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Abstract

Non-life insurance companies need to build reserves to meet their claims liability cash flows. They

often work with aggregated data. Recently it has been suggested that better statistical properties

can be obtained when more aggregated data are available for statistical analysis than just the

classical aggregated payments. When also the aggregated number of claims is available one can

define a full statistical model of the nature of the number of claims, their delay until payment and

the nature of these payments. In this paper we provide a new development in this direction by

entering yet another set of aggregated data, namely the number of payments and when they

occurred. A new element of our statistical analysis is that we are able to incorporate inflationary

trends of payments in a direct and explicit way. Our new method is illustrated on a real life data set.

MSC: 62P05 Applications to actuarial sciences and financial mathematics, 91B30 Risk theory,

insurance.

Keywords: Outstanding loss liabilities, claims settlement process, claims reserving, chain ladder

method, individual claims data, prediction uncertainty, bootstrap, early warning systems.

1. Introduction

Non-life insurance companies need to forecast future payments arising from claims

where the companies already received the insurance premium. The discounted aggre-

gate of these future payments is called the reserve (outstanding liabilities) and is one

of the most important components in the accounts of a non-life company. The reserve

is most often set by actuaries and the reserving problem is omnipresent in the literature

of actuarial science. However, the history of the reserving problem is not a mathematical

1 University of Granada, Department of Statistics and O.R., Spain.
2 Cass Business School, City University, London, UK.
3 ETH Zurich, RiskLab, Department of Mathematics, Zurich, Switzerland.

Received: June 2012

Accepted: August 2012



196 Statistical modelling and forecasting of outstanding liabilities in non-life insurance

statistical history even though it clearly is a mathematical statistical forecasting problem.

The history is a practical one, where actuaries have had to develop methodologies

to set reserves at a time when mathematical statistics was not well developed. The

most popular reserving method used by almost all insurance companies is called the

chain ladder method by actuaries. Most practical actuaries would talk about chain

ladder as a method rather than as a mathematical statistical model even though the

actuarial literature has shown a close connection between the chain ladder method

and the multiplicative Poisson model. It was only just recently that this multiplicative

Poisson model was identified as belonging to the class of exponential families implying

well defined solutions to the maximum likelihood estimators and it was also only

recently that the explicit expressions of the entering parameters were derived, see

Kuang, Nielsen and Nielsen (2009). While practical actuaries work with chain ladder

forecasts identical to the forecasts provided by a multiplicative Poisson model, they

do not work with the distributional properties of the multiplicative Poisson model.

Other distributional properties are preferred, often based on ad hoc bootstrap type of

procedures. In this paper we build on theory recently derived in three interconnected

papers. The main underlying idea of these three papers is that more data (aggregated

reported number of claims) should be added to classical actuarial data to allow for a

better and more precise formulation of the underlying mathematical statistical model

driving the claims development process defining the reserve. The first of these papers

(Verrall, Nielsen and Jessen, 2010) defines the simplest possible version of such a model,

the second (Martı́nez-Miranda, Nielsen, Nielsen and Verrall, 2011) develops a bootstrap

methodology to assess the distribution of such a model, but the most important of

these three papers is perhaps the third one (Martı́nez-Miranda, Nielsen and Verrall,

2012). This paper shows that a slight modification of Verrall et al. (2010)’s model,

with one particular moment type estimation method, provides us with a well-defined

mathematical statistical model exactly replicating the reserving estimates one would

obtain using the classical chain ladder method. This model has trustable distributional

properties that can be used in practice by actuaries. In this paper we take the ideas of

the above three papers one step further and add yet another piece of data (aggregated

number of payments) to our data set and we show that important insights of the

claim development process result when incorporating this extra piece of information

in our mathematical statistical model. We follow in this paper Martı́nez-Miranda et al.

(2012) and work with moment type of estimators. Our hope is that this paper provides

information to the mathematical statistician wishing to use their excellent tools on

this important real life problem and can perhaps be helpful in bringing mathematical

statisticians into this important field. The notation and vocabulary of this paper are

deliberately closely related to classical actuarial terminology while describing a well-

defined mathematical statistical model. This is a deliberate attempt to bridge the gap

between classical actuarial terminology, often obscure to mathematical statisticians,

and standard mathematical statistical model formulations that might seem unrelated to

classical reserving for many actuaries.
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The general post credit crunch atmosphere in the financial sector emphasizes a

better understanding of outstanding loss liabilities of non-life insurance companies,

with reserving models as one of the essential technical building blocks. However,

the insurance industry is also gaining new territory in new markets, where better

early warning reserving systems are required than that provided by the old chain

ladder methodology. In this paper we introduce a new reserving methodology with

an automatic early warning system to detect important irregularities in the claims

development process. Our methodology requires more detailed data than classical

reserving methods. The point of view taken is that the aggregated payments do not

provide us with sufficient mathematical statistical information, we argue that also the

number of payments and the number of reported claims are needed. This enables us to

embed a variety of new claims inflation type of information in our overall model. We

consider severity inflation, underwriting year inflation and claims delay inflation and

show how to incorporate those in the reserving process. The calendar inflation is not

treated in detail in this paper, but it could have been extracted up front using the Kuang,

Nielsen and Nielsen (2011) methodology of calendar inflation (see also Kuang, Nielsen

and Nielsen 2008a,b) .

In the next section we define the model on the micro-level. The basis of our model is

the compound Poisson processes studied in Norberg (1993, 1999) and Jessen, Mikosch

and Samorodnitsky (2011). We show how we need to structure these compound Poisson

processes on the micro-level so that we obtain a chain ladder claims reserving method

on the aggregate level. Such connection is proved from first moments calculations which

are provided in Appendix A. In Section 3 we provide estimates of the parameters

of the model. From the estimated model, point forecasts for the reserve are given in

Section 4. Using bootstrap methods we provide in Section 6 (together with Appendix B)

an approximation of the full predictive distribution of the outstanding loss liabilities.

The methods proposed in this paper are illustrated using a dataset from the insurance

industry, given in Appendix C. The focus of this application is to provide an estimate of

the claims reserves and to detect irregularities in the data.

2. Model setup

2.1. Data and micro-level structure

In classical reserving methods the data upon which projections of future claims are

usually represented by so called run-off triangles. This format tabulates the claim data

(payments, numbers of reported or paid claims, etc.) according to the period in which

the claim arose (called underwriting or accident period) and the period in which the

payment (or other action) was made. The difference between the payment period and the

accident period is referred to as the development period. The data are usually aggregated

in years or quarters of years, but other time periods can also be used depending on the
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business line. Hereafter we write years as the periods considered in the aggregation.

We denote accident years by i = 1, . . . ,m, and development years by j = 0, . . . ,m− 1,

where m ∈ N denotes the last observed accident year. Then the available data lie in the

triangle Im = {(i, j); i = 1, . . . ,m; j = 0, . . . ,m−1; i+ j ≤ m}. In Appendix C we show

an example of this type of data.

The methods proposed in this paper consider such run-off triangles as input data.

In fact we will need more triangles to provide a more precise formulation of the

mathematical statistical micromodel that underlies the claims development process

defining the reserve. It is a parametric model that is deliberately formulated in such

a way that the entering parameters are identifiable and estimable from three aggregated

data sets: number of reported claims, number of payments and aggregated paid amounts.

These stochastic variables are described in the following:

• Number of reported claims of accident year i with a reporting delay of j years,

denoted by Ni, j.

• Number of payments. Each of these Ni, j reported claims generates a claims

payment cash flow. We denote by Ri, j,l the number of payments generated by these

Ni, j reported claims that have a payment delay of l ≥ 0 years. That is, Ri, j,l is the

number of payments in accounting year i+ j+ l for claims that have occurred in

accounting year i and were reported in accounting year i+ j.

• Individual claims payments. Each of these Ri, j,l claims payments has size Y
(k)

i, j,l , for

k = 1, . . . ,Ri, j,l .

Often, claims payment data is not available on the micro-level structure described by

{Ni, j; (i, j) ∈ Im}∪{Ri, j,l,Y
(k)
i, j,l; (i, j) ∈ Im, i+ j+ l ≤ m, k ≥ 1}. Therefore, we define

the following aggregate claims payment information. The total number of payments in

accounting year i+ j from claims with accident year i is given by

Ri, j =
j

∑
l=0

Ri, j−l,l. (1)

These Ri, j are the number of payments in accounting year i+ j generated by all claims

with accident year i which where reported prior to (and including) accounting year i+ j,

i.e. these are payments from the Ni, j−l reported claims, with l = 0, . . . , j. The payments

(total quantity paid) in accounting year i+ j from claims with accident year i are then

given by

Xi, j =
j

∑
l=0

Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l. (2)

From these definitions we assume that the available information at time m consists

of the following three σ-fields (upper claims development triangles):
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Nm =σ{Ni, j; (i, j) ∈ Im} ,
Rm =σ{Ri, j; (i, j) ∈ Im} ,
Xm =σ{Xi, j; (i, j) ∈ Im} ,

and the aim is to predict the total payments in the future:

Xc
m = {Xi, j; (i, j) ∈ Jm} ,

where Jm = {(i, j); i= 2, . . . ,m, j = 0, . . . ,m−1, i+ j >m} is the lower (inexperienced)

triangle.

Classical reserving methods as the chain ladder method provide predictions for Xc
m.

However, a better description of the reserving problem would be provided if we are able

to separate these future payments in the lower triangle into payments for claims that have

been already reported (prior to and including accounting year m) and claims that will be

reported after accounting year m. The first class of claims is contained in the number of

reported claims Nm, and constitutes what is called the reported but not settled (RBNS)

claims reserves. The latter class contains the so-called incurred but not reported (IBNR)

claims and constitutes the IBNR claims reserves. Such a distinction is often important,

for example, in the calculation of unallocated loss adjustment expenses (ULAE), see

Wüthrich, Bülmann and Furrer (2010, Section 5.6). If we apply the classical chain ladder

method then we predict Xc
m based solely on the information Xm, thus, we predict the

outstanding loss liabilities on a rather aggregate level, which does not allow a distinction

between RBNS and IBNR claims reserves.

2.2. Model assumptions

With the above definitions we assume the following hypotheses about the micro-level

structure.

(A1) All random variables in different accident years i ∈ {1, . . . ,m} are independent.

(A2) The numbers of reported claims Ni,0, . . . ,Ni,m−1 are independent and Poisson

distributed with cross-classified means E[Ni, j] = ϑiβ j, for given parameters ϑi > 0,

β j > 0 with normalization ϑ1 = 1.

(A3) The claims payments

Xi, j,l =

Ri, j,l

∑
k=1

Y
(k)
i, j,l

are, conditionally given Ni,0, . . . ,Ni,m−1, independent (in l ≥ 0) and compound

Poisson distributed with
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• Ri, j,l|{Ni,0,...,Ni,m−1} ∼ Poi(Ni, jπl) with given parameter πl > 0;

• Y
(k)
i, j,l|{Ni,0,...,Ni,m−1}

(d)
= Y

(k)
i, j,l are i.i.d. for k ≥ 1 with the first two moments given

by

E

[
Y
(1)
i, j,l

]
= νi µ j,l and E

[(
Y
(1)
i, j,l

)2
]
= ν2

i s2
j,l,

for parameters νi,µ j,l,s j,l ∈ R+ with normalization ν1 = 1.

One crucial point in assumption (A3) is that the claim size (or severity) distribution of

Y
(k)
i, j,l can be split into an accident year dependent part νi which models claims inflation in

the accident year direction, and a development year dependent part µ j,l which takes care

of reporting delay j ≥ 0 and payment delay l ≥ 0. Note that assumption (A3) implies that

the payments Y
(k)
i, j,l are independent from the number of reported claims Ni, j as well as

from the number of payments Ri, j,l (conditional compound Poisson model assumption).

The choices ϑ1 = ν1 = 1 will make the parameters identifiable in the estimation

procedure. One can also use other normalizations, such as e.g. ∑ jβ j = 1 (normalized

claims reporting pattern). However, our choice is rather simple to implement and other

normalizations are obtained by rescaling.

3. Parameter estimation

The estimation of the model parameters, {ϑi,β j,πl,νi,µ j,l; i = 1, . . . ,m, j, l = 0, . . .,

m − 1}, can be solved just using the simple chain ladder method on the three input

triangles. The only requirement is to demonstrate that the random variables Ni, j, Ri, j

and Xi, j all have the same cross-classified mean structure, which is the chain ladder

mean structure. As was discussed in Martı́nez-Miranda et al. (2012) this can be done

from model specifications about just the first moment of the underlying stochastic

components. Further purposes about deriving the distribution of the future payments

requires conditions on higher order moments and also a more detailed specification

including distributional assumptions (see Martı́nez-Miranda et al. 2012 for further

explanation). Under the distributional model proposed here, we suggest in Section 6

an estimator for the second moment parameters s j,l ( j, l = 0, . . . ,m− 1) to derive then

the predictive distribution.

Therefore we next provide estimates of the parameters based in the first moment

of the random variables, Ni, j, Ri, j and Xi, j. We have deferred such calculations to

Appendix A in order to facilitate the reading of the paper. Specifically in Propositions 2

and 3 we have obtained that the first moments of the three sets of random variables Ni, j,

Ri, j and Xi, j all have the same cross-classified mean structure. Also we have established

connections among the parameters in the model through the following equations:
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αi = ϑi νi, (3)

λ j =
j

∑
l=0

β j−l πl, (4)

γ j =
j

∑
l=0

β j−l πl µ j−l,l , (5)

From these initial steps our aim is to estimate the corresponding parameters based on

the information in Nm, Rm and Xm, and by applying the simple chain ladder method to

each triangle. As an example, we demonstrate the estimation for the observed number

of reported claims Nm and the parameters ϑi and β j. The remaining parameters are

estimated in the same way, but based on Rm and Xm, respectively. In a distribution-

free approach we rely on moment estimators. If we aggregate rows and columns,

respectively, over the set of information Im we obtain the first moment equalities

m−i

∑
k=0

E [Ni,k] = ϑi

m−i

∑
k=0

βk for i = 1, . . . ,m, (6)

m− j

∑
k=1

E [Nk, j] = β j

m− j

∑
k=1

ϑk for j = 0, . . . ,m−1. (7)

Unbiased estimators for the right-hand side of these equalities are obtained by replacing

the moments E [Ni, j], (i, j) ∈ Im, by their observations Ni, j ∈ Nm. Then the resulting

system of linear equations is solved for ϑi and β j, which provides the corresponding

estimators for these parameters. This is in the spirit of the “total marginals” method of

Bailey (1963) and Jung (1968). Kremer (1985) and Mack (1991) have shown that in the

case of triangular data Nm this leads to the chain ladder estimators that can be calculated

in closed form. Thus,

Nm provides the chain ladder estimators ϑ̂
(1)
i and β̂ j for ϑi and β j,

Rm provides the chain ladder estimators ϑ̂
(2)
i and λ̂ j for ϑi and λ j,

Xm provides the chain ladder estimators α̂i and γ̂ j for αi and γ j,

with ϑ̂
(1)
1 = ϑ̂

(2)
1 = α̂1 = 1 (initialization in cross-classified means). Note that we obtain

two different estimators ϑ̂
(1)
i and ϑ̂

(2)
i for the same parameter ϑi. However, their values

should not be too different, otherwise this indicates that the model may not fit to the

claims reserving problem. In order to estimate ϑi we could now take a credibility

weighted average between ϑ̂
(1)
i and ϑ̂

(2)
i . For simplicity we set ϑ̂i as the arithmetic

mean between ϑ̂
(1)
i and ϑ̂

(2)
i . Anyway, the appropriateness of this choice should always

be checked on the data. Using equality (3) we can estimate the accident year inflation

parameter νi by
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ν̂i = α̂i/ϑ̂i for i = 1, . . . ,m. (8)

Thus, it remains to estimate the parameters πl and µ j,l ( j, l = 0, . . . ,m− 1). There are

different ways to estimate these parameters. We start with πl using the equality (4). If

we rewrite this equation in vector notation we have

(λ0, . . . ,λm−1)
T = Bβ (π0, . . . ,πm−1)

T ,

for an appropriate matrix Bβ = Bβ0,...,βm−1
∈ Rm×m. This matrix is estimated by B̂β =

B
β̂0,...,β̂m−1

∈ Rm×m and then we can provide estimates, π̂0, . . . , π̂m−1, by solving the

following system:

(π̂0, . . . , π̂m−1)
T

= B̂
−1

β

(
λ̂0, . . . , λ̂m−1

)T

. (9)

The estimation of µ j,l needs more care because the model is over-parametrized. In order

to reduce the number of parameters we make one of the following two assumptions

µ j,l ≡ µl (10)

or

µ j,l ≡ µ j. (11)

Using the condition (10) and the equality (5) we have that

(γ0, . . . ,γm−1)
T = Bβ (π0µ0, . . . ,πm−1µm−1)

T ,

for matrix Bβ = Bβ0,...,βm−1
∈Rm×m. If this matrix is again estimated by B̂β = B

β̂0,...,β̂m−1

we obtain estimates π̂µ0, . . . , π̂µm−1 as the solution of the following system:

(
π̂µ0, . . . , π̂µm−1

)T
= B̂

−1

β (γ̂0, . . . , γ̂m−1)
T
, (12)

and, finally, the estimator for µ j,l assumption (10) is given by µ̂ j,l = µ̂l = π̂µl/π̂l .

On the other hand, using assumption (11) and rewriting (5) we have the following

system

(γ0, . . . ,γm−1)
T = Bπ (β0µ0, . . . ,βm−1µm−1)

T ,

for matrix Bπ = Bπ0,...,πm−1
∈ Rm×m. And again plugging in the estimated matrix

B̂π = Bπ̂0,...,π̂m−1
∈ Rm×m, we obtain the estimates, β̂µ0, . . . , β̂µm−1, by solving the

system
(
β̂µ0, . . . , β̂µm−1

)T

= B̂
−1

π (γ̂0, . . . , γ̂m−1)
T
. (13)

This yields the estimator µ̂ j,l = µ̂ j = β̂µ j/β̂ j.
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The above procedure provides estimates for all the parameters required for point pre-

diction purposes, under the additional assumption (10) or (11). In the next section we are

going to describe how they are used to predict the outstanding loss liabilities Xc
m at time

m. Moreover, we will also discuss further adjustments to these estimators in practise.

4. Point forecasts

Point predictions for the outstanding loss liabilities can be derived as estimated uncon-

ditional (or conditional) means of the aggregated payments, Xi, j, in the lower triangle,

Jm. In the previous section we have estimated all the parameters in the model from the

observations Nm, Rm and Xm. It only remains to estimate the second moment parame-

ters s j,l ( j, l = 0, . . . ,m−1) of the size of the individual payments. But, as we pointed in

the previous section, such higher order moments are not involved in the point forecasts.

Therefore, we have all that is necessary to predict the outstanding liabilities, Xc
m. At time

m the conditionally expected outstanding loss liability cash flows in Xc
m are given by

Zm =
m

∑
i=2

m−1

∑
j=m−i+1

E [Xi, j|Nm,Rm,Xm] .

If we only rely on the observations Xm, then we can only estimate the parameters αi and

γ j. Thus, in this case we set

ẐCL
m =

m

∑
i=2

m−1

∑
j=m−i+1

α̂i γ̂ j,

which provides an estimator for Zm. The crucial property of this estimator ẐCL
m is that it

provides the chain ladder reserves exactly (see Kremer 1985, Mack 1991 and Section 2.4

in Wüthrich and Merz 2008). Having additional information Nm and Rm we can refine

this estimate. We have

Zm =
m

∑
i=2

m−1

∑
j=m−i+1

j

∑
l=0

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]

=
m

∑
i=2

m−1

∑
j=m−i+1

j

∑
l=i+ j−m

E

[
Ri, j−l,l

∑
k=1

Y
(k)

i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]

+
m

∑
i=2

m−1

∑
j=m−i+1

i+ j−m−1

∑
l=0

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]
.

Note that the decoupling separates RBNS and IBNR claims: if i + j − l ≤ m then

the payment Y
(k)
i, j−l,l belongs to a claim that has been reported prior to (and including)
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accounting year m, and henceforth is an RBNS claim at time m. Therefore, we define

ZRBNS
m =

m

∑
i=2

m−1

∑
j=m−i+1

j

∑
l=i+ j−m

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]
,

ZIBNR
m =

m

∑
i=2

m−1

∑
j=m−i+1

i+ j−m−1

∑
l=0

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]
.

Using assumptions (A1)–(A3) we obtain the following result.

Proposition 1

ZRBNS
m =

m

∑
i=2

νi

m−1

∑
j=m−i+1

j

∑
l=i+ j−m

Ni, j−l πl µ j−l,l , (14)

ZIBNR
m =

m

∑
i=2

ϑi νi

m−1

∑
j=m−i+1

i+ j−m−1

∑
l=0

β j−l πl νi µ j−l,l. (15)

Using the previous expressions we can estimate the RBNS claims reserve by plugging

estimates of the parameters in (14) and similarly the IBNR reserve using (15). Denote

the resulting predictions by ẐRBNS
m and ẐIBNR

m , respectively. Then the total reserve can be

estimated by Ẑm = ẐRBNS
m + ẐIBNR

m . A straightforward calculation demonstrates that the

model defined in (A1)–(A3) can provide the same reserve as the classical chain ladder

just by making a particular choice. This result is stated in the following corollary.

Corollary 1 Under the additional assumptions that ϑ̂
(1)
i = ϑ̂

(2)
i , for all i = 2, . . . ,m, and

Ni, j = ϑ̂iβ̂ j, for all (i, j) ∈ Im, we have Ẑm = ẐCL
m .

Often claims development goes beyond the latest development period m−1, which

has been observed at time m. Therefore, in practice, one needs to add a tail estimate to

the claims reserves in order to also cover these additionally expected outstanding loss

liability cash flows. The entire tail can be estimated under assumptions (A1)–(A3) if we

additionally assume that β j = π j = 0 for j = 1, . . . ,m− 1. In this particular case, we

know that all claims are reported after development period j = m− 1. Thus, we define

the claims reserves including the tail by (re-arranging the summations)

ẐRBNS+
m =

m

∑
i=1

ν̂i

m−i

∑
j=0

Ni, j

m−1

∑
l=m−(i+ j)+1

π̂l µ̂ j,l,

ẐIBNR+
m =

m

∑
i=2

ϑ̂i ν̂i

m−1

∑
j=m−i+1

β̂ j

m−1

∑
l=0

π̂l µ̂ j,l,

and the total reserves including the tail are defined by Ẑ+
m = ẐRBNS+

m + ẐIBNR+
m .
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Figure 1: Real data example: estimates for ϑi. Estimates ϑ̂
(1)
i are based on Nm, estimates ϑ̂

(2)
i are based

on Rm and ϑ̂i is the arithmetic mean between the latter two estimates.
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Figure 2: Real data example: estimates for αi, ϑi and νi.

5. An example with real data

We illustrate the methods proposed in this paper using a real data example provided in

Tables 6, 7 and 8 in Appendix C. The first step is to estimate the parameters according

to Section 3.

In Figure 1 we give the estimates for ϑi for i = 1, . . . ,m = 14. We see that both

data sets Nm and Rm provide similar estimates ϑ̂
(1)
i and ϑ̂

(2)
i for ϑi which confirms the

model assumptions (A1)–(A3). Moreover, we see a strong decrease in the volume in this

portfolio, since the exposure parameters ϑ̂i decrease from 1 to roughly 0.5.

We could now proceed as described above and use the estimates β̂ j and λ̂ j. However,

we slightly deviate from this approach. Namely, if we plug in the resulting (adjusted)

exposure estimates ϑ̂i from (8) into (6) and (7) we get adjusted estimates β̃ j for β j and

similarly λ̃ j for λ j. We prefer to work with these adjusted estimates because they assure
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that the overall level is correct if calculate the cross-classified means of Ni, j and Ri, j, see

Proposition 2.

In Figure 2 we show the estimates for the exposures αi and ϑi, and the resulting

inflation estimate ν̂i is provided by the ratio of the latter two estimates. In general,

we see an increase in the time-series ν̂1, . . . , ν̂14, however accident year i = 8 seems

conspicuous and needs further analysis on single claims data. It may indicate that there

is a change in the underlying product (if it only acts on horizontal axis in the claims

development triangle). Indeed we observe a substantial decrease in average payments

per reported claim in accident year i = 8 which supports the argument of changes in the

product (or portfolio).

Finally, we estimateπl and µ j,l from β̃ j, λ̃ j and γ̂ j. We solve the estimation problem

under assumption (10), i.e. µ j,l ≡ µl . In that case we set B̃β = B
β̃0,...,β̃m−1

and then we

estimate πl and πlµl from equations (9) and (12). Figure 3 provides the estimates π̂l .

First of all we observe that all π̂l > 0 except π̂2 < 0 and π̂12 < 0 which contradicts the

model assumptions (A1)–(A3). Thus, at this point we might ask for a more sophisticated

model. However, this would also ask for more micro-level observations. We refrain from

doing so but correct this value. In our particular case, we choose correction

π̃l =





π̂l −2|π̂l+1| l = 1,

|π̂l| l = 2,

0 l = 12,13,

π̂l otherwise.

The resulting adjusted estimates π̃l are also given in Figure 3. Note that we have

∑l π̃l ≈ ∑l π̂l = 0.7251, which says that on average we expect 0.7251 payments

per reported claim, and in the average almost half of the claims can be settled without a

payment. An analysis of payments per reported claim shows that this figure is decreasing

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

pi_l pi_l tilde

Figure 3: Real data example: estimates π̂l and π̃l for πl .
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Figure 4: Real data example: estimates µ̂ j,l for µ j,l ≡ µl for l = 0, . . . ,11.

over time. This decrease can have various reasons such as changes in reporting philos-

ophy, changes in the claims handling process, but it could also be related to changes in

the portfolio (we have already mentioned that the volume is strongly decreasing).

We then estimate µlπl from µ̂πl , which is the solution of the system (12). And,

under (10), we estimate µ j,l = µl by µ̂πl/π̃l .

The results are presented in Figure 4. We see that the average payments µ j,l are

increasing in the payment delay l. We could now further smooth this curve for the

expected payments µ j,l , but we refrain from doing so. There are also other issues, for

example that the payments Y
(k)

i, j,l may not only depend on the accident year i and the

payment delay l but also on the reporting delay j. However, as described in Section A

we cannot model all directions simultaneously because this would lead to an over-

parametrization.

Finally, in Table 1 we present the resulting claims reserves. We observe that under

assumptions (A1)–(A3) and (10) we obtain higher claims reserves than classical chain

ladder (see the last two columns in Table 1). One reason for this more conservative

estimate is that we judge the upper right corner of the triangle Xm differently. The

estimate for later development periods, say j = 11,12,13, is based on a rather small set

observations in the chain ladder method (and hence not very reliable). In our model we

use the additional model structure for the estimation of payments in later development

periods which, in this case, is more conservative. The influence of the tail estimate is

only minor, specifically Ẑ+
m − Ẑm = 7 074. This has to do with the fact that we have a

rather short payout pattern π̃l (see Figure 3).

Another possible approach in the previous calculations is to use condition (11),

i.e. µ j,l ≡ µ j. However, the resulting claims reserves derived in this case seemed to be

too low and we have decided not to include this in the paper. The reason is because the

main driver of late payments is the payment delayπl and not the reporting delay β j. This

implies that under (11) we underestimate the amounts of late payments because they are

attached too strongly to the reporting pattern β j compared to the payment pattern πl .
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Table 1: Real data example: resulting claims reserves under (10).

a.y. i ẐRBNS+
m ẐIBNR+

m Ẑ+
m ẐCL

m difference in %

1 536 0 536 536

2 1 540 0 1 540 0 1 540

3 23 799 0 23 799 2 220 21 579 971.8%

4 162 275 0 162 275 147 434 14 841 10.1%

5 291 122 790 291 912 280 056 11 855 4.2%

6 415 955 1 590 417 545 408 154 9 391 2.3%

7 584 991 3 300 588 291 569 060 19 231 3.4%

8 605 767 3 676 609 443 583 785 25 658 4.4%

9 704 687 5 039 709 726 675 363 34 363 5.1%

10 803 884 6 343 810 228 764 373 45 855 6.0%

11 1 054 124 10 037 1 064 161 1 004 331 59 829 6.0%

12 1 397 607 22 068 1 419 675 1 352 819 66 856 4.9%

13 1 999 243 84 680 2 083 922 2 076 674 7 248 0.3%

14 4 221 084 1 474 793 5 695 877 5 487 650 208 227 3.8%

total 12 266 615 1 612 315 13 878 930 13 351 921 527 009 3.9%

6. Bootstrap predictive distribution

6.1. Conditional mean square error of prediction

In addition to the claims reserves estimates Ẑ+
m we also need to assess the corresponding

prediction uncertainty. We briefly describe this with the help of the conditional mean

square error of prediction (MSEP) uncertainty measure which is defined by

msepXm|{Nm,Rm,Xm}

(
Ẑ+

m

)
= E

[(
Xm − Ẑ+

m

)2
∣∣∣∣Nm,Rm,Xm

]
, (16)

where the aggregate cash flow in the lower triangle is defined by Xm =∑
m
i=2 ∑

m−1
j=m−i+1 Xi, j.

Thus, the conditional MSEP describes the possible fluctuations of the true outstanding

loss liability cash flows Xm around the predictor Ẑ+
m . Since the predictor is σ{Nm,Rm,

Xm}-measurable the conditional MSEP can be decoupled into process variance and pa-

rameter estimation error, see (3.1) in Wüthrich and Merz (2008),

msepXm|{Nm,Rm,Xm}

(
Ẑ+

m

)
= Var(Xm|Nm,Rm,Xm)+

(
Zm − Ẑ+

m

)2

. (17)

The first term (process variance) can be calculated explicitly under our model assump-

tions, the second term (parameter estimation error) is more difficult to assess. Often,

one derives approximations for this latter term. However, in our case this is too in-

volved, therefore we rely on the bootstrap simulation method to quantify the prediction
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uncertainty. In order to apply the bootstrap method there is the parameter s2
j,l that still

needs to be estimated.We do this under calibration (10), i.e. we set

s2
j,l ≡ s2

l (18)

to avoid over-parameterization. In view of Proposition 5 we have

E

[
Xi, j −αi γ j√
αi νi

]
= 0 and Var

(
Xi, j −αi γ j√
αi νi

)
= σ2

j .

The sample estimator then provides estimates

σ̂2
j =

1

m− j−1

m− j

∑
i=1

(
Xi, j − α̂i γ̂ j√
α̂i ν̂i

)
,

for j = 0, . . . ,m − 2 and we set σ̂2
m−1 = σ̂2

m−2. In view of (21) we have a second

description for σ2
j . If we solve this for s2

l and replace all parameters by their estimates

we obtain estimates

((̂πs2)0, . . . , (̂πs2)m−1)
T = B̃−1

β (σ̂2
0, . . . , σ̂

2
m−1)

T − (π̃2
0 µ̂

2
0, . . . , π̃

2
m−1 µ̂

2
m−1)

T,

and finally we set

ŝ2
l = (̂πs2)l/π̃l, for all l = 0, . . . ,m−1. (19)

If we apply this procedure to Example 1 we obtain the result in Table 2. In order to justify

these estimates we calculate the estimates of the corresponding coefficients of variation

given by v̂co = ŝl/µ̂l . Table 2 shows that these estimated coefficients of variation are

in the interval [1.5,5.5], i.e. the coefficients of variation for single claims payouts Y
(k)
i, j,l

are of order 1.5 to 5.5. These are reasonable values, for instance in the Swiss Solvency

Test (SST) the coefficients of variation for single claim sizes (not payouts) are estimated

between 2.25 and 11 depending on the underlying line of business, see Section 8.4.4 in

FINMA (2006). These estimators now allow for applying bootstrap methods which are

Table 2: Real data example: resulting standard deviation estimates ŝl together with the mean estimates µ̂l

and the corresponding coefficient of variation estimates v̂co.

0 1 2 3 4 5 6 7 8 9 10 11

ŝl 2 862 8 511 11 651 26 688 93 291 28 083 52 846 43 333 104 714 59 276 75 632 104 701

µ̂l 818 1 561 2 534 7 712 21 993 18 435 16 113 22 300 40 529 29 540 28 704 46 764

v̂co 3.50 5.45 4.60 3.46 4.24 1.52 3.28 1.94 2.58 2.01 2.63 2.24
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Table 3: Real data example: process standard deviation (first row) and rooted conditional MSEP (second

row) under model (A1)-(A3) for the predicted RBNS, IBNR and the total claim reserves. The last column

gives the results of the Mack formula (Mack 2010).

RBNS IBNR total Mack (1993)

process standard deviation 1 511 860 293 166 1 545 503 1 521 713

conditional MSEP1/2 2 273 294 326 382 2 324 966 2 182 722

close to those proposed by Martı́nez-Miranda et al. (2011, 2012). Specifically, we derive

the predictive distribution using a parametric bootstrapping procedure which exploits the

model assumptions in Section 2. In a first step we define a bootstrapping scheme based

on Monte Carlo simulation from the model (A1)–(A3) where the unknown parameters

are simply replaced by the estimated parameters (ignoring the parameter estimation

uncertainty). This gives an estimation of the process variance defined as the first term

in equation (17). The resulting process variances for RBNS, IBNR and total reserves

(for all the years) are given in the first row of Table 3. To quantify the second term in

equation (17), i.e. the parameter estimation error, we consider a more general bootstrap

algorithm which also simulates the distribution of the involved parameters. From such

general bootstrap method – formally described below – we derive the desired conditional

MSEP. The resulting errors are displayed in the second row of Table 3. The last column

displays the same uncertainties obtained from the Mack’s distribution-free chain ladder

model Mack (1993). We observe that our bootstrap results are slightly more conservative

compared to the classical Mack formula.

6.2. Bootstrapping the RBNS and IBNR reserve

The predictive distribution which describes the possible fluctuations of the true out-

standing loss liability cash flows can be derived using parametric bootstrap methods. By

exploiting the distributional assumptions (A1)–(A3) we describe in the Appendix B an

explicit algorithm to derive separately the predictive distribution of the RBNS and IBNR

cash flows, XRBNS
m and X IBNR

m , respectively. With this resampling scheme the RBNS and

IBNR cash flows can be simulated using Monte Carlo methods. We have derived these

cash flows for the data in Example 1. Table 4 shows the median and the upper quantiles

separately for the RBNS and IBNR cash flows. Here we consider B = 10 000 replica-

tions in the resampling scheme. As we expect the means imitate the predicted reserves

given in Table 1. The calculated medians however are slightly lower, which reveals that

the derived distribution is negatively skewed.

For comparison purposes we also consider the double chain ladder method (DCL)

proposed by Martı́nez-Miranda et al. (2012). This method is defined under a simpler

distributional model which makes the following assumptions on the first two moments

E[Y
(1)
i, j,l] = νiµ and E[(Y

(1)
i, j,l)

2] = ν2
iσ

2. Table 5 reports the summary of the distribution for



Marı́a Dolores Martı́nez-Miranda, Jens Perch Nielsen and Mario V. Wüthrich 211

Table 4: Real data example. Simulation of predictive distribution of RBNS and IBNR reserves by accident

year: mean, median and 95% and 99% quantiles over B = 10 000 repetitions. Column 2–5 give the RBNS

reserves, Column 6–9 give the IBNR reserves.

RBNS IBNR

a.y. i mean median 95% 99% mean median 95% 99%

1 522 0 0 882 0 0 0 0

2 1658 0 0 38 893 0 0 0 0

3 23 947 0 140 730 352 637 0 0 0 0

4 165 490 73 036 633 033 1 172 022 0 0 0 0

5 297 554 199 030 932 461 1 579 736 202 0 18 3 910

6 418 854 321 105 1 106 734 1 840 653 688 0 2 509 16 514

7 586 159 476 807 1 435 075 2 194 285 1 617 0 8 521 30 389

8 609 403 522 311 1 377 117 2 047 477 2 312 8 12 839 34 068

9 712 294 615 028 1 548 731 2 236 150 3 750 92 18 937 49 613

10 809 344 716 227 1 660 795 2 374 073 5 108 639 22 475 58 796

11 1 056 515 953 340 2 092 864 2 990 605 9 096 2 896 37 051 78 573

12 1 410 137 1 295 048 2 537 813 3 437 648 21 487 13 153 69 200 125 271

13 2 008 886 1 899 042 3 271 259 4 179 189 86 354 72 050 188 811 327 241

14 4 211 291 4 126 027 5 463 231 6 402 499 1 552 438 1 512 135 2 074 502 2 514 402

total 12 312 055 12 040 963 16 325 473 18 860 539 1 683 054 1 640 097 2 222 831 2 709 200

the RBNS, IBNR and total claims reserves. The resulting reserves are similar when we

consider the sum over all accident years. However, we observe more variability in the

method proposed in this paper, under assumptions (A1)–(A2), compared to the DCL

method. This is due to the fact that in DCL method there is the assumption that a claim

is settled by a single payment and hence there is less volatility in the cash flow process.

Besides, the model in this paper involves more parameters than the DCL model and

therefore it increases the uncertainty of the parameters, which we are taking into account

in the resampling scheme (see algorithm in Appendix B).

Table 5: Real data example. Bootstrap predictive distribution: RBNS, IBNR and total claims reserves. The

first three columns give the summary of the distribution under model (A1)–(A3). The last three columns

provide the bootstrap distribution from the DCL method proposed in Martı́nez-Miranda et al. (2012).

model (A1)-(A3) DCL

RBNS IBNR total RBNS IBNR total

mean 12 312 055 1 683 054 13 995 109 11 758 152 1 585 151 13 343 303

MSEP1/2 2 273 294 326 382 2 324 966 1 881 154 485 312 2 018 112

1% 8 090 717 1 131 376 9 615 040 8 081 739 687 623 9 314 398

5% 9 088 207 1 262 754 10 685 634 9 012 040 897 886 10 408 658

50% 12 040 963 1 640 097 13 723 567 11 637 796 1 532 079 13 243 493

95% 16 325 473 2 222 831 18 101 695 14 869 197 2 448 915 16 729 435

99% 18 860 539 2 709 200 20 660 941 16 516 558 2 941 469 18 487 830
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7. Conclusions

In this paper we have defined the claims reserving model on an individual claims pro-

cesses basis (micro-level). The definition of the model on this micro-level has been

done such that on the aggregate level we re-discover the classical chain ladder reserving

method. Under this model we show how extended data collection can provide us with

more and better information to act in time on unforeseen patterns of outstanding liabil-

ities. In particular we have focused on how various claims delays impact severities and

how to incorporate this information in the reserve. Our approach in this paper shares

the simplicity and intuitive appeal which have popularized the chain ladder method in

claims reserving. But, with a little more effort in calculations and data requirements,

our approach reports several other advantages. Since chain ladder is only based in the

aggregated payments triangles, it cannot provide the split of the claims reserves into

RBNS and IBNR and the tail as we do. Such split is required for the calculation of unal-

located loss adjustment expenses ULAE and it gives valuable information to the insurer.

In addition, to work under a well-defined and firm statistical model provides a suitable

framework to develop consistent bootstrap methods to quantify the uncertainty in the

predictions. In future work we will also consider simulation of coefficients of varia-

tion following the insights of for example Gulhar, Kibria, Albatineh and Ahmed (2012).
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Saluz, A., Gisler, A. and Wüthrich, M. V. (2011). Development pattern and prediction error for the stochastic

Bornhuetter-Ferguson claims reserving model. ASTIN Bulletin, 41/2, 279–313.

Verrall, R., Nielsen, J. P. and Jessen, A. (2010). Including count data in claims reserving. ASTIN Bulletin,

40/2, 871–887.
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Wüthrich, M. V. and Merz, M. (2008). Stochastic Claims Reserving Methods in Insurance. Wiley.



214 Statistical modelling and forecasting of outstanding liabilities in non-life insurance

A. Moments calculations

Here we provide calculations about the two first moments of the stochastic variables in

the triangles Nm, Rm and Xm. Hereafter we work under the model assumptions (A1)–

(A3) formulated in Section 2.2.

A.1. Calculation of means

We start with the claims payments Xi, j,l given in (A3). The conditional and unconditional

means are given by

E [Xi, j,l|Ni,0, . . . ,Ni,m−1] = Ni, j πl νi µ j,l,

E [Xi, j,l] = E [E [Xi, j,l|Ni,0, . . . ,Ni,m−1]] = ϑi β j πl νi µ j,l.

The total number of payments Ri, j of accident year i in accounting year i + j has,

conditionally given {Ni,0, . . . ,Ni,m−1}, a Poisson distribution with conditional mean

E [Ri, j|Ni,0, . . . ,Ni,m−1] =
j

∑
l=0

E [Ri, j−l,l |Ni, j−l] =
j

∑
l=0

Ni, j−l πl.

This implies for the unconditional mean

E [Ri, j] = E [E [Ri, j|Ni,0, . . . ,Ni,m−1]] = ϑi

j

∑
l=0

β j−l πl.

Define λ j = ∑
j

l=0β j−l πl , for j = 0, . . . ,m− 1, then we have just proved the following

proposition.

Proposition 2 E [Ni, j] = ϑi β j and E [Ri, j] = ϑi λ j.

Thus, the pair (Ni, j,Ri, j) satisfies the double chain ladder model of Martı́nez-Miranda et

al. (2012) with inflation parameter set equal to 1. ϑi describes an exposure measure for

accident year i, (β j) j gives the claims reporting pattern and (λ j) j provides the number

of payment count pattern.

The accounting year payments Xi, j for accident year i in accounting year i+ j have,

conditionally given {Ni,0, . . . ,Ni,m−1}, a compound Poisson distribution with conditional

mean

E [Xi, j|Ni,0, . . . ,Ni,m−1] =
j

∑
l=0

Ni, j−l πl νi µ j−l,l.
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This provides the unconditional mean for Xi, j given by

E [Xi, j] = ϑi νi

j

∑
l=0

β j−l πl µ j−l,l .

We define the parameter γ j which only depends on the development period j given by

γ j = ∑
j

l=0β j−l πl µ j−l,l . Thus, we obtain a cross-classified unconditional first moment

for Xi, j which is stated in the following proposition.

Proposition 3 We have for αi = ϑi νi that E [Xi, j] = αi γ j.

This moment property is similar to the Bornhuetter-Ferguson models used by Mack

(2008) and Saluz, Gisler and Wüthrich (2011), Models 4.11 and 4.16. Moreover,

Proposition 3 explains how the claims development reporting pattern (β j) j for Ni, j is

related to the claims development pattern (γ j) j for claims payments Xi, j.

A.2. Calculation of variances

In a similar fashion to the first moments we calculate the variances. First we have under

the conditional compound Poisson assumptions (A3)

Var(Xi, j,l|Ni,0, . . . ,Ni,m−1) = Ni, j πl ν
2
i s2

j,l,

and for the unconditional variance we have

Var(Xi, j,l) = Var(E [Xi, j,l|Ni,0, . . . ,Ni,m−1])+ E [Var(Xi, j,l|Ni,0, . . . ,Ni,m−1)]

= ϑi β j ν
2
i

(
π2

l µ
2
j,l +πl s2

j,l

)
.

The total number of payments Ri, j of accident year i in accounting year i + j has,

conditionally given {Ni,0, . . . ,Ni,m−1}, a Poisson distribution with conditional variance

Var(Ri, j|Ni,0, . . . ,Ni,m−1) =
j

∑
l=0

Var(Ri, j−l,l|Ni, j−l) =
j

∑
l=0

Ni, j−l πl.

This implies for the unconditional variance

Var(Ri, j) = Var(E [Ri, j|Ni,0, . . . ,Ni,m−1])+E [Var(Ri, j|Ni,0, . . . ,Ni,m−1)]

= ϑi

j

∑
l=0

β j−l π
2
l +ϑi

j

∑
l=0

β j−l πl.
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Define for j = 0, . . . ,m−1

t2
j =

j

∑
l=0

β j−l πl (1+πl)≥ λ j, (20)

then we have just proved the following proposition.

Proposition 4 Var(Ni, j) = ϑi β j and Var(Ri, j) = ϑi t2
j .

In view of Proposition 2 we see that for the number of payments Ri, j we obtain over-

dispersion parameter

φ j =
t2

j

λ j

= 1+
∑

j

l=0β j−l π
2
l

∑
j

l=0β j−l πl

≥ 1.

Note that Ri, j has a mixed Poisson distribution which is exactly reflected in this over-

dispersion parameter φ j ≥ 1.

The accounting year payments Xi, j for accident year i in accounting year i+ j have,

conditionally given {Ni,0, . . . ,Ni,m−1}, a compound Poisson distribution with conditional

variance

Var(Xi, j|Ni,0, . . . ,Ni,m−1) =
j

∑
l=0

Ni, j−l πl ν
2
i s2

j−l,l .

This provides the unconditional variances for Xi, j given by

Var(Xi, j) = Var(E [Xi, j|Ni,0, . . . ,Ni,m−1])+E [Var(Xi, j|Ni,0, . . . ,Ni,m−1)]

= ϑi ν
2
i

j

∑
l=0

β j−l π
2
l µ

2
j−l,l +ϑi ν

2
i

j

∑
l=0

β j−l πl s2
j−l,l.

We define the parameter σ2
j which only depends on the development period j given by

σ2
j =

j

∑
l=0

β j−l πl µ j−l,l

(
πl µ j−l,l +

s2
j−l,l

µ j−l,l

)
. (21)

Thus, we obtain a cross-classified model for Xi, j with first moment given by E[Xi, j] =

αi γ j and variance given in the following proposition:

Proposition 5 Var(Xi, j) = αi νi σ
2
j .

Again it is similar to the claims reserving models used in Mack (2008) and Saluz et al.

(2011), Models 4.11 and 4.16, but now the parameters have an explicit meaning.
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B. Resampling schemes

Here we provide the algorithm to derive the predictive distribution of the RBNS and

IBNR cash flow: XRBNS
m and X IBNR

m . We denote by θ = {πl,µl,sl,νi; l = 0, . . . ,m−
1, i = 1, . . . ,m} the set of parameters involved in the model, under calibration (10).

Moreover, let θ̂ denote the parameters estimated from the data (Nm,Rm,Xm) which can

be calculated using the methods described in Section 3 and expression (19).

Algorithm RBNS

Step 1. Estimation of the parameters and distributions. From the observed data (Nm,

Rm,Xm) estimate the model parameters θ by the estimator θ̂ = {π̂l, µ̂l, ŝl, ν̂i; l =

0, . . . ,m− 1, i = 1, . . . ,m}, as described above. The payment delay distribution is

estimated by a Poisson distribution with estimated parameter, i.e. Ri, j,l|{Ni,0,...,Ni,m−1}

∼ Poi(Ni, jπ̂l). The distribution of the individual payments, Y
(1)

i, j,l is estimated by a

gamma distribution with shape parameter λ̂ = µ̂2
l /(ŝ

2
l − µ̂2

l ) and scale parameter

κ̂= (ŝ2
l − µ̂2

l )ν̂i/µ̂l .

Step 2. Bootstrapping the data. Conditional on the observed number of reported

claims Nm generate new bootstrapped triangles R∗
m = {R∗

i, j; i + j ≤ m} and

X∗
m = {X∗

i, j; i+ j ≤ m} as follows:

(i) Simulate the payment delay: from each Ni, j, i+ j ≤m, generate the number of

payments, R∗
i, j,l from a Poisson distribution with parameter Ni, jπ̂l estimated

in Step 1. Calculate the bootstrapped total number of payments, R∗
m =

{R∗
i, j; i+ j ≤ m} from expression (1).

(ii) Get the bootstrapped aggregated payments, X∗
m = {X∗

i, j; i+ j ≤ m}, from the

gamma distribution estimated in Step 1 and using expression (2) but replace

Ri, j−l,l by R∗
i, j−l,l .

Step 3. Bootstrapping the parameters. From the bootstrap data, (R∗
m,X

∗
m), and the

original Nm, estimate again the parameters and get bootstrapped parameters θ ∗.

Step 4. Bootstrapping the RBNS predictions. Simulate the RBNS cash flow, XRBNS∗
m ,

in the lower triangle using similar specifications to (i) and (ii) in Step 2 but with

bootstrapped parameters θ ∗.

Step 5. Monte Carlo approximation. Repeat Steps 2-4 B times and get the empirical

bootstrap distribution of the RBNS cash flows {XRBNS,b
m ;b = 1, . . . ,B}.

The IBNR algorithm to simulate the IBNR cash flows X IBNR∗
m follows the same steps

as the algorithm RBNS but, in addition, involves the estimation and the simulation

of the number of reported claims Ni, j in the lower triangle Jm. In this case and under

assumption (A1), we simulate N∗
m = {N∗

i, j; (i, j) ∈ Im} from a Poisson distribution with

parameters estimated by the chain ladder estimates {ϑ̂i, β̂ j; i, j+1= 1, . . . ,m} (for more

details we also refer to Martı́nez-Miranda et al. 2011).
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C. Run-off triangles

Table 6: Example 1, number of reported claims Ni, j, (i, j) ∈ Im.

ay / dy 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 18 247 3 083 124 22 5 5 3 1 0 1 1 0 0 0

2 17 098 2 567 98 25 6 1 1 3 0 1 0 0 0

3 16 110 2 700 107 18 7 5 4 1 4 0 0 0

4 14 426 2 253 103 17 10 3 2 1 1 1 0

5 14 142 2 173 62 11 7 4 0 1 1 0

6 14 275 1 850 86 25 6 2 0 0 1

7 14 019 1 797 97 19 5 1 1 1

8 13 933 1 602 84 24 6 3 1

9 12 962 1 503 65 11 2 2

10 12 226 1 352 74 18 7

11 11 124 1 347 57 12

12 10 360 1 307 56

13 10 371 1 141

14 10 435

Table 7: Example 1, number of payments Ri, j, (i, j) ∈ Im.

ay / dy 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 11 761 4 800 324 71 39 14 10 6 3 5 5 2 2 0

2 10 927 4 077 303 60 28 12 13 5 8 4 5 5 0

3 9 856 4 168 294 71 23 23 16 10 9 4 4 3

4 8 915 3 682 246 70 27 16 7 7 4 7 4

5 8 854 3 340 265 46 33 9 4 6 2 5

6 8 881 3 000 199 70 22 15 8 8 4

7 8 170 2 983 221 46 18 8 5 6

8 7 827 2 741 184 55 22 15 3

9 6 999 2 540 166 44 18 7

10 6 240 2 420 184 45 18

11 5 652 2 210 184 45

12 5 223 2 317 148

13 5 627 2 024

14 5 483

Table 8: Example 1, claims payments Xi, j, (i, j) ∈ Im.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 9 829 717 5 690 608 874 882 420 112 154 884 55 497 46 239 313 960 290 204 12 936 6 218 18 755 4 678 0

2 9 263 718 5 004 173 971 523 660 324 208 000 531 391 495 368 48 367 566 099 49 905 362 747 388 190 0

3 9 402 126 5 625 116 805 027 322 263 325 505 101 469 160 747 310 837 30 754 69 395 8 123 51 756

4 8 650 875 5 150 702 752 354 802 485 209 590 466 859 197 654 41 763 25 349 367 750 123 091

5 8 848 118 4 748 516 1 390 699 1 140 610 412 090 359 991 20 169 220 227 54 395 240 967

6 9 070 691 5 890 678 519 808 539 202 127 701 86 472 122 060 83 853 6 660

7 8 763 254 4 293 444 1 339 396 292 330 1 515 615 155 402 28 210 36 709

8 7 777 082 4 145 234 642 816 504 127 92 030 101 250 6 620

9 7 212 984 3 498 230 778 132 354 855 626 442 342 182

10 6 265 457 3 737 631 546 644 182 490 297 995

11 5 737 447 3 281 469 748 102 456 983

12 5 612 232 3 495 586 593 774

13 6 386 024 3 289 703

14 6 110 750


