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HYPERBOLIC LATTICE POINT PROBLEMS

FERNANDO CHAMIZO

(Communicated by Matthew A. Papanikolas)

Abstract. We prove some analogues of planar lattice point problems replac-
ing R

2 by the Poincaré model of the hyperbolic plane and using the orbit of
a point under the modular group instead of the lattice generated by integral
translations.

1. Introduction

I.M. Vinogradov and other authors considered in several works the problem of
counting the number of lattice points (i.e., points in Z

2) in the region limited by
the graph of a positive function and an interval of the X-axis [4]. This is in fact a
fundamental problem because the classic planar lattice point problem (approximate
the number of lattice points in enlarging convex regions [6]) is reduced to it after
dividing the boundary in several arcs and changing the role of the axes if necessary.

On the other hand, the spectacular development and applications of the spec-
tral theory of automorphic forms, pioneered by A. Selberg [12], have motivated
hyperbolic counting problems in which the base space is the Poincaré half-plane
(H, ds),

H =
{
z ∈ C : z = x+ iy, x ∈ R, y > 0

}
, ds2 = y−2

(
dx2 + dy2

)
,

and the role of the integral translations, generating the lattice in the Euclidean
case, is assumed by an arithmetic discrete group of isometries of H, in particular
the modular group.

For instance, if NR denotes the number of γ ∈ SL2(Z) such that γ(i) belongs
to the hyperbolic circle B(i, R) =

{
z ∈ H : ρ(z, i) < R

}
, where ρ is the distance

corresponding to ds, then

(1.1) NR ∼ 6

π
|B(i, R)| as R → ∞, where |B(i, R)| =

∫∫

B(i,R)

dxdy

y2
.

Note that y−2 dxdy is the element of area of ds; indeed |B(i, R)| = 4π sinh2(R/2).
This seems to have been proved with an error term O

(
e2R/3

)
first by Selberg (un-

published) as a consequence of the pre-trace formula and revisited by other authors,
but the upper bound for the error term remains unbeaten. A basic difference with
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the Euclidean setting is that most of the area and most of the elements of the orbit
are concentrated along a thin band in the lower boundary. The formula

(1.2) 2 cosh ρ(z, w)− 2 =
|z − w|2
�z�w

reveals that B(i, R) admits the Cartesian equation

(1.3) B(i, R) =
{
x+ iy ∈ H : x2 + (y − 1)2 < 2(coshR− 1)y

}
,

which represents an off-centered large Euclidean circle. To keep a closer analogy
with the Euclidean situation it is convenient to introduce T = 2 coshR − 2. The
value of T approximates y−1

0 , where y0 is the minimal imaginary part of the points

in B(i, R). With this notation Selberg’s result reads NR = 6T +O(T 2/3).
For a region Ω ⊂ H we consider in general

N (Ω) = #
{
γ ∈ SL2(Z) : γ(i) ∈ Ω

}
.

By the geometric properties of (H, ds) we expect a relation as in (1.1) between
N (Ω) and the hyperbolic area of Ω as y0 → 0+. In this paper we state several
results of this type, studying the error term as a function of a parameter T related
to the inverse of the minimal imaginary part.

Our approach employs Kloosterman sums to count elements of the orbit in re-
gions limited by a graph. Paralleling the Euclidean planar situation we deduce
results for other regions, some of them considered by other authors. Our emphasis
here is on the simplicity and versatility, avoiding ad hoc manipulations for special
equations.

Probably the closer analogue of the Euclidean situation is counting “hyperbolic
lattice points” over the graph of a function (compare to §8 in [4]).

Theorem 1.1. Let f : [r, s] −→ R with 0 < r < s ≤ 1 strictly monotonic and
differentiable and let Ω be the part of the strip x ∈ Im(f) limited from below by
{(f(y), y) : y ∈ [r, s]}. Then there exists an absolute constant C such that

∣
∣∣
∣N (Ω)− 6

π
|Ω|

∣
∣∣
∣ ≤ C

(
r−7/8 +

∫ s

r

y−7/8|f ′(y)| dy
)
log

2

r
,

where |Ω| =
∫∫

Ω
y−2 dxdy is the hyperbolic area of Ω.

We do not specify if the boundary points are included or not in Ω. It will be
apparent in the proof that this is irrelevant. Taking this into account, note that
the left hand side is unaffected by infinitesimal modifications of f . This allows us
to relax the regularity of f , allowing for instance piecewise differentiable functions
or even multiply defined functions at some point. The monotonicity can be relaxed
with a convenient subdivision, but in this case the constant is not absolute and
depends on the subdivision.

Our basic result focuses on curvilinear triangular regions of width at most 1.
The rest of the results are based on it. The previous remarks also apply and come
from its proof.
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Theorem 1.2. Let F : [α, β] ⊂ R
+ −→ [−1/2, 1/2] be monotonic and differen-

tiable. Consider the region ΩT = {x + iy : δ ≤ x ≤ F (Ty), T y ∈ [α, β]} where
δ = minF . Then for T > 2,

N (ΩT ) =
6

π
|ΩT |+O

(
T 7/8 log T

)
,

where |ΩT | = cFT and the O-constant does not depend on F if α remains bounded
from below by a positive constant.

In the proof we shall employ the optimal bound for individual Kloosterman sums
but one expects more cancellation due to the extra summation. Conjecturally the
natural error term in Theorem 1.2 is Oε

(
T 1/2+ε

)
for every ε > 0, supported by the

average results of [10] and [2] in the application to (1.1).
The case of circular sectors has been treated by several authors (we point out

an interesting purely spectral approach in [11]).

Corollary 1.3. Fix θ0 ∈ [0, π) and let ΞR(θ0) =
{
z ∈ H : ρ(z, i) < R, θ0 ≤ θ(z)

≤ π
}
, where θ(z) ∈ (−π, π] is the angle 0̂iz determined by the geodesic segments

joining i with 0+ and with z. Then

N
(
ΞR(θ0)

)
=

6

π
|ΞR(θ0)|+ Oθ0

(
Re7R/8

)
.

This result was proved in [1] with a slightly weaker error term. In our particular
centered case, z0 = z1 = i, Γ = SL2(Z), our approach follows similar general lines
but largely simplifies the arguments (see section 3 below for the general case).

Unlike in the Euclidean situation, there are no dilations in H (conformal geodesic-
preserving homeomorphisms) other than isometries. Then one has to be cautious
in the geometric interpretation of scaling functions and their relation with the
convexity and the element of area.

Given z 	= i let r be the geodesic ray starting at i with z ∈ r. For each X > 0
we define DX(z) as the unique element of r such that cosh ρ

(
DX(z), i

)
− 1 =

X
(
cosh ρ(z, i)− 1

)
.

Corollary 1.4. Let Ω ⊂ H be a smooth compact region containing i such that
DX(Ω) is convex Euclidean. Then

N
(
DX(Ω)

)
=

6X

π
|Ω|+O

(
X7/8 logX

)
.

For Ω = B(i, 1) and X = 2 coshR− 2, this implies (1.1). This result can be seen
as the hyperbolic version of the classical Euclidean planar lattice point problems
[6].

Finally we extract a consequence with a more arithmetical flavor related to a
divisor problem in the Gaussian domain.

Corollary 1.5. Let dX(k) denote the number of Gaussian integers z ∈ Z[i] dividing
1 + ki with X < |z| ≤ 2X. Then

K∑

k=0

dX(k) = 12
log 2

π
K +O

(
X7/4 logX

)

uniformly in K ≤ X2/2.
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2. The proofs

We separate for later reference an elementary result.

Lemma 2.1. Let f differentiable and monotonic in [A,B]. Then there exists an
absolute constant C such that for B > 2,

∣
∣
∣∣

∑∗

A≤c2+d2≤B

f(c2 + d2)− 6

π

∫ B

A

f

∣
∣
∣∣ ≤ Cmax(|f |)B1/2 logB,

where
∑∗

indicates that the integers c and d are coprime.

Proof. Let r∗(n) = #{(c, d) ∈ Z
2 : c2 + d2 = n, gcd(c, d) = 1}. Then by Möbius

inversion, r∗(n) =
∑

d2|n μ(d)r(n/d
2), where r(n) is the number of representations

of n as a sum of two squares. The sum is
∑

r∗(n)f(n), and the result follows by
partial summation from the trivial estimate for the circle problem

∑
n≤x r(n) =

πx+O(x1/2). �

A calculation proves that

(2.1) γ =

(
a b
c d

)
∈ SL2(Z) ⇒ γ(i) =

a

c
− d

c(c2 + d2)
+

i

c2 + d2
.

Given c and d coprime, the determinant equation ad− bc = 1 determines (a, b) up
to adding an integral multiple of (c, d), and this corresponds to composing γ with
an integral translation z �→ z + n, and therefore such a (c, d) determines γ(i) by
imposing |�γ(i)| ≤ 1/2 (there are no points in the boundary).

After these considerations we can read Lemma 2.1 as the hyperbolic lattice point
problem for the strip ΣT = {x+ iy ∈ [− 1

2 ,
1
2 ]× [T−1,∞)}, concluding

(2.2) N (ΣT ) =
6

π
|ΣT |+O

(
T 1/2 log T

)
as T → ∞.

At first sight one would think that the error term would be improved to O
(
Tα

)

for some α < 1/2 using nontrivial estimates for the circle problem in the proof of
Lemma 2.1, but such improvements are related to the Riemann Hypothesis [9], [13]
and seem to be out of reach with current methods.

Proof of Theorem 1.2. Define T+ = T/α and T− = T/β. By (2.1)

γ(i) ∈ Ω ⇔ 0 ≤ a

c
− d

c(c2 + d2)
− δ ≤ F

( T

c2 + d2
)
− δ, T− ≤ c2 + d2 ≤ T+.

The relation ad − bc = 1 implies a = d̄ for some d̄ · d ≡ 1 (mod c), and as we
mentioned before, d̄ is uniquely determined.

Let ψ(x) = x− [x]−1/2. Then for each 0 < t ≤ 1, the function ψ(x−t)−ψ(x)+t
is the 1-periodic extension of the characteristic function of [0, t]. In our case we
take t = F

(
T/(c2 + d2)

)
− δ to write N (ΩT ) as

N (ΩT ) =
∑∗

T−≤c2+d2≤T+

(
F

( T

c2 + d2
)
−δ+ψ

(
x(c, d)−F

( T

c2 + d2
)
+δ

)
−ψ

(
x(c, d)

)
)
,

where x(c, d) = d̄/c − d/c(c2 + d2) − δ, and we have employed the notation of
Lemma 2.1.
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Taking f(t) = F (T/t)− δ in Lemma 2.1 the contribution of the first two terms
is

6T

π

∫ α−1

β−1

(
F (1/t)− δ

)
dt+O

(
T 1/2 log T

)
=

6

π
|ΩT |+O

(
T 1/2 log T

)
.

Note that the O-constant degenerates when α → 0+ because in this case T+/T →
∞. The same occurs in the rest of the O-estimates.

It remains to prove

(2.3)
∑∗

T−≤c2+d2≤T+

ψ
( d̄
c
+ g(c, d)

)
= O

(
T 7/8 log T

)

for g(c, d) = 1/2− d/c(c2 + d2) and g(c, d) = −d/c(c2 + d2)− F
(
T/(c2 + d2)

)
.

It is well-known (see for instance [8], p. 5) that for each M ∈ Z
+ there exist

two trigonometric polynomials, P− and P+ such that P− ≤ ψ ≤ P+ and P±(x) =∑
|m|≤M a±me(mx) with a±0 � M−1 and a±m � m−1 for m 	= 0. Then

(2.4)
∑∗

T−≤c2+d2≤T+

ψ
( d̄
c
+ g(c, d)

)
� T

M
+

M∑

m=1

1

m
|Sm|

with

Sm =
∑∗

T−≤c2+d2≤T+

e
(
m
d̄

c
+mg(c, d)

)
.

Note that due to the use of continuous upper and lower bounds for ψ(u) it makes
no difference whether or not the points of the boundary are included in ΩT because
they correspond to integral values of u.

For each c fixed we apply Abel’s lemma in d to separate the term e
(
mg(c, d)

)
,

getting

Sm � m
∑

1≤c≤T
1/2
+

∣
∣
∑

d∈Ic

e
(
m
d̄

c

)∣∣,

where Ic ⊂ [T
1/2
− , T

1/2
+ ] is an interval depending on c. Completing the sum to

d ∈ (A,B] ⊃ Ic with c|B − A � T 1/2 (use for instance Lemma 12.1 in [7]) we
deduce

Sm � m(log T )
∑

1≤c≤T
1/2
+

T 1/2

c

∣∣
c∑∗

d=1

e
(
m
d̄

c
+ n

d

c

)∣∣

for some n = n(c) ∈ Z. By Weil’s bound (see for instance Lemma 2 in [5]) the
absolute value is bounded by (m, c)1/2c1/2τ (c). Using the elementary estimates

∑

m≤M

(m, c)1/2 ≤ Mσ−1/2(c) and
∑

n≤x

τ (n)σ−1/2(n) = O(x log x)

(for the second see §1.6 in [7]) we conclude that the summation in the right hand

side of (2.4) is O
(
MT 3/4 log2 T

)
. Choosing M = T 1/8/ log T we obtain (2.3). �

Proof of Theorem 1.1. Let [u, v] = Im(f) and assume that f is increasing (the
other case is symmetric). First we consider the case u + 1/2, v + 1/2 ∈ Z. Define
g(x) = f−1(x + u) and Fk(y) = f(g(k)y), where f−1 denotes the inverse function
of f . Note that r ≤ g ≤ 1 and Fk applies [1, g(k + 1)/g(k)] onto [u+ k, u+ k + 1].
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Theorem 1.2 (after the translation z �→ z − k − u − 1/2 ∈ SL2(Z)) with F = Fk,
T = 1/g(k) and (2.2) with T = 1/g(k + 1) prove that the contribution to N (Ω) of
the strip x ∈ [u + k, u + k + 1] admits an error term O

(
(g(k))−7/8 log 2

r

)
. Adding

all of these error terms and using the monotonicity we have

(
log

2

r

) v−u−1∑

k=0

(
g(k)

)−7/8 ≤
(
log

2

r

)
(
r−7/8 +

∫ v−u

0

(
g(x)

)−7/8
dx

)
.

The change of variables x = f(y)− u gives the expected bound.
If u+1/2 	∈ Z or v+1/2 	∈ Z we still apply the previous argument in the maximal

interval I = [n − 1/2,m − 1/2] ⊂ [u, v] with n,m ∈ Z (take I = ∅ if it does not
exist). The at most two strips of width less than one corresponding to x ∈ [u, v]−I
are treated directly with Theorem 1.2. Note that the right borders of these strips
can be well approximated by functions as in Theorem 1.2 (with β large). �

Proof of Corollary 1.3. The equation (1.3) implies that B(i, R) ∩ {x ≥ 0, y ≤ 1}
is included in the strip Σ = {0 ≤ x ≤ 2 sinh(R/2)}. A simple calculation with the
element of area proves that the hyperbolic areas

∣
∣B(i, R)∩{y ≤ 1}

∣
∣ and

∣
∣Σ∩{y ≤ 1}

∣
∣

are O
(
eR/2

)
, which is absorbed by the error term. On the other hand, γ(i) never

reaches {y > 1} for γ ∈ SL2(Z). Then N
(
ΞR(θ0)

)
is identical to N

(
Ω

)
, where Ω is

the part of the strip Σ limited from below by the lower boundary of ΞR(θ0)∩{y ≤ 1}.
According to (1.3), the contribution of the part limited by the circle is estimated

choosing f(y) =
(
4y sinh2(R/2)− (y−1)2

)1/2
in Theorem 1.1, giving an error term

O
(
Re7R/8

)
that dominates the part bounded by the geodesic θ(z) = θ0, represented

by a fixed semicircle, or by the horizontal line y = 1. �

Proof of Corollary 1.4. Using the convexity and considering the two pairs of verti-
cal and horizontal support lines of DX(Ω) we can divide its boundary in four graphs
x = fi(y) with fi : [ri, si] −→ R monotonic. Let us say that f1 and f2 correspond
to the lower boundary and f3 and f4 to the upper one, and let Ωi be the regions
in Theorem 1.1 associated to these functions. Then

(2.5) N
(
DX(Ω)

)
= N (Ω1) +N (Ω2)−N (Ω3)−N (Ω4),

where the boundaries are accordingly included or excluded to avoid repetitions.
The element of area in the modified geodesic polar coordinates (r̃, θ) with r̃(z) =
2 cosh ρ(z, i)− 2 and θ(z) as in Corollary 1.3 is dr̃ dθ; then

∣∣DX(Ω)
∣∣ = X|Ω|.

By the compactness of Ω, Ω ⊂ B(i, R0) for some R0; hence DX(Ω) ⊂ B(i, R)
with 2 coshR− 2 = cX for some c depending only on Ω. Recalling (1.3) we deduce
that DX(Ω) is contained in the half-strip

{
|x| ≤ c1X

1/2, y ≥ c2X
−1

}
for some

constants c1, c2 > 0, in particular ri � X−1. As in the proof of Corollary 1.3 we
can dismiss the part

{
y > 1} in the sets appearing in (2.5) because its contribution

is absorbed by the error term; consequently, we assume si ≤ 1. By Theorem 1.1 it
remains to prove

∫ si

ri

y−7/8|f ′
i(y)| dy = O

(
X7/8

)
.

The inclusion DX(Ω) ⊂ B(i, R) and (1.3) assure |fi(y)| <
√
cyX − (y − 1)2, and

integrating by parts the bound for the integral follows. �
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Proof of Corollary 1.5. Letting z = d + ci ∈ Z[i], then z|1 + ki means that there
exists a+ bi ∈ Z[i] such that (a+ bi)(d+ ci) = 1 + ik or equivalently ad− bc = 1,
ac+ bd = k. By (2.1) we have

dX(k) = #
{
γ ∈ SL2(Z) : (2X)−2 ≤ �γ(i) < X−2, �γ(i) = k�γ(i)

}
,

and defining F : [1/4, 1] −→ [−1/2, 1/2] as F (y) = Ky/X2,

K∑

k=0

dX(k) = N
(
Ω

)
with Ω =

{
x+iy : (2X)−2 ≤ y < X−2, 0 ≤ x ≤ F (X2y)

}
.

With the notation of Theorem 1.2 we have δ = F (1/2) = K/(4X2). Redefining F
in a small neighborhood of 1/4 we can apply this theorem with δ = 0, keeping |ΩT |
arbitrarily close to |Ω|. Finally a calculation proves that |Ω| = 2K log 2. �

3. Some extensions

We have restricted ourselves to SL2(Z) for simplicity, but the same arguments
apply for congruence subgroups Γ dividing the constant 6/π by [SL2(Z) : Γ].

We illustrate the situation for Γ0(N). The constant 6/π for SL2(Z) comes from
Lemma 2.1, and the new constant CΓ for Γ = Γ0(N) is obtained by imposing con-
sequently N | c in the summation. This variant of Lemma 2.1 is again elementary.
We work out the details for f = 1 in [0, x]; the general case follows by partial
summation:
∑∗

c2+d2≤x
N |c

1 =
∑

k

μ(k)
∑

c2+d2≤x
N |c, k|c, k|d

1 =
∑

k

μ(k)
∑

c2+d2≤x
lcm(N,k)|c, k|d

1 =
∑

k

πxμ(k)

lcm(N, k)k
+O

(√
x log x

)
.

Then

CΓ = π
∑

k

μ(k) gcd(N, k)

Nk2
=

π

N

∏

p|N

(
1− 1

p

) ∏

p�N

(
1− 1

p2
)
.

Multiplying by 6π−2
∏(

1−p−2
)−1

= 1 we obtain CΓ = 6(πN)−1
∏

p|N
(
1+p−1

)−1
,

which coincides with 6/
(
π[SL2(Z) : Γ]

)
.

Note that, on the other hand, the condition N | c does not affect the treatment
of the error term with Kloosterman sums. Hence we have proved

Theorem 3.1. Letting N (Ω) = #
{
γ ∈ Γ : γ(i) ∈ Ω

}
, then under the hypothesis

of Theorem 1.2 we have

NΓ(ΩT ) =
6|ΩT |

π[SL2(Z) : Γ]
+OΓ

(
T 7/8 log T

)

for every Hecke congruence subgroup Γ = Γ0(N).

For Γ = Γ(N) one has to require N | c and N | d − 1. A technical difference is
that (c, d) determines γ by imposing |�γ(i)| ≤ N/2 instead of |�γ(i)| ≤ 1/2 due to
the congruence condition on b (see the comments after Lemma 2.1). Introducing
the scaling factor N−1, the same reasoning as before (in fact it is slightly easier)
gives

CΓ = N−1
∑

(k,N)=1

πμ(k)

(Nk)2
=

π

N3

∏

p�N

(
1− 1

p2
)
=

6

π[SL2(Z) : Γ]

and Theorem 3.1 also applies to Γ = Γ(N).
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It is also possible to consider other orbits with identical error terms because (2.1)
generalizes to

γ(x+ iy) =
a

c
− cx+ d

(
(cx+ d)2 + c2y2

)
c
+

yi

(cx+ d)2 + c2y2
.

The new expression is incorporated into g(c, d) and extracted in the same way by
partial summation in (2.4). Every congruence subgroup Γ admits a coset decom-
position Γ =

⋃
Γ(N)γj . Hence NΓ(ΩT ) is the sum of the values of NΓ(N)(ΩT ) for

the orbits containing γj(i). From [SL2(Z) : Γ]
−1 = [Γ : Γ(N)][SL2(Z) : Γ(N)]−1 we

conclude that Theorem 3.1 is valid for every congruence subgroup.
Note that unlike in the Euclidean case the relation between elements of the group

and elements of the orbit is not one to one. In SL2(Z) we have γ(z) = (−γ)(z),

and even considering PSL2(Z) the points in the orbits of i and (1 + i
√
3)/2 have

nontrivial stability groups.
Part of the literature in planar lattice point theory is devoted to counting primi-

tive points (also called visible points). A hyperbolic analogue was introduced in [3],
where the case of the circle is treated in connection with the orchard problem. It is
not clear if it is possible to extend the results of the present paper in this direction
for Ω’s lacking special symmetries.
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