ |pathC | = level
– λ2 uses applicability-vectors procedure to get MAp(C).
– λ3 uses apply-matrix procedure to get C ′ = P (C) and then, tag-rules to

get RC′
.

– Every node [C;RC ; pathC] ∈ final-nodes, contains all the information we
need about the computation tree. Particularly,
• If for every r ∈ RC is αr = #f, then C is a halting configuration, and

pathC is a halting computation of Π.
• Otherwise, C is a non-halting configuration, and the branch pathC could

be extended further than the prefixed level.

6.3 The Applicability-Vectors Procedure

To generate the applicability vectors for a membrane x in C, we only need Mx

and D = [d1, d2, . . . , dsx], where Mx is the multiset of x, and dr (r = 1, 2, . . . , sx)
is the antecedent of the tagged-rule r in RC

x , provided that αr = #t. (Note: if
αr = #f, then we take dr = #f.) We generate Ap(x,C) through the MzScheme
sentence: (applicability-vectors Mx D). The procedure works as follows:

1. It starts defining locally:
– The node-structure as < node > ::= [m;V], where m is a multiset, and

V = [v1, v2, . . . , vsx
].

– The final-node? test. A node n = [m;V] is a final node if ∀ dr ∈
D (dr = #f ∨m < dr).

– The generate-op function. It returns the operators list (d1, d2, . . . , dsx
).

– The apply-op procedure. From a node n = [m;V], and an operator
dr �= #f, it returns the successor node n′ = [m′;V ′], with m′ = m −
dr, v′

r = vr + 1 , and v′
j = vj , ∀ j �= r. If dr = #f, then it returns #f.

2. Then, it builds the init-node: n0 = [Mx; [0, 0, sx. . . , 0]].
3. It expands the tree through the sentence:

(breadth-expansion-tree
init− node final-node? generate-op apply-op)y

4. Finally, it returns the applicability vector V of every final node [m;V].

Procedure applicability-vectors (Mx D)

1. Local definitions
< node > ::= [m;V] ; whith V = [v1, v2, . . . , vsx]
final− node? ::= λ1 : < node > −→ {#t,#f}
generate− op ::= λ2 : < node > −→ (d1, d2, . . . , dsx)
apply− op ::= λ3 : r ×< node > −→ [m′;V ′]

with, m′ = m− dr , V ′ = [v′
1, v

′
2, . . . , v

′
sx
],

being, v′
r = vr + 1 but, v′

j = vj ∀j �= r
2. The initial node

m0 ←Mx

V0 ← [0, 0, sx. . ., 0]
n0 ← [m0;V0]

3. The final-nodes
final-nodes ← (breadth-expansion-tree

n0 final-node? generate-op apply-op)
4. Returns the vector V of every node [m;V] of final-nodes

Notes:

– Every vr counts the times the rule r could be applied.
– λ1([m;V]) = #t↔ ∀ dr ∈ D(dr = #f ∨m < dr)
– λ3(r, [m;V]) = #f if dr = #f

6.4 The Tag-Rules Procedure

The tag-rules procedure updates the app-tag αr of those rules r of R∗ that
are applicable to a given configuration C = (µ,M). The MzSheme sentence
(tag-rules C R∗ ρ) returns RC . The procedure works as follows:

1. It starts getting the degree, N , of Π.
2. Then, its work is based on an external and an internal loop, to go through

the membranes and through the rules of every membrane, respectively.
– The external loop generates RC

x , for every x = 1, 2, . . . , N , and, once it is
finished, it builds RC = (RC

1 , RC
2 , . . . , RC

N). If x /∈ V (µ) ∨Mx = ∅, then
RC

x = R∗
x, otherwise, R

C
x has to be generated by the internal loop.

– The internal loop generates RC
x for a given x ∈ V (µ). It checks the

applicability of every rule rx,j ∈ R∗
x to C, it changes αx,j from #f to #t

if so, and it obtains the tagged-rule rC
x,j ; finally, it builds and returns to

the external loop, RC
x = (rC

x,1, r
C
x,2, . . . , r

C
x,sx

).
3. It returns RC .

Procedure tag-rules (C R∗ ρ)
N ← length of ρ
For every x = 1, 2, . . . , N do
If x /∈ V (µ) ∨Mx = 0 then RC

x ← R∗
x

else
For every j = 1, 2, . . . , sx do

If rx,j is not semi-applicable to C then rC
x,j ← r∗

x,j

else
If ∃k < j | αC

x,k = #t ∧ ρ(k, j) = #t then rC
x,j ← r∗

x,j

else rC
x,j ← (dx,j , vx,j , δx,j ,#t)

If αx,j = #t then
For every k < j | αC

x,k = #t ∧ ρ(j, k) = #t do

αC
x,k ← #f

RC
x ← (rC

x,1, r
C
x,2, . . . , r

C
x,sx

)
RC ← (RC

1 , RC
2 , . . . , RC

N)
Return RC

6.5 The Apply-Matrix Procedure

The apply-matrix procedure computes one transition step, C ′ = P (C), from
a configuration, C = (µ,M), and an applicability matrix, P ∈ MAp(C). The
MzSheme sentence is (apply-matrix C P RC). It works in two steps:

1. For every membrane x in C and every rule rx,j in RC
x , provided Px,j �= 0:

– rx,j is applied Px,j times without dissolution. So, some objects of mem-
brane x are consumed, and maybe itself and/or, its father and children
receive some objects. A more internal loop identifies the target where
every action of the rule sends its objects,

– then, if rx,j is a dissolution rule, x is stored in ∆ as a node to be dissolved.

2. Then, we visit the nodes of µ in a bottom-up ordered way, the nodes kept on
∆ are dissolved. Every dissolved node sends its objects (and children) to its
father and disappears from µ.

Procedure apply-matrix (C P RC)
M ′ ←M
µ′ ← µ
∆← {}
For every x ∈ V (µ′) do
If x �= root(µ′) then fx ← the father of x in µ′ else fx ← #f
For every rx,j = (dx,j , vx,j , δx,j , αx,j) ∈ RC

x do
If Px,j �= 0 then
M ′

j ←M ′
j − Px,j ⊗ dx,j

For every action = (m, tar) ∈ vx,j do
If tar /∈ V (µ′) then

If tar = here then tar ← x else tar ← fx

If tar �= #f then M ′
tar ←M ′

tar + Px,j ⊗m
If δx,j = #t then ∆← ∆ ∪ {x}

nodes← the bottom-up ordered V (µ′)
For every x ∈ nodes do
If x ∈ ∆ then

M ′
fx
←M ′

fx
+M ′

x

M ′
x ← ∅

µ′ ← delete-node (µ′, x)
Return C ′ = (µ′,M ′)

7 A Complete Example: Generating Squares 12, 22, . . . , n2

Finally we present here a complete example to illustrate the way our simulator
should be used. The P system to be considered is the following one:

4

3
2

1

b b
4

a δ>

5

a c
a c b c

b c δ
f f f

a c f

gf f δ

g g g g

(e , in)

n

7.1 The Input Data

First of all, we have to input the data describing the P system. We do that
defining the different elements: A,N, struct, output, objects, rules, and orders.
As we need the symbol ancf , for the given n, this one is generated by the
auxiliar procedure generate-symbol. The MzScheme sentence (sq1 n), assigns
the respective value to every compound, and invokes the parser/compiler.

> (define sq1
(lambda (n)
(let ((N 5)

(A ’(a b c e f g))
(o_m 4)
(struct ’((1 2) (2 3) (2 4) (3 5)))
(objects
(vector () () () () (generate-symbol

(list ’a n) ’(c 1) ’(f 1))))
(rules
(vector
’()
’((b -> ((b here) (e 4)))
(gg -> ((g here)))
(g -> ((a here) delete)))

’((ff -> ((g here) delete)))
’()
’((ac -> ((bc here)))
(ac -> ((bc here) delete))
(f -> ((ff here))))))

(orders
(vector ’() ’((2 3)) ’() ’() ’())))

(parser-ps N A struct objects rules orders o_m))))

7.2 The Parser-Compiler

The parser/compiler returns the internal representation of the P system, and
displays it in a readable way. So, if n = 4 the sentence

(define ps (sq1 4))
defines, if no error occurs, ps as the representation to be used together with the
configurations procedure.

7.3 Configurations

Finally, using the procedure configurations to expand the computation tree, we
obtain all configurations until the given level. In particular, with an appropriate
level we get all the final configurations. In the previous example it is enough to
use 9 as depth level.

> (configurations ps 9)
TREE: ((1 2 3 4 5) ((1 2) (2 3) (2 4) (3 5)) 1) ;a non-halting
CONTENTS: ;configuration
Membrane 1 and Membrane 4:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #()

Membrane 2:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #(#f #f #f)

Membrane 3:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #(#f)

Membrane 5:
Multiset: #(0 4 1 0 512 0)
Applic-Rules: #(#f #f #t) ;the third rule could be applied

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(1 4 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 16 0 0)
Applic-Rules: #()

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(2 3 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 9 0 0)
Applic-Rules: #()

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(3 2 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 4 0 0)
Applic-Rules: #()

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(4 1 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 1 0 0)
Applic-Rules: #()

Output Membranes: (() eeeeeeeeeeeeeeee eeeeeeeee eeee e)

8 Conclusions

Up to now there is no implementation of P systems with a practical usefulness
that allows the researchers to test and improve the abstract designs they make.
The simulation of P systems by conventional programming languages can be
considered not only as a practical approach to this computing model, but also
as an useful way to understand and improved the P systems designed to solve
real problems. We think that, because of the standard grammar it uses, the
program presented here can be used both as a research tool and a teaching tool,
allowing to see the way the P system evolves along its running. The program
has been developed in such a way that it could be improved to simulate different
variants of P systems. In a future work a graphical interface will be added, to
make easier the interaction with the user.

References

1. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208, 1998 (www.tucs.fi).

2. Gh. Păun, G. Rozenberg, A guide to membrane computing, Theoretical Computer
Science, 287, 1 (2002), 73–100.

3. M.J. Pérez–Jiménez, F. Sancho-Caparrini. A formalization of transition P systems.
Fundamenta Informaticae, 49, 1-3 (2002), 261–272.

4. M.J. Pérez–Jiménez, F. Sancho-Caparrini. Verifying a P system generating squares.
Romanian Journal of Information Science and Technology, 5, 2–3 (2002), 181–191.

5. MzScheme Home Page. http://www.cs.rice.edu/CS/PLT/packages/mzscheme/

	1 Introduction
	2 Preliminaries about a Formalization of Transition P Systems
	2.1 Membrane Structure and Cells
	2.2 Evolution Rules
	2.3 Transition P Systems
	2.4 Configurations
	2.5 Applicability
	2.6 Transitions
	2.7 Computation Tree

	3 Preliminaries about the P Systems Simulator
	4 The Input of a Transition P System
	4.1 Default Settings
	4.2 The Input Grammar

	5 The Parser/Compiler
	5.1 Internal Grammar

	6 The Simulator
	6.1 The Breadth-Expansion-Tree Procedure
	6.2 The Configurations Procedure
	6.3 The Applicability-Vectors Procedure
	6.4 The Tag-Rules Procedure
	6.5 The Apply-Matrix Procedure

	7 A Complete Example: Generating Squares 1^2,2^2,... , n^2
	7.1 The Input Data
	7.2 The Parser-Compiler
	7.3 Configurations

	8 Conclusions
	References

