
On Descriptive Complexity of P Systems

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez,
and Agustin Riscos-Núñez

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{magutier, marper, ariscosn}@us.es

Abstract. In this paper we address the problem of describing the com-
plexity of the evolution of a P system. This issue is is specially hard in
the case of P systems with active membranes, where the number of steps
of a computation is not sufficient to evaluate the complexity. Sevilla car-
pets were introduced in [1], and they describe the space-time complexity
of P systems. Based on them, we define some new parameters which can
be used to compare evolutions of P systems. To illustrate this, we also
include two different cellular solutions to the Subset Sum problem and
compare them via these new parameters.

1 Introduction

The evolution of a P system is a complex process where (possibly) a large number
of symbol-objects, membranes and rules are involved. In the case of P systems
with active membranes, the problem of describing the complexity of the com-
putational process becomes specially hard. In this case, elementary membranes
can divide into two new membranes and, due to the parallelism intrinsic to P
systems, an exponential number of membranes can be obtained in polynomial
time. This feature makes P systems with active membranes a powerful tool to
attack NP-complete problems and, indeed, several efficient solutions to this type
of problems have been presented (see, e.g., [4, 9, 10, 11] or [12]). These solutions
are proposed in the framework of recognizer P systems with external output, and
they present significant similarities among them. The basic idea in these designs
is the creation of an exponential number of membranes (workspace) in poly-
nomial time and the use of each membrane as an independent computational
device. All membranes evolve in parallel and the computation has a polynomial
cost in time. The process ends with a final stage (with polynomial cost) that
checks the answers of these devices and sends an output to the environment.

The complexity in time (the number of cellular steps) of these solutions is
polynomial, but it is clear that the time is not the unique variable that we
need to consider in order to evaluate the complexity of the process. Ciobanu,
Păun and Ştefănescu presented in [1] a new way to describe the complexity of
a computation in a P system. The so-called Sevilla carpet is an extension of the

notion of Szilard language from grammars to the case when several rules are
used at the same time.

In this paper we make use of Sevilla carpets to describe the computations
of P systems that solve the Subset Sum problem. Two families of recognizer P
systems have been designed that need a polynomial time to send an output to the
environment. We present their corresponding Sevilla carpets in order to compare
them, and then some ideas to improve the design of P systems for solving other
new problems are proposed.

The paper is organized as follows. In Section 2 we first give some preliminary
notions about recognizer P systems and a polynomial complexity class on P sys-
tems is defined. Section 3 presents the Sevilla carpets and some new parameters
related with them are introduced in Section 4. Finally, we use these parameters
to compare two solutions of the Subset Sum problem.

2 Preliminaries

Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner.

Definition 1. A P system with input is a tuple (Π, Σ, iΠ), where: Π is a P
system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them; Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; finally, iΠ is the
label of a distinguished (input) membrane.

The computations of a P system with input a multiset m over Σ, are defined
in a natural way. The only novelty is that the initial configuration must be the
initial configuration of the system to which the input multiset m is added to the
multiset from region iΠ .

Definition 2. Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, µ the membrane structure and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with
input m is (µ,M1, . . . ,MiΠ

∪ m, . . . ,Mp).

In the case of P systems with input and with external output, the concept
of computation is as standard in membrane computing, with a minor difference
which will be explained below. We consider that it is not possible to observe the
internal processes inside the P system and we can only know if the computation
has halted via some distinguished objects sent out of the skin. We can formalize
these ideas in the following way.

2.1 Recognizer P Systems

Recall that a decision problem X is a pair (IX , θX) such that IX is a language
over a finite alphabet (whose elements are called instances) and θX is a total
boolean function over IX .

In order to solve decision problems we need P systems with input such that
all halting computations starting from an initial configuration with a given input
multiset (encoding an instance of the problem) produce the same output. The
systems of this type will be called recognizer P systems.

Definition 3. A recognizer P system is a P system with input, (Π, Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements YES, NO.
2. All computations halt.
3. If C is a computation of Π, then either object YES or object NO (but not

both) must have been released into the environment, and only in the last step
of the computation. We say that C is an accepting computation (respectively,
rejecting computation) if the object YES (respectively, NO) appears in the
environment associated with the corresponding halting configuration of C.

The above definitions are stated in a general way, but in this paper P systems
with active membranes will be used. We refer to [8] (see chapter 7) for a detailed
definition of evolution rules, transition steps, configurations and computations
in this model.

We denote by AM the class of all recognizer P systems with active mem-
branes.

2.2 The Computational Complexity Class PMCF

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained
using variants of P systems that lack an input membrane (see e.g. [7] or [14]).
Thus, the constructive proofs of such results need to design one system for each
instance of the problem.

If we wanted to perform such a solution of some decision problem in a labo-
ratory, we will find a drawback on this approach: a system constructed to solve
a concrete instance is useless when trying to solve another instance. This short-
coming can be easily overtaken if we consider a P system with input. Then, a
system could solve different instances of the problem, provided that the corre-
sponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer de-
signing a family of P systems such that each element decides all the instances of
“equivalent size”, in certain sense.

Definition 4. Let F be a class of recognizer P systems. We say that a deci-
sion problem X = (IX , θX) is solvable in polynomial time by a family Π =
(Π(n))n∈N+ of type F , and we denote this by X ∈ PMCF , if the following is
true:

– The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N+ in
polynomial time.

– There exists a pair (g, h) of polynomial-time computable functions g : L →⋃
n∈N+ IΠ(n) and h : L → N+ such that for every u ∈ L we have

g(u) ∈ IΠ(h(u)), and
• The family Π is polynomially bounded with regard to (g, h); that is, there

exists a polynomial function p, such that for each u ∈ IX every compu-
tation of Π(h(u)) with input g(u) is halting and, moreover, it performs
at most p(|u|) steps.

• The family Π is sound, with regard to (X, g, h); that is, for each u ∈ IX

it is verified that if there exists an accepting computation of Π(h(u)) with
input g(u), then θX(u) = 1.

• The family Π is complete, with regard to (X, g, h); that is, for each u ∈
IX it is verified that if θX(u) = 1, then every computation of Π(h(u))
with input g(u) is an accepting one.

In the above definition we have imposed every P system Π(n) to be confluent, in
the following sense: every computation with the same input produces the same
output. From the dfinition, one can easily prove that the class PMCF is closed
under polynomial–time reduction and complement.

3 Sevilla Carpets

Sevilla carpets were presented in [1] as an extension of the Szilard language,
which consists of all strings of rule labels describing correct derivations in a
given grammar (see, e.g., [5, 6] or [13]). The Szilard language is usually defined
for grammars in the Chomsky hierarchy where only a single rule is used in each
derivation step, so a derivation can be represented as the string of the labels
of the rules used in the derivation (the labelling is supposed to be one-to-one).
Sevilla carpets are a Szilard-way to describe a computation in a P system. The
main difference is that now a multiset of rules can be used in each evolution
step of a P system. In [1] a bidimensional writing is proposed to describe a
computation of a P system. The (Sevilla) carpet associated with a computation
of a P system is a table with the time on the horizontal axis and the rules
explicitly mentioned along the vertical axis; then, for each rule, in each step, a
piece of information is given. Depending on the amount of information given to
describe the evolution, Ciobanu, Păun, and Ştefănescu propose five variants for
the Sevilla carpets:

1. Specifying in each time unit for each membrane whether at least one rule
was used in its region or not.

2. Specifying in each time unit for each rule whether it was used or not.
3. Mentioning in each time unit the number of applications of each rule; this is

0 when the rule is not used and can be arbitrarily large when the rules are
dealing with arbitrarily large multisets.

4. We can also distinguish three cases: that a rule cannot be used, that a rule
can be used but it is not because of the nondeterministic choice, and that a
rule is actually used.

5. A further possibility is to assign a cost to each rule, and to multiply the
number of times a rule is used with its cost.

They also propose two parameters (weight and surface) to study Sevilla carpets.
In this paper we popose two new parameters (height and average weight) that
will be described in the next section.

4 Parameters for the Descriptive Complexity

Many times we are not interested only in the number of cellular steps of the
computation, but also in other types of resources required to perform the com-
putation. Especially if we want to implement in silico a P system, we need to be
careful with the number of times that a rule is applied, maybe with the number
of membranes and/or the number of objects present in a given configuration.

In order to describe the complexity of the computation, the following param-
eters are proposed:

– Weight: It is defined in [1] as the sum of all the elements in the carpet,
i.e., as the total number of applications of rules along the computation. The
application of a rule has a cost and the weight measures the total cost of the
computation.

– Surface: This is the multiplication of the number of steps by the total
number of the rules used by the P system. It can be considered as the
potential size of the computation. From a computational point of view we are
not only interested in P systems which halt in a small number of steps, but
in P systems which use a small amount of resources. The surface measures
the resources used in the design of the P system. Graphically, it represents
the surface where the Sevilla carpet lies on.

– Height: This is the maximum number of applications of any rule in a step
along the computation. Graphically, it represents the highest point reached
by the Sevilla carpet.

– Average Weight: It is calculated by dividing the weight to the surface of
the Sevilla carpet. This concept provides a relation between both parameters,
and gives an indication on how the P system exploits its massive parallelism.

5 Comparing Two Solutions to the Subset Sum Problem

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there
exists a subset B ⊆ A such that w(B) = k.

We will use a tuple (n, (w1, . . . , wn), k) to represent an instance of the prob-
lem, where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k is the
constant given as input for the problem.

We propose here two solutions to this problem based on a brute force algo-
rithm implemented in the framework of P systems with active membranes. The

idea of the design is better understood if we divide the solution to the problem
into several stages:

– Generation stage: for every subset of A, a membrane is generated via mem-
brane division.

– Weight calculation stage: in each membrane the weight of the associated
subset is calculated. This stage will take place in parallel with the previous
one.

– Checking stage: in each membrane it is checked whether or not the weight
of its associated subset is exactly k. This stage cannot start in a membrane
before the previous ones are over in that membrane.

– Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

First Design

Next we present a family of recognizer P systems solving Subset Sum, according
to Definition 4. This family can be found in [9].

First, we consider a polynomial–time computable and bijective function from
N2 onto N (for example, 〈x, y〉 = ((x+y)(x+y+1)/2)+y). For each (n, k) ∈ N2

we consider the P system (Π1(〈n, k〉), Σ(n, k), i(n, k)), where the input alphabet
is Σ(n, k) = {x1, . . . , xn}, the input membrane is i(n, k) = e and Π1(〈n, k〉) =
(Γ (n, k), {e, s}, µ,Me,Ms, R) is defined as follows:
• Alphabet: Γ (n, k) = Σ(n, k) ∪ {ā0, ā, a0, a, d+, e0, . . . , en, q, q0, . . . , q2k+1,

z0, . . . , z2n+2k+2, Y es, no, No,#}.

• membrane structure: µ = [[]e]s.
• Initial multisets: Ms = z0; Me = e0ā

k.

• The set R of evolution rules consists of the following rules:

(a) [ei]0e → [q]−e [ei]+e , for i = 0, . . . , n.

[ei]+e → [ei+1]0e[ei+1]+e , for i = 0, . . . , n − 1.

(b) [x0 → ā0]0e; [x0 → λ]+e ; [xi → xi−1]+e , for i = 1, . . . , n.
(c) [q → q0]−e ; [ā0 → a0]−e ; [ā → a]−e .

(d) [a0]−e → []0e#; [a]0e → []−e #.

(e) [q2j → q2j+1]−e , for j = 0, . . . , k.
[q2j+1 → q2j+2]0e, for j = 0, . . . , k − 1.

(f) [q2k+1]−e → []0eY es; [q2k+1]0e → []0e#.
[q2j+1]−e → []−e #, for j = 0, . . . , k − 1.

(g) [zi → zi+1]0s, for i = 0, . . . , 2n + 2k + 1; [z2n+2k+2 → d+no]0s.
(h) [d+]0s → []+s d+; [no → No]+s ; [Y es]+s → []0sY es; [No]+s → []0sNo.

Let us recall that the instance u = (n, (w1, . . . , wn), k) is processed by the P
system Π1(〈n, k〉) with input the multiset xw1

1 xw2
2 . . . xwn

n .
This design depends on the two constants that are given as input in the

problem: n and k. It consists on 5n+5k+18 evolution rules, and if an apropriate

input multiset is introduced inside membrane e before starting the computation,
the system will stop and output an answer in 2n + 2k + 6 steps (if the answer is
No) or in 2n + 2k + 5 steps (if the answer is Y es).

According to Definition 4 and using the above family of P systems, we can
prove that, Subset Sum ∈ PMCAM (see [9], for details).

Second Design

Next we present a new family of recognizer P systems solving Subset Sum,
inspired in the previous one. Some modifications are made following the design
presented in [3].

For each n ∈ N we consider the P system (Π2(n), Σ(n), i(n)), where the
input alphabet is Σ(n) = {x1, . . . , xn}, the input membrane is i(n) = e and
Π2(n) = (Γ (n), {e, r, s}, µ,Me,Mr,Ms, R) is defined as follows:
• Alphabet: Γ (n) = Σ(n) ∪ {ā0, ā, a0, a, c, d0, d1, d2, e0, . . . , en, g, ḡ, ĝ, h0, h1,

q, q0, q1, q2, q3, Y es, No, no, z0, . . . , z2n+1,#}.

• Membrane structure: µ = [[]e]s.
• Initial multisets: Ms = z0; Me = e0gāk; Mr = h0b.
• The set R of evolution rules consists of the following rules:

(a) [ei]0e → [q]−e [ei]+e , for i = 0, . . . , n.

[ei]+e → [ei+1]0e[ei+1]+e , for i = 0, . . . , n − 1.

(b) [x0 → ā0]0e; [x0 → λ]+e ; [xi → xi−1]+e , for i = 1, . . . , n.

(c) [q → q0]−e ; [ā0 → a0]−e ; [ā → a]−e .
[g]−e → []−e ḡ.

[en]+e → #.

[ā0 → λ]0s; [ā → λ]0s; [g → λ]0s.
[a → λ]+e ; [a0 → λ]+e .

(d) [a0]−e → []0e#; [a]0e → []−e #.

(e) [q0 → q1]−e ; [q1 → q0]0e.
[q0]0e → []+e no.
[q1 → q2c]−e ; [q2 → q3]0e; [c]−e → []0ek.

(f) [q3]0e → []+e Y es; [q3]−e → []+e no.

(g) [zi → zi+1]0s, for i = 0, . . . , 2n; [z2n+1 → d0d1]0s.
d0[]0r → [d0]−r ; [d1]0s → []+s d1.

(det) [h0 → h1]−r , [h1 → h0]+r ,
[b]−r → []+r b, ĝ[]+r → [ĝ]−r ,
b[]−r → [b]+r , [ĝ]+r → []−r ĝ,
[h0]+r → []+r d2, [d2]+s → []−s d2.

(h) [no → No]−s ; [Y es]−s → []0sY es; [No]−s → []0sNo.

In this solution the instance u = (n, (w1, . . . , wn), k) is processed by the P system
Π2(n) with input the multiset xw1

1 xw2
2 . . . xwn

n .
The above design depends only on one of the constants that are given as

input in the problem: n. It is quite similar to the previous one, the difference
lies in the checking stage and the answer stage. In this case we avoid the use of
counters that require knowing the constant k.

The number of evolution rules is 5n + 41, and the number of steps of the
computation depends on the concrete instance that we need to solve, but it is
linearly bounded.

Descriptive Complexity

We present some detailed statistics about the previous designs, trying to compare
them on a more general basis than just looking the number of steps that the
computation performs. Following this scheme, we present the Sevilla carpets
associated with the computations of the two different solutions to the Subset
Sum problem working on the same instance: u = (5, (3, 5, 3, 2, 5), 9). That is,
n = 5, k = 9, and the list of weights is w1 = 3, w2 = 5, w3 = 3, w4 = 2, w5 = 5.
The input multiset is then: x3

1x
5
2x

3
3x

2
4x

5
5.

0
10

20
30

40
50

60
70

80
90

Rules

0 5 10 15 20 25 30 35

Steps

Fig. 1. Sevilla carpet for solution 1

The P system Π1(〈5, 9〉) has 88 evolution rules, and all of them are applied
with the exception of the rules: [q19]−e → []0eY es, [q3]−e → []−e #, [q9]−e → []−e #
and [Y es]−s → []0sY es. The P system Π1(5, 9) stops at step 33 and sends an
object No to the environment.

The weight of the Sevilla carpet (the total number of rule applications along
the computation) is 2179, and its height (the maximal number of times that a
rule is applied in one evolution step) is 82 and it is reached at Step 9 by the rule
[ā0 → a0]−e . The surface of the Sevilla carpet is 2904, and its average weight is
0.749656

0
10

20
30

40
50

60
70

Rules

0 5 10 15 20 25 30 35 40

Steps

Fig. 2. Sevilla carpet for solution 2

The P system Π2(5) has 65 evolution rules, and all of them are applied with
the exception of the rules: [q3]0e → []+e Y es and [Y es]−s → []0sY es. The P system
Π2(5) stops at step 38 and sends an object No to the environment.

The weight of the Sevilla carpet is 3368, and its height is 108, this height is
reached at Step 10 by the rule [ā0 → λ]0s. The surface of the Sevilla carpet is
2470, and its average weight is 1.36275

The following table shows the parameters of both solutions:

Solution 1 Solution 2
Rules 88 65
Steps 33 38
Surface 2904 2470
Weight 2179 3368
Height 82 108
Average Weight 0.749656 1.36275

If we consider the number of steps as a complexity measure to compare both
designs, then we conclude that the first solution is better than the second one
(although not asymptotically), since it needs less steps.

Moreover, concerning the weight of the Sevilla carpet, solution 1 is again
better than solution 2, because it uses less resources during the computation.
However, the fact that the average weight of solution 2 is larger than the average
weight of solution 1 can be interpreted by saying that the second design makes
a better use of the parallelism in P systems (the computation is more intense).

We would like to remark that these are not asymptotical comparisons, as we
focus only on the data corresponding to one instance. Indeed, due to the expo-
nential number of membranes created during the generation stage, we believe
that considering another instance with a greater size will stress the differences
between the design based only on n and the other one, based on both n and k.
The bound on the size of the intances that can be studied is imposed by the

necessity to use a P systems simulator to obtain the detailed description of the
computation: number of rules, number of cellular steps, and number of times
that the rules are applied in each step. The simulator we are using (presented in
[2]) is written in Prolog, and it runs on a sequential conventional computer.

6 Final Comments and Future Work

This paper illustrates the necessity of a deeper study of parameters which de-
scribe the complexity of P systems as computational devices. In order to analyze
this complexity we use the Sevilla carpets. We also define two new parameters
which provide us with a more detailed description of the evolution of a P system.

A more detailed study of the differences between the computations of the
two solutions discussed here is to be done, in order to extract some conclusions
about the usefullness and/or the interest of these new complexity parameters
that can be used to evaluate the design of cellular solutions to problems.

In the example illustrated in the previous section, the second design solves
the same instance in 5 additional cellular steps, but the number of rules is much
lower. Can we decrease more the number of rules and keep a linear bound on
the number of steps? Is it worth it?

In the near future, we plan to carry out descriptive complexity studies of
other variants of P systems, maybe giving rise to new significant parameters. We
would like also to improve the graphical treatment of Sevilla carpets, designing
a software able to go directly from the description of the computation provided
by our P systems simulator to the picture of the carpet.

Acknowledgement

The support for this research through the project TIC2002-04220-C03-01 of the
Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER funds, is
gratefully acknowledged.

References

1. G. Ciobanu, Gh. Păun, Gh. Ştefănescu, Sevilla carpets associated with P systems.
In M. Cavaliere, C. Mart́ın–Vide and Gh. Păun (eds.), Proceedings of the Brain-
storming Week on Membrane Computing, Tarragona, Spain, 2003, Report RGML
26/03, 135–140.

2. C. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F. Sancho-
Caparrini, A Prolog simulator for deterministic P systems with active membranes.
New Generation Computing, 22 (4), 2004, 349–363.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, Towards a pro-
gramming language in cellular computing. Proceedings of the 11th Workshop on
Logic, Language, Information and Computation (WoLLIC’2004), July 19-22, 2004,
1-16 Campus de Univ. Paris 12, Paris, France. A preliminary version in Gh. Păun,
A. Riscos, A. Romero, F. Sancho (eds.) Proceedings of the Second Brainstorming
Week on Membrane Computing, Report RGNC 01/04, 2004, 247–257.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, A fast P system
for finding a balanced 2-partition. Soft Computing. Springer. To appear.

5. E.Mäkinen, A Bibliography on Szilard Languages. Dept. of Computer and In-
formation Sciences, University of Tampere, http://www.cs.uta.fi/reports/
pdf/Szilard.pdf

6. A. Mateescu, A. Salomaa, Aspects of classical language theory. In G. Rozenberg
and A. Salomaa (eds.), Handbook of Formal Languages (vol. 1), Springer-Verlag,
Berlin Heidelberg, 1997.

7. Gh. Păun, P systems with active membranes: Attacking NP complete problems.
Journal of Automata, Languages and Combinatorics, 6(1), 2001, 75–90.

8. Gh. Păun, Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
9. M.J. Pérez-Jiménez, A. Riscos-Núñez, Solving the Subset Sum problem by active

membranes. New Generation Computing, to appear.
10. M.J. Pérez-Jiménez, A. Riscos-Núñez, A linear solution for the Knapsack problem

using active membranes. In C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg
and A. Salomaa (eds.), Membrane Computing. Lecture Notes in Computer Science,
2933, 2004, 250–268.

11. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj–Varjú, C. Kin-
tala, D. Wotschke, and Gy. Vaszyl (eds.), Proceedings of the 5th Workshop on
Descriptional Complexity of Formal Systems, Budapest, Hungary, 2003, 284–294.

12. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Solving VALIDITY
problem by active membranes with input. In M. Cavaliere, C. Mart́ın-Vide, and
Gh. Păun (eds), Proceedings of the Brainstorming Week on Membrane Computing,
Tarragona, Spain, 2003, Report RGML 26/03, 279–290.

13. A. Salomaa, Formal Languages. Academic Press, New York, 1973.
14. C. Zandron, A Model for Molecular Computing: Membrane Systems. Ph.D. Thesis,

Università degli Studi di Milano, 2001.

	Introduction
	Preliminaries
	Recognizer P Systems
	The Computational Complexity Class PMC$_F$

	Sevilla Carpets
	Parameters for the Descriptive Complexity
	Comparing Two Solutions to the Subset Sum Problem
	Final Comments and Future Work

