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and Francisco González3,4

Abstract

Visual receptive fields (RFs) are small areas of the visual field where a stimulus induces a re-

sponses of a particular neuron from the visual system. RFs can be mapped using reverse cross-

correlation technique, which produces raw matrices containing both spatial and temporal informa-

tion about the RF. Though this technique is frequently used in electrophysiological experiments,

it does not allow formal comparisons between RFs obtained under different experimental condi-

tions. In this paper we propose the use of Generalised Additive Models (GAM) including com-

plex interactions, to obtain smoothed spatio-temporal versions of RFs. Moreover, the proposed

methodology also allow for the statistical comparisons of the RFs obtained across various experi-

mental conditions. Data analysed here derive from studies of neurons’ activity in the visual cortex

of behaving monkeys. Our results suggest that the GAM-based technique proposed in this paper

can be a flexible and powerful tool for assessing receptive field properties.
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1. Introduction

One of the techniques used in neurophysiology is electrophysiology, which records

the electrical activity produced by neurons. Electrophysiology allows to study the
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association between sensory stimuli and the neural response in any part of the brain, such

as in the visual cortex. Neurons produce sudden changes in their membrane potential

known as ‘spikes’, that can be recorded with microelectrodes. These spikes encode the

information produced by the neurons. The analysis of the frequency of spike discharges

gives us insights on how the neurons and the nervous system work.

Visual receptive fields (RF) are a basic feature of single cells in the visual system.

They are small areas of the visual field that a particular visual neuron ‘sees’. They have

different sizes depending on the visual area we are considering. From the cell reponses

(spikes) we can infer the spatio-temporal properties of the RFs. RFs can be mapped

using different techniques. Initially, receptive field maps were manually mapped using

simple dots, lines and edges. Despite its simplicity, this early mapping showed that

the spatial structure of visual receptive fields as divided into ‘on’ and ‘off’ subregions

(Barlow, 1953; Hartline and Ratliff, 1958; Hubel and Wiesel, 1962; Kuffler, 1953). Each

of these regions responded to the onset of a bright (‘on’) or dark (‘off’) spot respectively

and was the basis of the circular center-surround organization of visual receptive fields

of retinal cells. In the primary visual cortex, Hubel and Wiesel (1962) classified cortical

neurons into two groups, simple and complex. Simple cells had receptive fields divided

with separate ‘on’ and ‘off’ regions, whereas complex cells did not have such division.

Visual cells from area V1 – which is a primary visual cortical area – show ocular

dominance. This effect occurs because these cells receive stronger inputs from one eye

than from the other. Some cells receive inputs with equal strength from both eyes. Ocular

dominance makes that the RF of a given cell can be different depending on what eye is

stimulated.

Further quantitative techniques of receptive field mapping have contributed signifi-

cantly to refine our knowledge about receptive field properties and organization. Post-

stimulus responses to flashing or moving bars or dots were used to map receptive fields

in the visual system of both cats (Bishop et al., 1973; Henry and Bishop, 1972; Pei et

al., 1994) and monkeys (Tsao et al., 2003).

Receptive field mapping techniques that use a reverse correlation analysis have been

effective in providing detailed receptive field maps of neurons in early stages of the

visual pathway (DeAngelis et al., 1993; Jones and Palmer, 1987; Krause et al., 1987;

Reid et al., 1997). Binocular receptive fields have also been mapped using reverse

correlation techniques and with stimuli with various binocular disparities (Gonzalez et

al., 2001).

Briefly, reverse cross-correlation is a technique that can be used for studying how

visual neurons process signals from different positions in their receptive field, and can

provide both spatial and temporal information about their RF. A schematic illustration

on how the reverse cross-correlation technique was used in our experiments is shown

in Figure 1. The animal was viewing two monitors (Figure 1A) with a fixation target.

Within a square area over the cell receptive field a bright or dark spot was flashed in

different positions in a pseudorandom manner. Cell spikes were recorded while the

stimulus was delivered (Figure 1B). When a spike was produced (t0), the stimulus
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Figure 1: Reverse cross-correlation technique. The animal was viewing two monitors (A) with a fixation

target. Within a square area over the cell receptive field a bright or dark spot was flashed in different

positions in a pseudorandom manner. Cell spikes were recorded while the stimulus was delivered (B).

When a spike was produced (t0), the stimulus position at several pre-spike times (−20, −40, . . ., −320

ms) was read (C) and the corresponding position was increased by one. The result was a numerical matrix

containing the number of stimulus occurrences at each position (D).

position at several pre-spike times (−20,−40, . . . ,−320 ms) was read (Figure 1C),

and the corresponding position was increased by one. The result was a numerical

matrix containing the number of stimulus occurrences at each position (Figure 1D).

The graphical representation of this matrix is what we call receptive field map (RFmap).

Although this technique provides raw receptive field maps, it does not allow further

aspects of receptive field analysis such as formal comparisons between left and right

receptive field maps, ‘on’ and ‘off’ maps, or between monocular and binocular receptive

field maps.

The main objective of this paper is to use flexible regression models including

complex interactions for modelling the visual receptive fields over time, which in

turn may vary across various experimental conditions. Specifically, we suggest the use

of Poisson Generalised Additive Model (GAM, Hastie and Tibshirani, 1990) which

expresses the cell response (i.e., number of spikes) as a smooth function of both space

and time, including high-order interactions. Advantages of using this regression model-

based approach include the following:

• construction of smoothed versions of RF maps, by including spatial effects in the

model.;

• explanation of differences in the course of the cell activity in a unified way.
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So far, several ways to smooth cell activity have been studied in the literature. An

overview of the application of smoothing techniques in neuronal data can be found

in Kass et al. (2003). Cadarso et al. (2006) and Roca-Padiñas et al. (2006, 2011), for

example, employ a flexible modeling technique based on the logistic GAM with local

linear kernel smoothers. Faes et al. (2008) apply a flexible method based on natural cubic

splines to model synchrony in neuronal firing. Other recent techniques in this context

include the Bayesian adaptive regression splines (Behseta and Kass, 2005; Behseta et al.,

2005; DiMatteo et al., 2001). Flexible regression-based techniques come out favourably

since they enjoy the flexibility of capturing the spatio-temporal evolution without the

restriction of parametric modeling as well as the possibility to include covariate or factor

information. We revisit this aspect in Section 3 where the models discussed happen to

share similar properties.

Though GAMs were successfully applied in electrophysiological experiments, no

attempt was made so far to use spatio-temporal GAM models when modelling neural

data. To this aim, in this paper we follow the GAM approach suggested by Wood

(2006a), as a flexible way to model the temporal evolution of visual RFs, across

different conditions. The estimation algorithm used for fitting GAMs is based on

penalised regression splines (Eilers and Marx, 1996), in combination with B-splines

basis functions and the representation of the GAM as a mixed model. This representation

is very appealing, since it allows to select the amount of smoothing automatically via

restricted (or residual) maximum likelihood (REML). This statistical approach provides

a computationally efficient way of estimating the model and making inference when

dealing with neural data.

The paper is organized as follows. In Section 2, the electrophysiological experiment

is discussed. GAMs including interactions are introduced in Section 3. In Section 4, we

present the main results that were obtained for our study. Finally, we point out some

conclusions in Section 5.

2. The electrophysiological experiment

2.1. Animal preparation

The experimental setup and physiological recording were reported in detail elsewhere

(Gonzalez et al., 1993; Gonzalez and Krause, 1994; Gonzalez et al., 2001). Two mon-

keys (Macaca mulatta) were trained to perform with their head fixed a task that required

a steady visual fixation on a small target (0.3×0.2 deg). The behavourial task consisted

of a series of trials from 1 to 2 s separated by an intertrial interval of 1 s. Single-cell

activity was recorded by means of metal microelectrodes (5 Mohm, AMSystems Inc.,

Washington, USA) inserted in the brain. For this, a stainless steel cylindrical cham-

ber was attached to the skull covering area V1. To allow access to the visual cortex,

small craniotomies of 5 mm diameter were made in the exposed skull within the cham-



Marı́a Xosé Rodrı́guez-Álvarez, Carmen Cadarso-Suárez and Francisco González 7

ber. Microelectrode penetrations were made by using an electrohydraulic microdriver

(Narishige, Japan) mounted on the chamber. Neural voltage signals were amplified and

filtered using conventional electronic equipment. A time-amplitude window discrimi-

nator (Bak Electronics, Rockville, Maryland, USA) was used to convert the amplified,

filtered neural signal to TTL pulses, which were collected by a conventional computer.

At the end of the experiments the animal was deeply anaesthetized with nembutal, the

brain perfused with 10% formalin and the region where the penetrations were made was

blocked and sliced. Sections were stained with toluidine blue and the electrode tracks

were reconstructed. Ocular movements were monitored by means of a video camera

under infrared illumination. A frame grabber (Imagenation PXC200, Oregon, USA) at-

tached to a conventional personal computer was used to detect the corneal reflex on

the left eye and abort the trials when eye movements exceeded a fixation window of

1× 1 deg. All surgical procedures were made under general anesthesia (ketamine i.m.

10 mg/kg, followed by sodium pentobarbital i.v. 27 mg/kg). Supplementary pentobar-

bital was given whenever necessary during the surgical procedure and analgesics and

antibiotics (noramidopirine i.m. 150 mg/kg, penicillin i.m. 50000 IU/kg) were given at

the end of the surgery. Cleaning and asepsis of the implant was made periodically. All

animal procedures were performed in accordance with the guidelines of the Bioethic

Committee of our institution.

2.2. Visual stimulation

The presentation of stimuli and the collection, storage and on-line display of analysed

data were controlled by five conventional personal computers running software devel-

oped in our own laboratory (Gonzalez and Krause, 1994). The animal was placed in

front of a two-mirror system allowing simultaneous and separate viewing of two mon-

itors (Model CPD- 520GST, Sony) placed laterally 57.7 cm away from the monkey’s

eyes subtending 44.8× 28 of visual field and set for a resolution of 320× 200 pixels

(1 pixel = 0.14) and 70 frames per second. Once the assessment of the basic properties

of the RF of the cell under study was made, the stimulation procedure to obtain the RF

maps (see below) was started.

2.3. Data acquisition

To obtain data to produce the RFmaps we first used a reverse cross-correlation technique

(DeBoer and Kuyper, 1968; Jones and Palmer, 1987; Krause et al., 1987; Pérez et al.,

2005). For this, we flashed a small bright square (jumping spot), 14.0 cd/m2) on a grid

with 16×16 spatial locations (2.2×2.2 deg). The spot size was adjusted to cover 1/16th

of the grid side and flashed for a duration of 1/70s (one frame of the monitor) at different

grid locations (Pérez et al., 2005). Figure 1 schematically shows this technique. The
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background of the monitor screens had a constant luminance of 2 cd/m2. To obtain ‘on’

responses, a bright (14.0 cd/m2) jumping spot was used. To obtain ‘off’ responses, a

dark (0.28 cd/m2) jumping spot was used. For each successive presentation the location

of the spot on the grid was chosen randomly. Each time a neural spike was detected we

correlated it with the stimulus position at various prespike times and constructed series

of matrices for different pre-spike times. To produce reliable maps, each sequence of

stimulation typically required at least 20 presentations of the stimulus on each location

of the stimulus grid. For each cell, a series of matrices with 256 grid positions each,

covering a prespike time from 20 to 320 ms (at 20 ms interval), were obtained, under

different experimental conditions. A local specific coupling between the stimulus and

response at a particular prespike time and disparity will produce an emerging set of data

with high values on this particular location in the matrix.

3. Statistical methodology

Regression analysis plays a fundamental role in statistics. The objective of this statistical

methodology is to evaluate the influence of some explanatory variables (called covari-

ates), x = (x1, . . . ,xp), on the mean of a measure of interest y. This relation is given by

E[y|x1, . . . ,xp] = E[y|x] = m(x1, . . . ,xp) , (1)

where m(·) is a multivariate function, usually denoted as the mean regression function.

The most usual way to model the dependence between the response variable and the

covariates is through the multiple linear regression model. In this model, the response y

given covariates x is assumed to be normally distributed
(

y|x ∼ N
(

m(x) ,σ2
))

, and the

covariates are assumed to have a linear effect on the response. Specifically, the following

model is assumed

E[y|x] = m(x1, . . . ,xp) = β0 +β1x1 + · · ·+βpxp,

where β = (β0,β1, . . . ,βp)
T

is a vector of unknown regression coefficients.

However, in some circumstances, the assumption of linearity in the effects of the

continuous covariates is very restrictive and is not supported by the data at hand. In this

setting non-parametric regression techniques are involved in modelling the dependence

between y and x, but without specifying, in advance, the function m(·) in (1) that relates

the covariates and the response. However, if no restrictions are imposed to the funcion

m(·), some problems arise. First, fully non-parametric data analysis can be afflicted by

the so-called curse of dimensionality (Bellman, 1961): as the dimension of the number

of covariates increases, it becomes exponentially more difficult to estimate the function

m(·). Second, it is difficult to visualize a regression surface m(·) for more than two
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covariates. To overcome these difficulties, additive regression models (AMs, Hastie and

Tibshirani, 1990) are an alternative to unconstrained non-parametric regression with

several covariates. The additive regression model is defined as

E[y|x] = m(x1, . . . ,xp) = f1(x1)+ · · ·+ fp(xp), (2)

where fk (k = 1, . . . , p) are smooth and unknown functions.

In many applications, the response y can be discrete (e.g. count or binary data).

These situations require a different model for the conditional expectation of y, since a

direct connection between E[y|x] and the additive predictor f1(x1)+ · · ·+ fp(xp) in (2)

is no longer possible unless some constraints are imposed. In such cases, the generalised

additive models (GAMs) extends the AM by allowing for different distributions of the

response variable y. Specifically, GAMs assume that the distribution of the response

variable y given covariates x belongs to the exponential family (McCullagh and Nelder,

1989). In these models, the relationship between E[y|x] and the covariates is specified

through the following model

E[y|x] = g( f1(x1)+ · · ·+ fp(xp)) , (3)

where g(·) is a monotonic known function (the inverse of link function).

A weakness of the AM and GAM given in equations (2) and (3) is that these models

completely ignore the fact that the functional form of a covariate effect often varies ac-

cording to the values taken by one or more of the remaining covariates. It is not unusual

to find situations in which more complex models are needed. This is the case of our real

data example, in which we could expect that the response of interest varies smoothly

across the visual receptive field (defined in terms of x- and y- coordinates). In recent

years, a number of papers have appeared which address the problem of estimating AMs

and GAMs with interaction terms. Hastie and Tibshirani (1990) discussed various ap-

proaches using smoothing splines. Wahba (1990), among others, proposed the use of

smoothing spline ANOVA methods. Roca-Padiñas et al. (2006, 2008) also proposed al-

ternative methods based on kernel-type smoothers. In the context of penalised regression

splines, Brezger and Lang (2006), Currie et al. (2006), Eilers and Marx (2003), Lee and

Durbán (2011), Wood (2006b), among others, are several references related to multidi-

mensional smoothing. This paper is focused on penalised regression splines, and more

specifically on those approaches implemented in the mgcv package [Wood (2006a)] of

the R (R Development Core Team, 2011) statistical software. We begin this section by

presenting the idea of penalised spline smoothing in the univariate case and then we

address the multivariate and multidimensional regression problem.
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3.1. Penalised spline smoothing

For simplicity, we introduce the idea of penalised spline smoothing in the univariate

Gaussian case. Specifically, let

yi = f (xi)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n, (4)

where f (·) is a smooth and unknown function of covariate x that needs to be estimated

from the data points (xi,yi) , i = 1, . . . ,n.

To estimate the function f (·), it is assumed that this function can be represented as

a linear combination of d known basis functions B j, i.e.

f (x) =
d

∑
j=1

θ jB j (x) , (5)

where θ = (θ1, . . . ,θd)
T

is a vector of unknown regression coefficients. Under this

representation model (4) is purely parametric, and therefore it can be easily estimated

using ordinary least squares

θ̂ =
(

BTB
)−1

BTy,

where y = (y1, . . . ,yn)
T

and B is the design matrix

B =







B1 (x1) B2 (x1) · · · Bd (x1)
...

...
. . .

...

B1 (xn) B2 (xn) · · · Bd (xn)






.

There are several alternatives for the choice of the basis functions B j ( j = 1, . . . ,d) in (5).

The simplest basis functions are the polynomials, where B j (x) = x j−1. However, these

basis functions have the disadvantage of not being very flexible, and, tend to produce an

artificial behaviour at the boundaries. Some alternatives are the so-called spline basis, as

truncated polynomial, B-splines (de Boor, 2001), or thin plate regression splines (Wood,

2003). For the sake of illustration, this paper is focused on B-splines. In this case, the

function f (·) in (5) is specified with respect to a given set of knots

xmin = k1 < k2 < · · ·< kk = xmax

placed at equidistant or noequidistant points over the domain of x. The knots divide

the domain of x, such that each interval will be covered by p+ 1 B-splines of degree

p, and the number of B-splines in (5) is d = k+ p− 1. Figure 2(a) shows an example
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Figure 2: (a) B-splines basis functions of degree p = 3 based on k = 5 knots (black squares). The solid

triangles indicate the non-zero B-splines at x = 0.42. Shown in (b) and (c) are the “weighted” (accordingly

to the coefficient estimate θ̂ ) B-Spline basis function (solid lines), the true function f (x) = 1+sin(5(x+1))

(bold solid line), and the fitted curve (bold dotted lined) based on k = 5 and k = 20 knots respectively.

of B-spline basis functions with k = 5 knots and degree p = 3. In order to estimate

the function f (·) in (5) (or more precisely, the vector θ ) we have therefore to specify

the number and location of knots and the degree of the B-spline. As an illustration

of the impact of the number of knots, we simulated n = 100 data from the function

f (xi) = 1+sin(5(xi+1)), with xi ∼U [0,1] and independent ǫi ∼N (0,0.2). Figures 2(b)

and 2(c) show the estimated curves (via ordinary least squares) with k = 5 and k = 20

equidistant knots respectively. As can be observed, as the number of knots increases,

the estimated curve (in comparison with the true curve) becomes too wiggly, meaning

that the data are overfitted. Thus, a wrong choice in the number (and also the location)

of knots can lead to estimates, and therefore conclusions, that could be erroneous.
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Figure 3: True function f (x) = 1+ sin(5(x+1)) (bold solid line), and the fitted curve (bold dotted lined)

based on p = 3 degree, k = 40 knots; and q = 2-nd order derivative: (a) λ = 10−6; (b) λ = 7; and (c)

λ= 104.

Although several approaches have been proposed to select an optimal set of knots (see

e.g. Fried and Silverman, 1989; Lee, 2002), all of them have the disadvantage of being

computationally intensive. To overcome this problem O’Sullivan (1986), and later Eilers

and Marx (1996), introduced the idea of penalised splines, where a smoothness penalty

is added to the least squares criterion when estimating the regression coefficients θ in

(5). Although in Eilers and Marx (1996) a discrete penalty is proposed, for the sake

of presentation we considered here a penalty based on the integrated derivatives of

function f . Specifically, in the case of penalised splines a large amount of knots (e.g.

min{n/4,40}) is chosen, and instead of fitting the model by minimising the sum of

squares,

||y−Bθ ||2,
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it is fitted by minimising a penalised sum of squares

||y−Bθ ||2 +λ
∫ xmax

xmin

[ f q (x)]2 dx, (6)

where the integral of the square of the q-th order derivative, f q, penalises models that

are too wiggly. The smoothing parameter λ controls the trade-off between the bias and

the variance of the resulting estimates. The result of a using large smoothing parameter

(λ→ ∞) is an oversmoothed curve, leading in the limit to the least squares (q−1)-order

polynomial through the data. On the other hand, a small smoothing parameter (λ→ 0)

tends reproduce the data. This can be observed in Figure 3, where the data presented in

Figure 2 were re-analysed but incorporating the penalisation. Thus, the optimal amount

of smoothing λ has to be chosen by compromising goodness of fit with complexity of

the estimated function. This issue is the subject of the next subsection.

It sould be noted that since the function f (·) is linear in the coefficients θ j (see (5)),

the penalty can also be writen as (see, for instance, Marra and Radice, 2010)

∫ xmax

xmin

[ f q (x)]2 dx = θ TKθ , (7)

where K is a known d × d matrix, whose elements depend on the chosen spline basis.

Accordingly, for a given λ, the minimiser of (6) is then

θ̂ =
(

BTB+λK
)−1

BTy.

In the case of B-splines, the integrated square of the q-th order derivative of function

f (·) can be well approximated by differences of the sequence of regression coefficients

θ = (θ1, . . . ,θd). Accordingly, the smoothness penalty presented in (7) is equivalent to

impose a penalty on q-th order differences of adjacent B-Spline coefficients. For a more

detailed review of this topic, see Eilers and Marx (1996).

3.1.1. Smoothing parameter selection

As pointed out before, a crucial point in penalised spline smoothing is the choice of the

smoothing parameter λ in (6). If a large smoothing parameter is chosen, the resulting

curve estimate is very smooth, but if a small smoothing parameter is chosen the resulting

estimate becomes too wiggly. Therefore, it is important to have procedures for helping

in the selection of the optimal smoothing parameter. In this section, we review several

methods to choose the ‘optimal’value of λ.

(Generalised) Cross Validation When using cross validation (CV) to select the the

optimal smoothing parameter, the objective is to obtain the λ value which minimises the
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cross validation expression

CV (λ) =
1

n

n

∑
i=1

(

yi − f̂−i (xi)
)2
,

where f̂−i denotes the fit obtained by leaving out the ith data point.

As can be observed in the expression above, CV implies to fit n different models

(as many as the number of observations), which is computationally very intensive.

Fortunately, a more efficient equivalent expression can be obtained Hastie and Tibshirani

(1990):

CV (λ) =
1

n

n

∑
i=1

(

yi − f̂ (xi)

1−hii

)2

,

where hii are the diagonal elements of the hat matrix

H = B
(

BTB+λK
)−1

BT,

that is the matrix such that ŷ = f̂ (x) = Hy. It should be noted that the trace of the hat

matrix H define the effective degrees of freedom (edf) (i.e. the ‘effective’ number of

parameters) of a smoother (see Hastie and Tibshirani, 1990; Wood, 2006a).

However, the CV criterion suffers from several drawbacks (see Wahba, 1990; Wood,

2006a). For instance: (a) in the case of more than one smooth function, it becomes

computationally expensive; and (b) it presents a lack of invariance. A modified version

of this criterion, the generalised cross validation (GCV), was suggested by Craven and

Wahba (1979), and presents some advantages over CV (see Craven and Wahba, 1979;

Wahba, 1990). The GCV is defined as:

GCV (λ) =
1

n

n

∑
i=1

(

yi − f̂ (xi)

1−∑
n
j=1 h j j/n

)2

.

An efficient implementation – in the multivariate additive case – of the GCV criterion

(Wood, 2000) was the origin of the mgcv package, and for this reason the package

deserves its name (multivariate generalised cross validation). Later, Wood (2004) pro-

posed an alternative method to the Wood (2000) which overcame some of its limitations.

Primarily the new method is particularly robust numerically, and can deal with rank defi-

ciency in the model. This is, by now, the default method (for the additive case) to choose

the smoothing parameters in the mgcv package.

Akaike Information Criterion A common approach for the λ selection is to optimise

criteria such as the Akaike’s information criterion (AIC). In this case, the optimal
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smoothing parameter λ is that which minimises

AIC (λ) = dev(y;θ ;λ)+2trace(H),

where dev denotes the deviance of the model and H is the hat matrix.

In the mgcv package, the AIC, or more specifically a rescaled AIC – the unbiased

risk estimator (UBRE) (Craven and Wahba, 1979) – is the default method when the

scale parameter of the exponential family to which the response y pertains is known (for

instance, in the binomial and Poisson cases) (see Wood, 2004, 2008).

Mixed Model Representation A different approach to choose the optimal smoothing

parameter λ comes from the fact that a P-Spline regression model can be formulated

as a linear mixed model (Brumback et al., 1999; Currie and Durbán, 2002). Although

a detailed presentation of this approach is beyond the scope of this paper, we briefly

describe here the main ideas behind it.

In this approach, the design matrix B and the vector of regression coefficients θ are

reformulated is such a way that

y = Bθ + ǫ = Uβ+Zu+ ǫ, with u ∼ N(0,G) and ǫ ∼ N(0,σ2In)

where In is the identity matrix, U and Z are the model matrices, and β and u are the

fixed and random effects coefficients of the linear mixed model respectively. The random

effects have covariance matrix G, which depends on the variance σ2
u, G = σ2

uIK. Under

this new configuration, it can be shown that λ is given by the ratio of the variance

components, i.e., λ = σ2

σ2
u
. Accordingly, the estimation of the P-Spline model can be

obtained using standard procedures for the estimation of a linear mixed model, and the

choice of the smoothing parameter becomes the estimation of the variance components

(either via maximum likelihood (ML) or restricted (or residual) maximum likelihood

(REML)).

Recently, Wood (2011) presented a computationally efficient way of estimating the

smoothing parameters of P-splines models in which a Laplace approximation is used to

obtain an approximate REML or ML. These methods are already implemented in the

gam() function of the mgcv package.

Simulation results presented in Wood (2011) and Strasak et al. (2011) suggest that

REML and ML methods offer some improvement in terms of the mean-square error

and the stability of the estimator relative to GCV or AIC in most cases. Moreover,

Reiss and Odgen (2009) also show that at finite sample sizes GCV or AIC are prone

to undersmoothing and are more likely to develop multiple minima than REML. For all

these reasons, the use of the REML method is recommended.
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3.1.2. Additive models and identifiability constraints

In some circumstances, the objective of a real data analysis could be to jointly evaluate

the effect of two (or more) covariates, x1 and x2, on the response of interest y. In this

case, an appropiate model could be the addivive model

yi = f1(xi1)+ f2(xi2)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n, (8)

where f1 (·) and f2 (·) are smooth and unknown functions.

However, this model presents an identifiability problem due to the fact that it

incorporates more than one covariate. We could subtract a constant c of any smooth

function ( f1 (x1)− c), and add it to another one ( f2 (x2)+ c), and the same regression

model would be obtained. To avoid these free constants, it is necessary to impose some

restrictions (that is, among all equivalent models, we have to choose one). In this case,

the usual way to proceed to guarantee the identification of the model is to incorporate a

constant α, and to “centre” each of the smooth functions in some way, for example by

assuming:

n

∑
i=1

f1 (x1i) = 0 and
n

∑
i=1

f2 (x2i) = 0,

yieding the model

yi = α+ f1(xi1)+ f2(xi2)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n. (9)

Once the identifiability problem has been solved, each of the smooth functions in (9)

can be represented using regression splines, and the model can be estimated using

penalised least squares (or the mixed model approach) as in the univariate case, with

the smoothing parameters of each of the smooth functions being selected via any of the

criteria previously presented.

3.1.3. Generalised additive models

The P-Spline methodology presented in the previous Sections can be easily extended to

deal with a non-gaussian response y, given that the distribution of y conditional on the

covariates (x1, . . . ,xp) belongs to the exponential family. In this case, model (3) can be

estimated on the basis of the penalised log-likelihood by means of penalised iterative

re-weighted least squares (P-IRLS) (see Eilers and Marx, 1996; Wood, 2006a) or by

its representation as a generalised linear mixed model (GLMM) (Breslow and Clayton,

1993).
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3.2. Factor-by-curve interaction

In this section we are concerned with situations where the effect of a continuous

covariate x on the response varies across groups defined by the levels of a categorical

variable z (for example, a factor with M levels {1, . . . ,M}).

To face such situations, varying coefficient terms (Hastie and Tibshirani, 1993) can

be used. Here, the effect of x is assumed to vary over the range of z, and the regression

model then becomes

yi = α+
M

∑
l=2

αl1{zi=l}+
M

∑
l=1

1{zi=l} fl (xi)+ ǫi, (10)

where 1A denotes the indicator function of event A (used to construct the dummy

variables).

As can be observed in equation (10), the model assumes a different effect of covariate

x for each of the levels of the categorical covariate z. The inclusion of the “main” effect

of z
(

∑
M
l=2αl1{zi=l}

)

is needed due to identifiability contraints (given that each of the

smooth functions fl (·) is centred). Again, each function fl (·) in (10) can be represented

using regression splines, and the model can then be fitted using penalised least squares

or the mixed model approach (or by P-IRLS and GLMM in the generalised case).

3.3. Continuous bivariate interactions

In many applications, the additive structure of the model presented in (8) is not appro-

priate for the data at hand, and more complex models are needed. In this section we are

concerned with the case where the response y is expressed on the basis of a bivariate

surface defined by covariates x1 and x2:

yi = f12 (xi1,xi2)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n, (11)

To date, several P-spline approaches to estimate model (11) have been suggested in the

statistical literature. For instance, Wood (2003) proposed to model the surface f12 (x1,x2)

by means of two dimensional thin-plate regression splines. However, this approach

presents the drawback that only one smoothing parameter λ is incorporated into the

smoothness penalty (i.e., an isotropic penalty), meaning that the same smoothness

is assumed for both covariates x1 and x2. Whereas this isotropy could be justified

when modelling, for instance, a smooth function of latitude and longitude, this is not

always the case when the covariates x1 and x2 are measured in different units. As

an alternative, the tensor product of one-dimensional spline basis functions has been

suggested (see Eilers and Marx, 2003; Wood, 2006b). In this case, univariate functions

f1 and f2 are associated with x1 and x2 respectively, each of which is represented by
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a regression spline:

f1 (x1) =
d1

∑
j=1

θ 1
j B1

j (x1) and f2 (x2) =
d2

∑
k=1

θ 2
k B2

k (x2) .

Accordingly, the bivariate surface is then defined as:

f12 (x1,x2) =
d1

∑
j=1

d2

∑
k=1

θ jkB1
j (x1)B2

k (x2) =
d1

∑
j=1

d2

∑
k=1

θ jkB jk (x1,x2) ,

where the two-dimensional basis functions are given by the tensor product (see also

Figure 4)

B jk (x1,x2) = B1
j (x1)B2

k (x2) .

Thus, model (11) can be expressed in matrix notation as:

y = B12θ 12 + ǫ,

where θ 12 = (θ11, . . . ,θd11, . . . ,θd1d2)
T

and

B12 =







B11 (x11,x12) · · · Bd11 (x11,x12) · · · Bd1d2
(x11,x12)

...
. . .

...
. . .

...

B11 (xn1,xn2) · · · Bd11 (xn1,xn2) · · · Bd1d2
(xn1,xn2)






.

In this situation, how could be defined the penalty for the tensor product? First, it can be

useful to view the vector of regression coefficients θ 12 as a two dimensional array:

Θ12 =







θ11 · · · θd11

...
. . .

...

θ1d2
· · · θd1d2






.

Therefore, whereas the rows of Θ12 correspond to the regression coefficients in the x1

direction (see also Figure 4), the columns correspond to the x2 direction. It then seems

reasonable to consider the penalty for the bivariate surface separately for the rows and

columns of Θ12 (i.e., by considering separate penalties in the x1 and x2 directions).

This leads to the penalty term in two dimensions (see Currie et al., 2006; Wood, 2006a,

among others):

λ1θ
T
12 (Id2 ⊗K1)θ 12 +λ2θ

T
12 (K2 ⊗ Id1)θ 12,
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Figure 4: Tensor product of univariate B-Spline basis functions of degree p= 3 and k= 5 knots. The figures

show the tensor products obtained by varying the univariate B-Spline basis function along the x1 direction

(B1
j(x1), j = 2, . . . ,6) while maintaining fixed the B-Spline basis function in the x2 direction (B2

4(x2)), i.e.

B j4(x1,x2) = B1
j(x1)B

2
4(x2), j = 2, . . . ,6.
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where ⊗ denotes the kronecker product, and K1 and K2 are univariate penalty matrices

of dimension d1 ×d1 and d2 ×d2 respectively.

Parameters can now be estimated from the penalized least squares

||y−B12Θ12||
2 +λ1θ

T
12 (Id2 ⊗K1)θ 12 +λ2θ

T
12 (K2 ⊗ Id1)θ 12,

or based on the mixed model representation.

3.4. Extension to the inclusion of higher order interactions

The methodology presented in Subsections 3.2 and 3.3 can also be extended to the

inclusion of higher order interactions. For instance, in the analyses of visual receptive

fields, we are interested on incorporating the time dimension to study the behaviour of

the stimulus occurrences along pre-spike times. Thus, we are concerned on modelling a

function of the form:

f12t (x1,x2, t) .

Moreover, in order to evaluate the impact of different experimental conditions on cell

response, we might need to incorporate this information into the regression model, and

to allow for the previous three-dimensional function to vary across these experimental

conditions (l = 1, . . . ,M):

α+
M

∑
l=2

αl1{zi=l}+
M

∑
l=1

1{zi=l} f l
12t (xi1,xi2, ti) .

Based on the results presented in Subsection 3.3, f12t (x1,x2, t) (or, equivalently,

f l
12t (xi1,xi2, ti)) can be represented by the tensor product of three univariate basis func-

tions

f12t (x1,x1, t) =
d1

∑
j=1

d2

∑
k=1

dt

∑
m=1

θ jkmB j (x1)Bk (x2)Bm (t) =
d1

∑
j=1

d2

∑
k=1

dt

∑
m=1

θ jkmB jkm (x1,x2, t) ,

and the penalty term – organising the coefficients in some appropriate order – is now

defined as

λ1θ
T
12 t (Id2

⊗K1 ⊗ Idt )θ 12 t +λ2θ
T
12 t (K2 ⊗ Id1

⊗ Idt )θ 12 t +λtθ
T
12 t (Ic2

⊗ Ic1
⊗Kt)θ 12 t.
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4. Application to visual receptive fields

The dataset consists of a series of 16 matrices – with 256 grid positions each – of the

form presented in Figure 1D, containing the number of stimulus occurrences at each

position. Each matrix corresponds to the different pre-spike times considered (between

−20 to −320 ms). The aim of the study was to obtain smooth RFmaps for a given

pre-spike time, and to compare the obtained RFmaps between different experimental

conditions. For illustration purposes, in the analyses presented in this paper we have

considered the response to the onset of a bright spot (‘ON’) of two different cells

(denoted by FAP0 and FBH4) of one monkey, and compared the RFmaps for the right

and left eye.

4.1. Data analysis

We adopted a Poisson model with mean ni jkλi jkt , where i indicates the row of the matrix,

j the column (i, j = 1, . . . ,16), k the eye (either left -0- or right -1-), and t the pre-spike

time (t = −20, . . . ,−320). ni jk denotes the number of stimulus presentations on each

particular grid position. We considered different models for the intensity parameter (or

firing rate) λi jkt , from the simplest model (and additive model) to the most complex

(including the interaction between the row, column, time and eye). Specifically the

following models were considered:

Model I

log(λi jkt) = α0 +α11{k=1}+ frow (i)+ fcol ( j)+ ftime (t) ,

Model II

log(λi jkt) = α0 +α11{k=1}+ frow,col (i, j)+ ftime (t) ,

Model III

log(λi jkt) = α0 +α11{k=1}+ frow,col,time (i, j, t) ,

Model IV

log(λi jkt) = α0 +α11{k=1}+
1

∑
l=0

1{k=l} f l
row,col,time (i, j, t) ,

The models were estimated using the package mgcv, version 1.7-9, in the R environ-

ment, version 2.14.0. In all cases, B-splines were used as spline basis functions, with

degree p = 3 and penalty in the q = 2-nd order derivative, and tensor product smoothers
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were used to model the multidimensional functions. For the univariate smooth functions,

k = 8 knots placed at equidistant points were selected, whereas for the multidimensional

case, k = 3 knots were chosen for each of the marginal basis functions. Different num-

ber of knots were also informally checked, but the results showed that the previous

choices were enough. The smoothing parameters were automatically selected based on

the REML criterion, and the models were compared in terms of the (conditional) AIC

(cAIC).

4.2. Results

Tables 1 and 2 show the results for the selection of models of cells FBH4 and FAP0

respectively. As can be observed, the cAIC indicates that for cell FBH4 the best

model is that including the spatio-temporal interaction and the categorical covariate eye

(Model III). However, in the case of cell FAP0 the best model is the most complex

model, i.e., that including the spatio-temporal interaction and the interaction with eye

(Model IV). Table 3 presents a detailed description of these fitted models. In both cases,

the firing rate depends on the eye, with left eye presenting more activity (p-value <

0.001 in both cases). This indicates that these cells show dominance of the left eye.

Figure 5(a) shows the change over time of the standard deviation of the estimated

firing rates of an ON-RFmap of a cortical visual cell (FBH4). The abscissa represents

pre-spike time in ms. As it can be seen there are important changes. The RFmap begins

Table 1: Results for the selection of models of cell FBH4.

Model Formula in mgcv cAIC edf
Deviance

explained (%)

I
eye + s(row, bs = ‘ps’) + s(col, bs = ‘ps’)

31981.67 13.13 3.12
+ s(time, bs = ‘ps’)

II eye + te(row, col, bs = ‘ps’) + s(time, bs = ‘ps’) 32002.94 20.00 3.24

III eye + te(row, col, time, bs = ‘ps’) 31502.67 98.04 7.15

IV eye + te(row, col, time, by =eye, bs = ‘ps’) 31518.41 164.76 7.88

Deviance explained (%): Percentage of the null deviance (null.dev - deviance of the model with just one constant
term) explained by the fitted model, i.e. (null.dev - dev)/null.dev, where dev is the deviance of the fitted model.

Table 2: Results for the selection of models of cell FAP0.

Model Formula in mgcv cAIC edf
Deviance

explained (%)

I
eye + s(row, bs = ‘ps’) + s(col, bs = ‘ps’)

43248.77 12.04 16.1
+ s(time, bs = ‘ps’)

II eye + te(row, col, bs = ’ps’) + s(time, bs = ‘ps’) 43207.59 21.61 16.6

III eye + te(row, col, time, bs = ‘ps’) 42854.40 91.17 20.5

IV eye + te(row, col, time, by =eye, bs = ‘ps’) 42831.73 138.94 21.5

s: smooth function
te: tensor product
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Table 3: Results of the fitted Models III and IV for cells FBH4 and FAP0 respectively.

Term Coefficient edf p-value

Cell FBH4 - Model III

Intercept −3.448 — < 0.001

eyeRight −0.317 1 < 0.001

te(row, col, time) — 96.04 < 0.001

Cell FAP0 - Model IV

Intercept −0.485 — < 0.001

eyeRight −0.318 1 < 0.001

te(row, col, time)Right — 87.55 < 0.001

te(row, col, time)Left — 49.38 < 0.001
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Figure 5: Change over time of the standard deviation of the estimated firing rates of the ON-RFmap of

cells FBH4 and FAP0 for left (solid line) and right (dotted line) eye.

to be structured about 140 ms pre-spike in both eyes and peaks approximately at 60 ms

pre-spike, also in both eyes. Therefore the timing of the RFmap is similar for both eyes

but the strength is different, indicating ocular dominance is constant over time. Figures

6 and 7 show a time series of ON-RFmaps obtained from a cortical visual cell (FBH4).

As it can be seen, at about 200 ms pre-spike there is a central area with values below

mean, and about 100 ms pre-spike a clear central area of values higher than the mean

appears. This indicates that this area is the RF of the cell and that the optimal stimulus

is a dot jumping from outside of the RF into the RF area.

Figure 5(b) is similar to Figure 5(a), however in this case the two cells studied show

a different time-course of their RFmaps. The left eye stimulation produces a strong



24 Analysing visual receptive fields through generalised additive models with interactions

RFmap with an onset at about 160 ms pre-spike and peaks at about 60 ms pre-spike.

There is a clear dominance of the left eye, as it can be seen in Figures 8 and 9. Figure

8 shows the RFmaps of the non dominant eye (right eye). There is a very weak central

area with almost no visible structure. Figure 9 shows the left ON-RFmap of the same

cell shown in Figure 8. A clear central structure appears at 120 ms pre-spike and lasts

until 20 ms prespike. The dominance of left eye induces stronger cell responses wich in

turn produce stronger RFmap structures. As the cell of Figure 6, in this case there is a

central area in the RFmaps from 220 to 180 ms prespike with low values, indicating that

the cell response is better elicited when the spot jumps from outside the RF into the RF

of the cell.
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Figure 6: Level plot of the estimated firing rates of the ON-RFmap based on Model III for the right eye of

cell FBH4.
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Figure 7: Level plot of the estimated firing rates of the ON-RFmap based on Model III for the left eye of

cell FBH4.
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Figure 8: Level plot of the estimated firing rates of the ON-RFmap based on Model IV for the right eye of

cell FAP0.
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EYE :  Left

2

4

6

8

10

12

14

16

2 4 6 8 10121416

 = Time −260  = Time −280

2 4 6 8 10121416

 = Time −300  = Time −320

 = Time −180  = Time −200  = Time −220

2

4

6

8

10

12

14

16
 = Time −240

2

4

6

8

10

12

14

16
 = Time −100  = Time −120  = Time −140  = Time −160

 = Time −20

2 4 6 8 10121416

 = Time −40  = Time −60

2 4 6 8 10121416

2

4

6

8

10

12

14

16
 = Time −80

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Level plot of the estimated firing rates of the ON-RFmap based on Model IV for the left eye of

cell FAP0.
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5. Conclusion

Receptive field mapping of cortical visual neurons is a critical procedure in neurophys-

iological studies of the visual system. In electrophysiological laboratories the reverse

cross-correlation technique is frequently used to produce raw RFmaps – in the form of

numerical matrices – which allow to give insights into the electrical activity of the visual

neurons. However, the resulting RFmaps obtained from applying such technique, cannot

be compared formally among different conditions.

In this paper, a Poisson GAM including interactions was proposed as a flexible

statistical tool for (a) smoothing raw RFmaps of a single neuron, by including spatial

effects in the model; and (b) estimating the temporal evolution of these maps, which in

turn may vary across different experimental conditions.

The estimation algorithm used for fitting GAMs was based on P-splines and tensor

product splines and the amount of smoothing was selected automatically via restricted

(or residual) maximum likelihood (REML).

The proposed methodology was applied to study the activity of visual cells from

area V1 (a primary visual cortical area). For the sake of illustration, in all the analyses

perfomed in this paper, only visual neurons with response to the onset of a bright spot

(‘ON’) were considered, and the temporal evolution of their RFmaps was compared for

the right and left eye. However, it should be noted that our GAM methodology is very

flexible and extensions to more complex interaction models are straightforward. This

is important since physiologists are also interested in examining possible variations on

RFmaps, when several levels of other covariates are considered. For example, compar-

isons between both monocular RFs and between monocular and binocular RFs are often

required to assess the question on how the visual system handles binocular informa-

tion. Therefore, GAM regression models designed to perform statistical comparisons

between RFmaps would be very useful in electrophysiological experiments conducted

in the visual system.

When calculating the time span of any RFmap, the onset and offset of the RFmap

structures must be determined. In this paper, a relatively simple approach to solve

this problem was proposed, and it consists of using the change of standard deviation

of the matrix values over time. The authors are concisious, however, that a more

refined analysis is needed, to extract accurate information from such RFmaps structures.

Although it is beyond the scope of the current paper, it is an important topic for further

research.

An R script implementing the nonparametric model estimation can be obtained by

contacting the first author at maria.jose.rodriguez.alvarez2@sergas.es.
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It is a pleasure for me to comment on the paper by Rodriguez-Alvarez, Cadarso-Suarez

and Gonzalez. I would like to thank the editors for their invitation. This paper proposes a

Poisson generalized additive model (GAM) for smoothing visual receptive fields (RFs)

over time, and uses multidimensional interactions to compare data under several exper-

imental conditions. As the authors point out, the use of high-dimensional smoothing for

the analysis of spatial and spatio-temporal data has been a subject of great interest in re-

cent years (specially in the context of P-splines). Also, the possibility of fitting a factor

by curve interaction has made these type of models even more flexible, and capable of

capturing very complex structures present in the data (Durbán et al. (2005)). The authors

go one step further and use multidimensional interactions, and use a unified approach

for: i) spatio-temporal modelling, and ii) comparison across different experimental con-

ditions. The models proposed and the results obtained in the paper unavoidably give

rise to several related and interesting issues, which may help to improve and extend the

scope of the models and their application.

One of the main problems encountered when multidimensional smoothing is used is

the computational time that the fitting of the model might need. P-splines, and in general,

low-rank smoothers, are the best approach to take. However, even in this case, great care

needs to be taken when choosing the size of the bases used in the model. The authors

have, obviously, come across this problem. I am concerned with their choice of size for

the bases. First, the fact that the size of the bases is different in the univariate case (k= 8),

and in the multivariate case (k = 3) result in models that are not nested (then, care must

be taken when comparing them). To ensure that they are, bases for multidimensional

smooth terms (models II, III and IV) should be constructed using marginal bases

identical to those used for the main effects (model I). But, sometimes, using bases of

the same size results in models that can be computationally very demanding, or even,

impossible to fit. One possible solution is to reduce the number of parameters for the

interaction term, by reducing the number of knots for the marginal bases for the tensor

product, but preserving the nested nature of the models. This idea can be explained

by analogy to classical ANOVA models, where, in general, the main effects are more

significant than interactions. Lee and Durbán (2012) propose the use of nested B-spline

bases for the interaction term: a B-spline basis such that the space spanned by the

marginal basis in the interaction, is a subset of the space spanned by the basis in the

unidimensional case and the hierarchical nature of the models is preserved. Another

point related to the bases size is the fact that, using three knots for marginal bases might
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not be enough to capture the structure of the firing rates. I agree that larger bases

are difficult to handle by the package mgcv (specially when the data have an array

structure). However, as a general rule (Ruppert, 2002), the minimum number of knots

used to construct a basis is at least four. The results for generalized linear array models

(GLAMs), in Eilers et al. (2006), can speed up the computation when the size of the

bases increases.

A major contribution of the paper is the development of a model to compare the re-

ceptive fields properties by introducing interaction between factor and multidimensional

smooth terms, and check, for example, if the firing rate depends on eye. Models III and

IV test if the spatio-temporal effects are similar in both eyes or not, but do not separate

the spatial and temporal component. It might be interesting to know if the change of

firing rates over time is the same for both eyes, or to estimate a common spatial pat-

tern in time and check if a space-time interaction is necessary. Maybe an ANOVA-type

model (Lee and Durbán (2011)) could shed light on some interesting issues. Thus, the

spatio-temporal term in model III and IV could be substituted by:

frow, col, time(i, j, t)⇒ ftime + frow, col(i, j)+ frow, col, time(i, j, t),

and appropriate penalties and identifiability constraints can be easily imposed.

Let me finish by congratulating again the authors for an interesting and relevant paper

for the statistical and medical scientific community.
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Thomas Kneib
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Thank you very much for the possibility to discuss this paper that introduces and

discusses additive model including different types of interactions along the analysis

of visual receptive. The authors do a remarkable job in reviewing the current state

of the literature and in demonstrating the applicability of the methods in a complex

setting that requires careful inclusion of interaction effects in different ways. Penalized

spline smoothing forms the basis for the models considered and mixed model based

inference for the smoothing parameters yields a data-driven amount of smoothness for

all functions. My comments mainly focus on the use of mixed model methodology (and

potential alternatives) and some specific modelling choices.

• As one advantage of the mixed model approach, the authors discuss the possibility

of a formal comparison across models of different complexity. However, infer-

ence in mixed models has proved to be notoriously difficult due to deviations from

regularity conditions underlying standard likelihood based inferential approaches.

For example, likelihood ratio tests for the inclusion / exclusion of specific effects

approached via testing smoothing variances for deviations from zero have been

shown to lead to rather complex distributions for the test statistic that deviate con-

siderably from the standard result that would be a χ2 distribution with one degree

of freedom (Crainiceanu and Ruppert 2004, Crainiceanu, Ruppert, Claeskens and

Wand 2005, Scheipl, Greven and Küchenhoff 2008). In a similar vein, Greven and

Kneib (2010) show that both marginal AIC and the conditional AIC (in their stan-

dard forms) are problematic when comparing models that differ by the inclusion

/ exclusion of specific effects obtained by setting the smoothing variance to zero.

While this is not exactly the type of model comparison considered here, I wonder

how generally applicable formal comparisons in the considered model class can

be and how the authors suggest to deal with such problems.

• A related question concerns the performance of model choice and the p-values

presented in Table 3. Given the difficulties discussed in the previous comment,

more guidelines on model choice and details on how the p-values in Table 3 have

been computed would be very helpful from the perspective of practitioners.

• When using varying coefficient terms for modelling interactions, the coding of the

(categorical) interaction variable will strongly influence the results. For example,

the model

yi =
M

∑
l=1

1zi=l fl(xi)+ ǫi
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models separate curves per each of the M levels of the categorical covariate z while

yi = f1(xi)+
M

∑
l=2

1zi=lgl(xi)+ ǫi

models the effect in category 1 as f1(x) and deviations from this effect in remaining

groups l = 2, . . . ,M as gl(x). While both models would be equivalent when

restricting fl(x) and gl(x) to be linear, this does no longer hold in the penalised

spline smoothing context due to the estimation of the smoothing parameter that is

not invariant under such transformations. In addition, when using effect coding

instead of dummy coding for the categorical covariates, another set of results

would be obtained. How would the authors deal with this difficulty and what would

be their general recommendations for choosing a specific parameterisation?

• I wonder whether (spatial) smoothing is really desired in this application. I would

presume that there may be sharp edges around the receptive fields while the given

approach assumes a smooth transition from active to inactive cells. As a conse-

quence, edge-preserving or adaptive procedures may be more appropriate at least

for the effect representing the receptive field. In a Bayesian formulation, adaptive-

ness could for example be achieved by making the smoothing variance depend-

ing on the spatial location (see Lang and Brezger (2004) for such an approach).

• For the spatial effect, radial basis functions may also be a useful alternative to the

bivariate P-splines proposed here since P-splines may induce some artificial struc-

ture in the estimates due to their inherent non-radiality. Although the amount of

non-radiality is decreasing with the spline degree and may therefore be negligi-

ble for the cubic splines considered here, it would be good to have some general

advice on the selection of either radial bases or bivariate penalized splines.
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Rejoinder

First of all, we would like to thank the invited discussants for the time spent discussing

our work and for all their valuable comments and sugggestions made on our paper.

1. Comments from Prof. Thomas Kneib

Prof. Thomas Kneib primarily centres his comments on various problems arising in

the context of the inference in Generalised Additive Models. Although Prof. Kneib

mainly focuses his comments on the mixed model methodology, similar difficulties can

be encountered as well using different approaches and smoothing parameters selectors.

We agree with the discussant that this is an area of enormous interest and active research,

not yet completely solved. We are conscious that our paper lacks an explicit discussion

of this point, and the use of the word ‘formal’ probably overstates the main objective

of the paper. We would like to thank Prof. Kneib for his valuable comments on this

issue and for giving us the opportunity of shedding more light on this challenging point.

However, we believe that this issue probably requires a new paper.

With respect to model comparisons and model choice (in the frequentist framework),

in the context of GAMs (and GLMs), two different approaches are usually applied, de-

pending on if the models are nested or not (see also the comments from Prof. Marı́a

Durbán). If the models are not nested, the comparison between models can be based

on some information criteria such as the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC). If the models are nested, the generalised likeli-

hood ratio test or the F-ratio test can be applied. However, in GAMs the distribution of

these test statistics under the null hypothesis is only approximate (due to the fact that

the smoothing parameters are treated as if they are known), and the obtained p-values

should be analised with caution (specially when they are close to the significance level)

(Wood, 2006a). As pointed out by Prof. Simon Wood (in the help file of the functions

mgcv::summary.gam and mgcv::anova.gam), various simulations studies sug-

gested that the p-values obtained under ML and REML smoothness selection, have the

best behaviour. This cautionary note can also be extended to the inference about each

smooth term in a model, and the way in how p-values are computed. In this case, two

different approaches can be used, based on the frequentist or the Bayesian covariance

matrix of the coefficient estimates (Wood, 2006a). If the objective is testing for smooth

terms in a GAM for equality to zero, the frequentist approach can be used (see Marra

and Radice, 2010; Wood, 2006a). However, even in this case the performance of the



40

obtained p-values is not good, in terms of type I error. The Bayesian approach is then

recommended in this case (as for the construction of the ‘confidence’ intervals; see the

help of the mgcv package). Therefore, the p-values reported in this paper were based

on the bayesian covariance matrix. Again, the (Bayesian) p-values obtained under ML

and REML smoothness selection present the best behaviour. This is in accordance with

the results of a small simulation study performed by us, in which type I errors (using

REML) proved to be relatively close to nominal errors.

Under the representation of an additive model as a linear mixed model, some other

alternatives (and difficulties) for model choice appear. In this framework, the random

effects u parameterise the deviation of the smooth function from a given polynomial

(depending on the degree p of the spline basis). Therefore, testing for a polynomial (or

constant) function versus a smooth function is equivalent to test if the corresponding

smoothing variance is zero (σ2
u = 0). As pointed out by Prof. Kneib, this field has

received a considerably amount of research attention in the last years. For instance,

in Scheipl et al. (2008) a comparative study of different restricted likelihood ratio tests

(RLRT) and F-type tests for a zero variance (also in the context of penalised splines)

is presented. The authors conclude that the RLRT statistic proposed by Crainiceanu

and Ruppert (2004) – and extended by Greven et al. (2008) to test for more than

one variance component – presents the best behaviour in terms of the computational

time, with type I error rates and power almost equivalent to the bootstrap-based tests.

Moreover, this test is implemented in the R package RLRSim. However, for the model

comparisons performed in this paper, the use of the RLRT statistics present in this

package is not possible unless we consider nested models and isotropic interactions

(see Lee 2010), and, moreover, these tests may not be applicable to GAM. As regards

the use of the AIC for comparison purposes, under the mixed model representation,

two different alternative definitions can be used: the marginal and the conditional AIC.

The conditional AIC (in its standard form) is the AIC supplied by the mgcv package,

and its use is ‘recommended’ in the context of penalised splines. However, Greven and

Kneib (2010) showed that the standard form of the conditional AIC has an undesirable

performance, in the sense that it always chooses the inclusion of the random effect u,

unless u is predicted to be exacly zero (σ̂2
u = 0). Although the comparisons made in

Greven and Kneib (2010) – where the authors compare the presence of a linear effect

versus a smooth effect – are not the type of model comparison considered in our paper, it

would be worthwhile evaluating the performance of the conditional AIC in this setting.

Moreover, the extension of the corrected version of the conditional AIC Liang et al.

2008, Greven and Kneib 2010) to generalised linear mixed models and GAMs is is an

open area of research.

The comment from Prof. Kneib related to the use of varying cofficient terms is

connected to this previous issue. From an applied point of view, the decision about the

coding of the categorical variable that should be used depends on both the problem

at hand and the research question to be answered. On the one hand the use of the

dummy coding allows to separately evaluate the effect of the continuous covariate in
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each of the levels of the categorical covariate. However, this coding makes it difficult

to ‘visually’ judge the presence of interaction from several curves that are estimated

separately. On the other hand, when the interest is focused on finding out whether there

actually is a difference among several groups, it may be advantageous to use the effect

parameterisation (yi = f (xi)+∑
M
l=11{zi=l}gl (xi)+ǫi, given that ∑

M
l=1 gl (xi) = 0). In this

case, the deviations from the main effect, f (xi), in each of the levels of the categorical

covariate, gl (·) (l = 1, . . . ,M), exactly tells us the amount of difference. Moreover, this

approach also allows to evaluate the presence of interaction based on the inference about

gl (·), (l = 1, . . . ,M). If these functions are equal to zero, it implies that no interaction

is present. The dummy coding is the way in which the mgcv package treats, by default,

the interaction between continuous and categorical covariates, and this was the coding

used in the paper. However, the use of the effect coding can also be implemented in the

mgcv package, by first creating the effect coding variable. For illustration purposes, we

have analysed the visual receptive field data (Model IV) using this approach:

R > fbh4$eff_eye <- as.numeric((fbh4$eye == ‘Right’) - (fbh4$eye == ‘Left’))

R > fit.fbh4 <- gam(spikes ˜ eye + te(row, col, time, by = eff_eye, bs = ‘ps’)

+ + offset(log(trial)), data = fbh4, family = poisson, method = ‘REML’)

and

R > fap0$eff_eye <- as.numeric((fap0$eye == ‘Right’) - (fap0$eye == ‘Left’))

R > fit.fap0 <- gam(spikes ˜ eye + te(row, col, time, by = eff_eye, bs = ‘ps’)

+ + offset(log(trial)), data = fap0, family = poisson, method = ‘REML’)

Table 1: Results of the fitted models for cells FBH4 and FAP0.

Term Coefficient edf p-value

Cell FBH4 - Model IV

Intercept −3.466 — < 0.001

eyeRight −0.283 1 < 0.001

f(row, col, time) — 96.00 < 0.001

gRight(row, col, time) — 20.13 0.107

Cell FAP0 - Model IV

Intercept −0.480 — < 0.001

eyeRight −0.330 1 < 0.001

f(row, col, time) — 88.83 < 0.001

gRight(row, col, time) — 24.86 < 0.001

Table 1 presents a detailed description of these fitted models. It should be noted

that in this case, due to the identifiability constraints imposed on the model, gRight (·) =

−gLe f t (·). As can be observed, whereas for cell FBH4 there is no evidence to suggest

the presence of interaction with eye (p-value = 0.107), for cell FAP0 the results suggest

that the RFmap is different in the left and right eye (p-value < 0.001). This is in
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concordance with the results obtained using the dummy coding and the cAIC for

comparison purposes.

As regards the use of radial basis for the spatial effect, we agree with Prof. Kneib

that this approach could have been also used for the visual receptive field analysis in our

paper. In contrast to tensor product smoothers, where the knots are placed separately

in each direction (row and column in our example), radial bases (as thin plate splines,

for example) consider bivariate knots located in the surface. Therefore, one of the main

advantages of radial bases is that they allow to adapt the placement of knots to the data

(i.e., placing more knots in areas with dense data), and therefore to take into account the

possible correlation between the covariates (see Fahrmeir and Kneib 2011 for a detailed

comparison between tensor product and radial basis). However, in contrast to tensor

product smoothers, radial bases assume the same amount of smoothing in each direction.

As pointed out in the paper, this isotropy could be justified when the covariates are

measured in the same units (and, of course, the same amount of smoothing is expected

in each direction). This is the case, for instance, of spatial effects, but not of the spatio-

temporal interaction, due to the different scaling of time and space. For this reason, the

use of radial bases is not recomended in this context. However, the mgcv package allows

to combine in a trivariate smoother, the tensor product of a bivariate radial basis and a

one dimensional smoother. We would like to point out that the visual receptive field data

was also analised using this approach. Since the results provided by this model and the

model using the tensor product of univariate smoothers were pretty similar, we decided

to present in the paper the results of the trivariate tensor product.

Finally, as pointed out by Prof. Kneib the use of adaptive penalized splines could

be more appropiate for this application, as can be observed from the figures. So far, the

mgcv package allows the use of locally adaptive procedures but in the context of radial

bases, and cannot be applied for tensor product smoothers. Although, as pointed out

before, this R package allows to combine the tensor product of a bivariate radial basis

and a one dimensional smoother, it is not possible to use adaptive smoothers for the

bivariate radial basis. Moreover, as far as we know, no statistical software implements

the use of locally adaptive procedures for trivariate smoothers. This is an interesting

field for further research.

2. Comments from Prof. Marı́a Durbán

Prof. Marı́a Durbán comments on the importance of the selection of the basis sizes, due

to its impact on: (a) the final estimates (if the basis dimension is not large enough), (b)

the computational time; and (c) the inference procedures.

As pointed out by Marı́a Durbán, from a computational point of view, as the number

of knots increases (specially in the multidimensional case), so it does the computational

time. For instance, using an Intel(R) Core (TM) i5 CPU 2.40 GHz and 4.00 GB RAM

computer, the estimation of model IV using k = 3 or k = 4 was around 100 sec. and 403
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sec. respectively. For this reason, we chose k = 3 knots for each of the marginal basis

functions in the multidimensional case. However, in order to evaluate the adequacy of

the basis dimensions, we performed a sensitivity analysis by increasing the number of

knots, and comparing the results obtained by the different fitted models. Since in this

case the observed differences were almost negligible, we finally selected k = 3 knots.

Moreover, we also evaluated the adequacy of the basis dimensions based on an analysis

of the deviance residuals of the fitted model (see the help associated with the function

choose.k in the mgcv package). For each smooth term in our models (I- IV), we

fitted an equivalent, single, smooth to the residuals, using a larger number of knots to

see if there were still a pattern in the residuals that could potentially be explained by

increasing the basis dimension in the original models. Again, these analyses suggested

that k = 8 and k = 3 were enough for the univariate and the multidimensional cases

respectively. However, we are conscious that this could not be the always the case, and

in some circumstances, the need of larger bases could make prohibitive the fit of the

model using the package mgcv. As pointed out by Marı́a Durbán, when the data are in

an array structure, as in the case of the visual receptive field data, the use of GLAMs can

make the fit of the model feasible in a reasonable computing time. As far as we know,

neither the mgcv package nor other R packages and statistical software implement this

approach. This is, indeed, an interesting field for further work.

As Prof. Durbán indicates, the use of different sizes of the bases for the univariate

and the multivariates case, results in models that are not nested. Accordingly, it is not

possible to apply formal testing procedures, as the generalised likelihood ratio test or the

F-ratio test, to make the comparison between alternative models. Although in this paper

we have used the conditional AIC for comparison purposes, the use of formal formal

testing procedures could be also an alternative approach, ensuring that the models are

nested. Moreover, the ANOVA-type models proposed by Lee and Durbán (2011) is an

interesting approach to study in future. We completely agree with Prof. Durbán that the

use ANOVA-type models could help in a better understanding of the Visual receptive

field behaviour. It should be noted, however, that in the visual receptive field data, the

experiment design assigns each spike to the stimulus position in all pre-spike times. It

implies that each spatial matrix contains exactly the same number of spike ocurrences.

Therefore, the spatio-temporal interaction is probably needed in this context.
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