Potential maps, Hardy spaces, and tent spaces on special Lipschitz domains
Costabel, Martin
McIntosh, Alan
Taggart, Robert J.
Data: |
2013 |
Resum: |
Suppose that Ω is the open region in ℝn above a Lipschitz graph and let d denote the exterior derivative on ℝn. We construct a convolution operator T which preserves support in Ω is smoothing of order 1 on the homogeneous function spaces, and is a potential map in the sense that dT is the identity on spaces of exact forms with support in Ω. Thus if f is exact and supported in Ω then there is a potential u, given by u = T f, of optimal regularity and supported in Ω, such that du = f. This has implications for the regularity in homogeneous function spaces of the de Rham complex on Ω with or without boundary conditions. The operator T is used to obtain an atomic characterisation of Hardy spaces Hp of exact forms with support in Ω when n/(n + 1) < p ≤ 1. This is done via an atomic decomposition of functions in the tent spaces Tp(ℝn _ ℝ+) with support in a tent T(Ω) as a sum of atoms with support away from the boundary of Ω . This new decomposition of tent spaces is useful, even for scalar valued functions. |
Drets: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Exterior derivative ;
Dierential forms ;
Lipschitz domain ;
Potential map ;
Sobolev space ;
Hardy space ;
Tent space |
Publicat a: |
Publicacions matemàtiques, Vol. 57, Núm. 2 (2013) , p. 295-331, ISSN 2014-4350 |
Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/287146
DOI: 10.5565/PUBLMAT_57213_02
El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca
Registre creat el 2013-06-25, darrera modificació el 2024-11-30