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Abstract

Financial institutions and regulators increasingly use Value at Risk (VaR) as a standard measure
for market risk. Thus, a growing amount of innovative VaR methodologies is being developed by
researchers in order to improve the performance of traditional techniques. A variance-covariance
approach for fixed income portfolios requires an estimate of the variance-covariance matrix of
the interest rates that determine its value. We propose an innovative methodology to simplify the
calculation of this matrix. Specifically, we assume the underlying interest rates parameterization
found in the model proposed by Nelson and Siegel (1987) to estimate the yield curve. As this paper
shows, our VaR calculating methodology provides a more accurate measure of risk compared to
other parametric methods.
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1. Introduction

One of the most important tasks financial institutions face is evaluating their market risk
exposure. This risk is a consequence of changes in the market prices of the assets in their
portfolios. A possible way to measure this risk is to evaluate likely losses taking place by
means of market price changes, which is what Value at Risk (VaR) methodology does.
This methodology has been extensively used in recent times and it has become a basic
market risk management tool for financial institutions and regulators.

The VaR of a portfolio is a statistical measure which tells us the maximum amount
that an investor may lose over a given time horizon and a probability. Although VaR is
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a simple concept, its calculation is not trivial. Formally, VaR(α%) is the percentile α of
the probability distribution of changes in the value of a portfolio, i.e.: the value for which
α% of the values lie to the left on the distribution. Consequentially, in order to calculate
VaR, we first must estimate the probability distribution of the changes in the value of
the portfolio. Several methods have been developed to estimate VaR of a portfolio.
Among them, parametric methods or variance-covariance approaches, historical and
Monte Carlo Simulations were initially proposed1. The literature on VaR has focused on
two main directions: proposals for methodological innovations which aim to overcome
limitations in some of the VaR methods and performance comparisons of VaR methods.

Along the first strand of literature, shortcomings in VaR methods have stimulated
development of new methodologies. For example, in the case of the variance-covariance
approach: distributions different from the Normal one have been considered [see, e.g.,
Mittnik et al. (2002), Kamdem (2005), Aas and Haff (2006) or Miller and Liu (2006)];
non-parametric distributions have been introduced [see, e.g., Cai (2002), Cakici and
Foster (2003), Fan and Gu (2003), or Albanese et al. (2004)], or the extreme value theory
has been applied to calculate the percentile of the tail distribution [see, e.g., McNeil and
Frey (2000), or Brooks et al. (2005)]. Furthermore, in a parametric models framework
the application of switching volatility models has been proposed [see, e.g., Billio
and Pelizzon (2000) or Li and Lin (2004)] and variance reduction techniques which
simplify calculations of the variance-covariance matrix needed to compute VaR under
the parametric method, [see, e.g., Christiansen (1999), Alexander (2001) or Cabedo and
Moya (2003)]2.

The results found in the existing literature regarding relative performances from dif-
ferent VaR models are somewhat inconclusive. No one model is better than others. Re-
cent works include a wider range of methods (historical, Monte Carlo simulation, para-
metric methods including non-parametric distribution, and the extreme value theory),
such as Bao et al. (2006), Consigli (2002) and Danı́elsson (2002). They show that para-
metric models provide satisfactory results in stable periods but they are less satisfactory
in periods of high volatility. Some further evidence in favour of parametric methods
is provided in: Sarma et al. (2003) by comparing historical simulation with parametric
methods; Danı́elsson and Vries (2000) by including the extreme value theory in their
analysis and Chong (2004) who uses parametric methods to estimate VaR and compares
the Normal distribution against a Student-t distribution to find that VaR performs better
under a Normal distribution.

Although consensus on the most accurate model to estimate VaR has not been
reached, parametric methods are the most popular in financial practice, as indicated
by many authors such as Chong (2004) or Sarma et al. (2003). Therefore, this study

1. Linsmeier and Pearson (2000) discuss the advantages and disadvantages of the three methods for computing
VaR.

2. Other studies also propose variance reduction techniques for estimating VaR, which are used in the Monte
Carlo Simulation method, e.g. Glasserman et al. (2000).
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departs from a parametric or variance-covariance method and proposes a variance
reduction technique for estimating VaR. Unlike Christiansen (1999), Alexander (2001)
and Cabedo and Moya (2003), our proposal uses the parameterization of interest rates
that underlies the model of Nelson and Siegel (1987) to estimate the yield curve.

The parametric approach, based on the assumption that changes in a portfolio’s value
follow a known distribution, only needs a priori calculation of the conditional variance
from changes in the value of the portfolio. However, computing this variance is not a
trivial exercise as a variance-covariance matrix for the portfolio assets needs to be esti-
mated. Two types of problems are then involved: (1) a dimensionality problem and (2) a
viability problem. The former is related to the large dimension of the matrix which com-
plicates estimation. This is a more sensitive problem for fixed income portfolios where
their value depends on a large number of interest rates with different maturities. The
later problem stems from the complex task of estimating conditional covariances when
sophisticated models such as multivariate GARCH models are used. The estimation of
such models is very costly in terms of computation. These type of problems are usually
overcome through use of multivariate analysis [Christiansen (1999), Alexander (2001)
or Cabedo and Moya (2003)], which are based on the assumption that there are com-
mon factors in the volatility of the interest rates and that these same factors explain the
changes in the temporal structure of interest rates (TSIR). Under these two assumptions,
it turns out possible from a theoretical point of view to obtain, through a multivariate
technique and at a low calculation cost, the variance-covariance matrix from a vector of
interest rates.

This paper proposes an alternative method of estimating the variance-covariance ma-
trix of interest rates at a low computational cost. No specific assumptions need to be
stated to apply our technique. We depart from Nelson and Siegel (1987) model, ini-
tially developed to estimate the TSIR. This model gives an expression for interest rates
as a function of four parameters. Therefore, we can obtain the interest rates variance-
covariance matrix by calculating variances for only four variables – the principal com-
ponents of the changes in the four parameters. Financial institutions and banks routinely
compute the parameters we need from Nelson and Siegel’s model for purposes other
than VaR related. Consequently, estimated parameters are thus readily available as in-
puts to be used in a VaR estimation and do not represent an additional computational
burden. This fact is an obvious advantage from our approach.

This paper is organized as follows. In section 2 we present our methodological
proposal to estimate the variance-covariance matrix for a large vector of interest rates
and at a low computational cost. The next three sections evaluate the proposed method
for a Spanish market data sample. In section 3 we describe the data we use briefly before
applying the method proposed in order to obtain the variance-covariance matrix of a
vector of interest rates. In section 4 we evaluate the proposed methodology to calculate
VaR for fixed income portfolios so that we can compare the results with those obtained
from standard methods of calculation. Finally, section 5 presents the main conclusions
from the paper.
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2. A parametric model for estimating risk

In this section we present a methodology to calculate the variance-covariance matrix for
a large vector of interest rates at a low computational cost. In order to do so we start
with the model proposed by Nelson and Siegel (1987), originally designed to estimate
the yield curve.

The Nelson and Siegel formulation specifies a parsimonious representation of the
forward rate function given by:

ϕt
m = β0 +β1e(

−m
τ ) +β2

m
τ

e(−
m
τ ) (1)

This expression allows us to accommodate various functional features such as level,
slope sign or curve shape in relation to four parameters (β0, β1,β2,τ).

Bearing in mind the fact that the spot interest rate at maturity m can be expressed as
the sum of the instantaneous forward interest rates from 0 up to m, that is, by integrating
the expression that defines the instantaneous forward rate:
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we obtain the following expression for the spot interest rate at maturity m:
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Equation (3) shows that spot interest rates are a function of only four parameters.
In accordance with this function, changes in these parameters are the variables that
determine changes in the interest rates. By using a linear approximation we can estimate
the change in the zero-coupon interest rate at maturity m from the following expression:

drt(m) ≈

[
∂ rt(m)
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,
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∂β1
,
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∂β2
,
∂ rt(m)

∂τ
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dτt

⎤
⎥⎥⎦ (4)

In a multivariate context, the changes in the vector of interest rates that make up the
TSIR can be expressed by generalizing equation (4) in the following way:

drt = Gtdβt + εt (5)

where

drt = [drt(1),drt(2), . . . ,drt(k)] , dβ
′
t = [dβ0, t ,dβ1, t ,dβ2, t ,dτt ] ,



Pilar Abad and Sonia Benito 25
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and εt is the errors vector.
From expression (5) we can calculate the variance-covariance matrix of a vector of

changes in the k interest rates using the following expression:

var(drt) = GtΨtG
′
t + var(εt) (6)

where:
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At this point, it is worth noting that we have greatly simplified the dimension of the
variance-covariance matrix we need to estimate. Instead of having to estimate k(k+1)/2
variances and covariances for a vector of k interest rates, we now only need to estimate
10 second order moments. Nevertheless, the problem associated with the difficulty of
the covariances estimations persists.

However, by applying principal components to the vector of the changes in the
parameters ( dβt), we can simplify the calculation of the variance-covariance matrix
even further. Accordingly, the vector of changes in the parameters of Nelson and Siegel
(1987) model can be expressed as:

dβt = AFt (7)
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where Ft is the principal components vector associated with the vector dβt and A is the
constants matrix from the eigenvectors associated with each of the four eigenvalues for
the variance-covariance matrix of changes in the parameters from Nelson and Siegel
model (dβt).

Substituting equation (7) into equation (5) and given that each principal component
is orthogonal to the rest, we can express the interest rates variance-covariance matrix as
follows:

var(drt) = G∗
t ΩtG

∗′
t + var(εt) (8)

where:

Ωt =

⎡
⎢⎢⎢⎢⎢⎣

var( f1, t) 0 0 0

0 var( f2, t) 0 0

0 0 var( f3, t) 0

0 0 0 var( f4, t)

⎤
⎥⎥⎥⎥⎥⎦

and G∗
t ≈ Gt ×A

Ignoring var(εt), let us approximate:

var(drt)≈ G∗
t ΩtG

∗′
t (9)

Therefore, equation (9) provides us an alternative method to estimate the variance-
covariance matrix of changes in a k interest rates vector by using the four principal
components estimation for changes in the parameters of Nelson and Siegel (1987)
model. In this way, the dimensionality problem associated with the calculation of the
covariance has finally been solved.

Note that var(drt) will be positive semi-definite, but it may not be strictly positive
definite unless εt = 0. Although Ωt is positive definite because it is a diagonal matrix
with positive elements, nothing guarantees that G∗

t ΩtG∗′
t will be positive definite when

εt �= 0. If the covariance matrix is based on (9), we should ensure strictly positive
definiteness through checking eigenvalues. However, it is reasonable to expect that
approximation (9) will give a strict positive definite variance-covariance matrix if
representation (5) is done with a high degree of accuracy.

In the following sections we evaluate this method, to calculate both the variance
matrix of a vector of interest rates and VaR for fixed income portfolios.
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3. Estimating the variance-covariance matrix

3.1. The data

With the purpose of examining the method proposed in this paper, we estimate a
daily term structure of interest rates using the actual mean for daily prices of Treasury
transactions. The original data set consists of daily observations from actual transactions
in all bonds traded on the Spanish government debt market. The database for bonds
traded on the secondary market of Treasury debt covers the period from January, 1st
2002 to December, 31th 2004. We use this daily database to estimate the daily term
structure of interest rates. We fit Nelson and Siegel’s (1987) exponential model for the
estimation of the yield curve and minimise price errors weighted by duration. We work
with daily data for interest rates at 1, 2,. . . , 15 year maturities.

3.2. The results

In this section we examine this new approach to variance-covariance matrix estimation.
The first section begins by comparing the changes in estimated and observed interest
rates. Changes in interest rates are modelled by equation (5) so that we can then compare
them with observed ones.

We then proceed to estimate the variance-covariance matrix of a vector of 10 interest
rates, using the methodology proposed in the previous section. We compare these
estimations (Indirect Estimation) with those obtained through some common univariate
procedures (Direct Estimation).

In both cases, direct and indirect estimation, we need a method for estimating
variances and covariance. For the indirect estimation case, the estimation method gives
us the variances of the four principal components of changes in the parameters in Nelson
and Siegel model. Indeed, this enables us to obtain the interest rates variance-covariance
matrix from equation (9).

We use two alternative measures of volatility to estimate the variance-covariance
matrixes of interest rates changes and principal components variance: exponentially
weighted moving average (EWMA) and Generalized Autoregressive Conditional Het-
eroskedasticity models (GARCH)3.

(1) Under the first alternative, the variance-covariance matrix is estimated with
RiskMetrics methodology as developed by J. P. Morgan (1995). RiskMetrics uses the so
called exponentially weighted moving average (EWMA) method. Accordingly, the
estimator for the variance is:

3. GARCH models are standard in finance (see Ferenstein and Gasowski, 2004).
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var(dxt) = (1−λ)
N−1

∑
j=0

λ j(dxt− j −dx)2 (10)

and the estimator for the covariance is:

cov(dxtdyt) = (1−λ)
N−1

∑
j=0

λ j(dxt− j −dx)(dyt− j −dy) (11)

J.P. Morgan uses the EWMA method to estimate VaR in their portfolios. For λ= 0.94
with N = 20, on a widely diversified international portfolio RiskMetrics produces the
best back-testing results. Subsequently, we use both of these values in the paper.

Therefore, we obtain direct estimations of the interest rates variance-covariance
matrix (D EWMA) from equations (10) and (11) where xt and yt are interest rates
at different maturities. For the case of indirect estimation of the variance-covariance
matrix (I EWMA), we use equation (10) to calculate the principal components variances
(where xt are now these principal components). Equation (9) gives us then the relevant
matrix.

(2) The EWMA methodology currently used for RiskMetricsTM data is quite accept-
able for calculating VaR measures. Alternatively, some authors suggest using variance-
covariance matrices obtained from multivariate GARCH. Nevertheless, the large va-
riance-covariance matrices used in VaR calculations could never be estimated directly
by implementing a full multivariate GARCH model due to insurmountable, computa-
tional complexity. For this reason we only compute variances of interest rates changes
with univariate GARCH models and avoid computation of the covariance4.

Given that indirect estimation (I GARCH) does not require the estimation of co-
variance, we estimate the principal components conditional variance from changes in
Nelson and Siegel model’s parameters by using univariate GARCH models.

In sub-section two, we compare alternative estimations for the variance-covariance
matrix as described above. Comparisons are then summarised in Table 1.

Table 1: Type of variance-covariance matrix estimation.

Type of variance models

EWMA GARCH

Type of
estimation

Direct Estimation D-EWMA D-GARCH∗

Indirect Estimation I-EWMA I-GARCH

∗ We have not estimated multivariate GARCH model because of the computational complexity are insur-
mountable, so that only present the result of the variances which have been estimated using univariate
GARCH models. All GARCH models are Exponential GARCH (EGARCH) model (see Nelson, 1991).

4. We use the most suitable model for each series. All of them are Exponential General Autoregressive
Conditional Heteroskedastic (EGARCH) model (Nelson, 1991).
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Note that estimating the variance-covariance matrix with the methodology proposed
in this study (indirect estimation) involves a minimum calculation cost, since it is only
necessary to estimate the variance of four variables (the principal components of daily
changes in the parameters of the Nelson and Siegel model).

3.2.1. Comparing interest rates changes

Firstly, we have evaluated the capacity of the model that we propose here to estimate
daily changes in an interest rates vector. We need to compare observed interest rates
with their estimations from equation (5). In Figure 1 we show a scatter diagram relating
observed changes with estimated changes in 1-year interest rates, the graph shows that
they are closely related regardless of the maturity.

Figure 1: Comparing the changes of 1-year interest rate observed
with the estimated changes (equation (5)).

In Table 2 we report some descriptive statistics for the interest rate estimation errors.
The average error is less than a half basic point for all maturities i.e quite small. In
relative terms, this error represents approximately 0.5% from the interest rates average.
It is also worth noting that the average error and the standard deviation are very similar
in all maturities therefore the model appears to be accurate for all maturities.

Table 2: Estimation errors in interest rates. Descriptive statistics.

1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

Mean(a) 0.2 0.3 0.4 0.5 0.4 0.4 0.4 0.3 0.3 0.3
Standard deviation 1.5 3.2 2.7 2.1 1.8 1.8 1.7 1.6 1.4 1.3
Maximum error 32.9 66.0 45.4 32.8 34.5 33.2 30.4 27.1 23.8 20.9
Minimum error −4.1 −1.5 −0.1 −0.1 −0.2 −4.0 −7.8 −9.2 −9.4 −9.4

Note: Sample period is from 1/1/2002 to 12/31/2004 (510 observations). The errors are the difference
between the observed interest rates and their estimations from equation (5). The errors (and all statistics)
are expressed in basic points. (a) The average error is calculated in absolute value.
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These results imply that when estimating changes in zero-coupon interest rates using
equation (5) the error is virtually non-existent. In what follows, we evaluate the differ-
ences in the estimation of the variance-covariance matrix under various alternatives.

3.2.2. Comparing the estimations of variance-covariance matrix

In Figure 2 we show the conditional variances for the 1-year interest rate. We apply the
exponentially weighted moving average method for direct and indirect: D EWMA ver-
sus I EWMA. Furthermore, in Figure 3 we show the direct estimation of the conditional
variances for the interest rates using the GARCH (D GARCH) models as well as an
indirect estimation (I GARCH). The variances estimated using the method proposed in
this paper are very similar to the direct estimates for most of the maturities.
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(a) Conditional Standard Deviation, 1 year

Figure 2: Comparing the variance of changes of 1-year interest rate:
Direct and indirect estimation using exponentially weighted moving average model.
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(a) Conditional Standard Deviation, 1 year
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Figure 3: Comparing the variance of changes of 1-year interest rate:
Direct and indirect estimation using GARCH model.

The descriptive statistics for the standard deviations differences estimated with both
procedures are reported in Table 3. We compare the direct and indirect estimation
methods using an EWMA model in panel (a), and using a GARCH model in panel
(b). Panel (a) shows that the absolute value of the average differences for the EWMA
specification, oscillates between 0.7 and 1.4 basic points. These average differences
represent between 20% and 40% of the average of the estimated series. Panel (b) in Table
3 also shows that the average difference in absolute value for EGARCH specification is
quite small. These differences are smaller than those of panel (a) taken as a percentage
of the estimated conditional variance series. We can note that for both comparisons the
range of differences for each pair of estimates is much wider for the 6-, 7- and 8-year
interest rate than for the other maturities.
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Table 3: Differences in the estimation of the standard deviation on interest rates:
direct vs. indirect method. Descriptive statistics.

1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

Panel (a): Comparing D EWMA vs. I EWMA

Mean(a) 0.7 0.9 1.1 1.2 1.2 1.4 1.4 1.3 1.1 0.9
Standard deviation 0.9 1.7 2.0 1.8 1.7 1.8 1.9 1.8 1.5 1.2
Maximum error 1.6 4.4 6.6 3.9 1.4 1.3 1.2 1.1 1.0 0.8
Minimum error −7.2 −19.7 −17.4 −12.9 −10.0 −8.6 −10.0 −10.0 −7.8 −8.0

Panel (b): Comparing D GARCH vs. I GARCH

Mean(a) 0.6 0.6 0.7 0.9 1.1 1.2 1.3 1.2 0.9 0.7
Standard deviation 0.9 1.2 1.2 1.3 1.5 1.6 1.7 1.7 1.6 1.5
Maximum error 3.6 4.8 3.9 2.3 1.4 1.1 0.9 0.7 0.4 0.4
Minimum error −11.3 −18.0 −14.1 −12.0 −18.5 −22.5 −25.8 −27.0 −25.2 −23.4

Note: Sample period is from 1/1/2002 to 12/31/2004 (510 observations). I EWMA indirect estimation
(equation (9)) and D EWMA direct estimation. RiskMetrics methodology (EWMA). I GARCH: indirect
estimation (equation (9)) and D GARCH direct estimation. Conditional autoregressive volatility models
(GARCH). (a) The average of the differences has been calculated in absolute value. Differences are
measured in base points.

We now compare directly estimated covariances with those obtained with the proce-
dure suggested in this paper. As above mentioned, given the extreme complexity of the
GARCH multivariate model estimations, the direct estimation of the covariances is only
approached with EWMA models.

Figure 4 shows estimated covariances for 3 and 1-year interest rates and for both
procedures: D EWMA versus I EWMA. As it can be checked, estimated covariances
behave similarly, although it should be noted that in most maturities there are greater
differences than for the variances. In Table 4 we report some of the descriptive statistics
of the estimated covariances. The average difference in absolute value is very small, be-
tween 0.0004 and 0.0014. However, this represents about 40% of the average estimated
covariance.

Table 4: Differences in the estimation of covariances of interest rates:
direct vs. indirect method. Descriptive statistics.

Comparing D EWMA vs. I EWMA

1-year 3-year 5-year
3-year 5-year 10-year 5-year 10-year 10-year

Mean(a) 0.0004 0.0005 0.0005 0.0013 0.0013 0.0014
Standard deviation 0.001 0.001 0.001 0.004 0.003 0.003
Maximum error 0.002 0.004 0.003 0.008 0.001 0.001
Minimum error −0.022 −0.014 −0.003 −0.042 −0.018 −0.021

Note: Sample period is from 1/1/2002 to 12/31/2004 (510 observations). I EWMA indirect estimation
(equation (8)) and D EWMA direct estimation. RiskMetrics methodology (EWMA). (a) The average
difference is calculated in absolute value.
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(a) Conditional Covariance 1 year-3 year

0.000

0.005

0.010

0.015

0.020

0.025

16apr03 37872 38019 38161 38301

Indirect Estimation Direct Estimation

Figure 4: Comparing the covariance between 3-year and 1-year interest rates:
Direct and indirect estimation using exponentially weighted moving average (EWMA) model.

In order to summarize the section we can conclude that we have shown how the
procedure proposed in this paper to estimate the variance-covariance matrix of a large
interest rates vector generates quite satisfactory results. In the following section we eval-
uate whether these small differences are important for risk management. Consequently,
we apply the proposed methodology VaR calculation in several fixed income portfolios.

4. Estimating value at risk

In this section we evaluate the utility of our methodological proposal for risk manage-
ment in fixed income portfolios. Thus, we create a parametric measure of VaR as an
indicator of the risk of a given portfolio.
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4.1. Value at risk

The VaR of a portfolio is a measure of the maximum loss that the portfolio may suffer
over a given time horizon and with a given probability. Formally, the VaR measure is
defined as the lower limit of the confidence interval of one tail:

Pr [ΔVt(τ)<VaRt ] = α (12)

where α is the level of confidence and ΔVt(τ)is the change in the value of the portfolio
over the time horizon τ.

The methods based on the parametric or variance-covariance approaches depart from
the assumption that changes in the value of a portfolio follow a Normal distribution.
Assuming that the average change is zero, the VaR for one day of portfolio j is obtained
as:

VaRj,t(α%) = σt,dVjkα% (13)

where kα%is the α percentile of the Standard Normal distribution, and the parameter
that needs to be estimated is the standard deviation conditional of the value of portfolio
j (σt,dVj ).

In a fixed income asset portfolio, duration can be used to obtain the variance of the
value of portfolio j from the interest rates variance as shown in Jorion (2000):

σ2
t,dVj

= Dj,tΣtD
′
j,t (14)

where Σt is the variance-covariance matrix of the interest rates and Dj,t is the vector
of the duration of portfolio j. This vector represents the sensitivity of the value of the
portfolio to changes in the interest rates that determine its value.

In this section, VaR measures are calculated and compared. In the parametric
approach, we use the estimations of the variance-covariance matrix as obtained in the
previous section (see Table 1). Table 5 illustrates the four measures of VaR that we
develop from the four variance-covariance models:

Table 5: Type of VaR measures.

Type of variance-covariance
matrix estimation

Type o VaR measure

Direct Estimation
D EWMA VaR D EWMA

D GARCH VaR D GARCH∗

Indirect
Estimation

I EWMA VaR I EWMA

I GARCH VaR I GARCH

∗ We did not compute VAR D GARCH because of the impossibility to estimate a multivariate GARCH
model with 10 variables.
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For the first VaR measure, VaR D EWMA, VaR is obtained by directly estimating Σt

with an EWMA model. This is a popular approach to measuring market risk, used by JP
Morgan (RiskMetricTM). The second VaR measure, VaR D GARCH, is also calculated
by directly estimating the variance-covariance matrix, but using GARCH models to
estimate the second order moments. Given that the large variance-covariance matrices
used in VaR calculations could never be estimated directly using a full multivariate
GARCH model, this VaR measure has not been calculated as computational complexity
would be insurmountable.

Two final VaR measures are then computed by estimating the variance-covariance
matrix of the interest rates following the procedure described in Section 2. We can
estimate the variance-covariance matrix of interest rates indirectly, by substituting
equation (9) into equation (14) to deduct a new expression for the variance of the
changes in the value of the portfolio:

σ2
t,dVj

= Dj,tG
∗ΩtG

∗′D
′
j,t = Dm

j,tΩtD
m′
j,t (15)

In indirect estimation, Ωt is a diagonal matrix containing the conditional variance
for the principal components of changes in the four parameters of Nelson and Siegel’s
model in its main diagonal. Also, Dm

j,t is the modified vector of durations of portfolio
j (with 1× 4 dimension) which represents the sensitivity of the value of the portfolio
to changes in the principal components of the four parameters in Nelson and Siegel
model. In the VaR I EWMA, we use an EWMA model to estimate the variance of the
principal components; and a suitable GARCH model to estimate these variances for the
calculation of the VaR I GARCH measure.

4.2. The portfolios

In order to evaluate the procedure proposed in this paper for VaR calculation, we have
considered 4 different portfolios made up of theoretical bonds with maturities at 3-, 5-,
10- and 15-years and constructed from real data from the Spanish debt market. The bond
coupon is 3.0% in every portfolio. The period of analysis goes from April, 15th 2002 to
December, 31st 2004, which allows us to perform 437 estimations of daily VaR for each
portfolio.

In order to estimate the daily VaR we have assumed that the main portfolios features
remain constant during the analysis period: the initial value of the portfolio, the maturity
date and the coupon rate. In this case, results are comparable for the entire period of
analysis since we avoid both the pull to par effect (the value of the bonds tends to par as
the maturity date of the bond approaches) and the roll down effect (the volatility of the
bond decreases over time).
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5% one day VaR. Portfolio at 10 years.
VaR_D_EWMA (Riskmetrics).
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5% one day VaR. Portfolio at 10 years.
VaR_I_EWMA.
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5% one day VaR. Portfolio at 10 years.
VaR_I_GARCH.
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Figure 5: The 5% one day VaR for a 10 year portfolio. Direct estimation using an exponentially weighted
moving average model [VaR D EWMA(5%)], indirect estimation using an exponentially weighted moving
average model [VaR I EWMA(5%)] and indirect estimation using a GARCH model [VaR I GARCH(5%)].

4.3. Comparing VaR measures

In this section VaR measures are compared. We calculate daily VaR at a 5%, 4%, 3%, 2%
and 1% confidence level for all portfolios. First, before formally evaluating the precision
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of the VaR measures under comparison, we examine actual daily portfolio value changes
(as implied by daily fluctuations in the zero-coupon interest rate) and compare them with
the 5% VaR. In Figure 5 we show the actual change in a 10-year portfolio together with
the VaR at 5% for the three VaR measures we consider: VaR D EWMA (Graph 1),
VaR I EWMA (Graph 2) and VaR I GARCH (Graph 3). In Graph 1 and 2, we observe
that the portfolio’s value falls below VaR more often than in Graph 3. In all cases, the
number of times the value of the portfolio falls below VaR is closer to its theoretical
level. This is also a clear result for the other portfolios considered, but we will not show
it due to space limitations. This preliminary analysis suggests that VaR estimations from
both models, both directly and indirectly are very precise; however, a more rigorous
evaluation of the precision of the estimations is required5.

We then compare VaR measures with the actual change in a portfolio value on day
t+1, denoted as ΔVt+1. When ΔVt+1 <VaR, we have an exception. For testing purposes,
we define the exception indicator variable as

It+1 =

{
1 if ΔVt+1 <VaR

0 if ΔVt+1 ≥VaR
(16)

a) Testing the level

The most basic test of a VaR procedure is to see if the stated probability level
is actually achieved. The mean of the exception indicator series is the level
of achievement for the procedure. If we assume a constant probability for the
exception, the number of exceptions follows the binomial distribution. Thus, it
is possible to build up confidence intervals for the level of each VaR measure (see
Kupiec, 1995).

Table 6 shows the level achieved and the 95% confidence interval for each of
the 1-day VaR estimates. An * indicates the cases in which the level is out of
the confidence interval, evidence obtained rejects the null hypothesis at the 5%
confidence level. The number of exceptions is inside the interval confidence for
the three measures and almost all portfolios considered. Therefore, VaR estimates
(direct and indirect) seem to be good.

Only for three cases is the number of exceptions out of the confidence interval.
Specifically, for VaR I GARCH measure for 4% and 5% confidence level in 5-
and 10-year portfolios. The number of exceptions in these cases is much lower
than the theoretical level, so it would seem this measure overestimates the risk of
these portfolios.

5. The empirical assessment of VaR is not developed through analysing the mean squared error (Longford,
2008). Instead, we use the standard test of VaR.
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Table 6: Testing the Level.

Number of exceptions

VaR measures 3-year 5-year 10-year 15-year
Confidence intervals

at the 95% level

Var D EWMA (1%) 6 7 7 5 (1-10)
Var D EWMA (2%) 9 9 14 10 (5-17)
Var D EWMA (3%) 15 12 17 14 (8-23)
Var D EWMA (4%) 17 14 17 16 (12-30)
Var D EWMA (5%) 20 20 23 20 (17-36)

Var I EWMA (1%) 7 7 10 8 (1-10)
Var I EWMA (2%) 13 11 11 13 (5-17)
Var I EWMA (3%) 16 12 15 17 (8-23)
Var I EWMA (4%) 19 15 16 19 (12-30)
Var I EWMA (5%) 19 19 19 24 (17-36)

Var I GARCH (1%) 6 6 6 6 (1-10)
Var I GARCH (2%) 11 9 8 9 (5-17)
Var I GARCH (3%) 12 10 11 11 (8-23)
Var I GARCH (4%) 16 10∗ 13 13 (12-30)
Var I GARCH (5%) 19 13∗ 14∗ 19 (17-36)

Note: Sample period 4/15/2002 to 12/31/2004 (437 observations). Confidence intervals derived from the
number of exceptions follows the binomial distribution (437, x%) for x = 1, 2, 3, 4 and 5. An ∗ indicates
the cases in which the number of exceptions is out of the confidence interval, so that, we obtain evidence to
reject the null hypothesis at the 5% level type I error rate.

b) Testing consistency of level

We want the VaR level found to be the stated level on average, but we also want to
find the stated level at all points in time. One approach to test the consistency of the
level is the Ljung-Box portmanteau test (Ljung and Box, 1978) on the exception
indicator variable of zeros and ones. When using Ljung-Box tests, there is a choice
of the number of lags in which to look for autocorrelation. If the test uses only a
few lags but autocorrelation occurs over a long time frame, the test will miss some
of the autocorrelation. Conversely, should a large number of lags be used in the test
when the autocorrelation is only in a few lags, then the test will not be as sensitive
as if the number of lags in the test matched the autocorrelation.

Different lags have been used for each estimate in order to have a good picture of
autocorrelation. Table 7 shows the Ljung-Box statistics at lags of 4 and 8. We only
detect the existence of autocorrelation in the 10-year portfolio with the measures
VaR I EWMA(3%) and (4%). In general, the results of the Ljung-Box comparison
indicate that autocorrelation is not present. When we consider other lags not shown
for space reasons, the result is very similar. We can also conclude from this test
the VaR estimates are good.
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Table 7: Testing Consistency of Level.

3-year 5-year 10-year 15-year
Lags 4 8 4 8 4 8 4 8

VaR D EWMA (1%) 0.35 0.71 0.38 0.64 0.38 0.64 0.24 0.49
(0.987) (1.000) (0.984) (1.000) (0.984) (1.000) (0.993) (1.000)

VaR D EWMA (2%) 0.79 5.18 0.67 1.17 2.14 3.65 0.98 2.00
(0.940) (0.739) (0.955) (0.997) (0.711) (0.887) (0.913) (0.981)

VaR D EWMA (3%) 1.97 4.13 1.26 3.73 2.25 4.17 2.19 4.24
(0.740) (0.845) (0.869) (0.881) (0.690) (0.842) (0.700) (0.835)

VaR D EWMA (4%) 2.14 3.86 1.76 3.67 2.25 4.17 5.29 7.98
(0.709) (0.870) (0.780) (0.886) (0.690) (0.842) (0.259) (0.435)

VaR D EWMA (5%) 1.88 3.61 1.90 3.63 5.60 7.92 3.85 7.93
(0.758) (0.890) (0.754) (0.889) (0.231) (0.441) (0.427) (0.440)

VaR I EWMA (1%) 0.47 0.97 0.47 0.97 0.98 4.49 5.68 6.33
(0.976) (0.998) (0.976) (0.998) (0.913) (0.811) (0.225) (0.611)

VaR I EWMA (2%) 2.30 4.65 2.90 5.82 2.89 5.81 2.29 4.04
(0.680) (0.795) (0.576) (0.667) (0.577) (0.668) (0.683) (0.853)

VaR I EWMA (3%) 5.31 7.64 2.52 5.08 14.52∗ 16.77∗ 4.58 7.64
(0.257) (0.469) (0.641) (0.749) (0.006) (0.033) (0.333) (0.470)

VaR I EWMA (4%) 8.19 10.18 6.32 8.45 12.08∗ 14.41 3.70 7.55
(0.085) (0.253) (0.177) (0.391) (0.017) (0.072) (0.449) (0.479)

VaR I EWMA (5%) 8.19 10.18 8.19 8.32 9.07 12.00 8.42 12.30
(0.085) (0.253) (0.085) (0.403) (0.059) (0.151) (0.077) (0.138)

VaR I GARCH (1%) 0.35 0.71 0.35 0.71 0.35 0.71 0.35 0.71
(0.987) (1.000) (0.987) (1.000) (0.987) (1.000) (0.987) (1.000)

VaR I GARCH (2%) 1.19 4.12 0.79 5.18 0.62 6.33 0.79 1.62
(0.879) (0.846) (0.940) (0.739) (0.961) (0.610) (0.940) (0.991)

VaR I GARCH (3%) 1.43 3.98 0.98 4.49 1.19 4.12 1.19 2.44
(0.840) (0.859) (0.913) (0.811) (0.879) (0.846) (0.879) (0.965)

VaR I GARCH (4%) 5.64 10.97 0.98 4.49 2.29 4.63 2.29 4.63
(0.228) (0.203) (0.913) (0.811) (0.683) (0.796) (0.683) (0.796)

VaR I GARCH (5%) 4.61 8.37 2.30 5.23 2.18 4.43 4.60 6.60
(0.329) (0.398) (0.680) (0.733) (0.702) (0.816) (0.330) (0.581)

Note: Sample period 4/15/2002 to 12/31/2004. The Ljung-Box Q-statistics on the exception indicator
variable and their p-values. The Q-statistic at lag 4(8) for the null hypothesis that there is no autocorrelation
up to order 4(8). An ∗ indicates that there is evidence to reject the null hypothesis at the 5% level type I
error date.

c) The back-testing criterion

The back-testing criterion is used to evaluate the performance of VaR measures.
The most popular back-testing measure for accuracy of the quantile estimator is
the percentage of returns that falls below the quantile estimate which is denoted
as α̂. For an accurate estimator of an α quantile, α̂ will be very close to α%. In
order to determine the significance of α departure of from α̂%, the following test
statistic is used:



40 Variance reduction technique for calculating value at risk in fixed income portfolios

Z = (T α̂−Tα%)/
√

Tα%(1−α%)−→ N(0,1) (17)

where T is the sample size.

Table 8: The Back-testing Criterion.

% of exceptions
3-year 5-year 10-year 15-year

VaR D EWMA (1%) 1.37% 1.60% 1.60% 1.14%
[0.784] [1.264] [1.264] [0.303]

VaR D EWMA (2%) 2.06% 3.10% 3.88%∗ 4.26%∗
[0.089] [1.644] [2.801] [3.380]

VaR D EWMA (3%) 3.43% 2.75% 3.89% 3.20%
[0.530] [−0.311] [1.091] [0.250]

VaR D EWMA (4%) 3.89% 3.20% 3.89% 3.66%
[−0.117] [−0.850] [−0.117] [−0.361]

VaR D EWMA (5%) 4.58% 4.58% 5.26% 4.58%
[−0.406] [−0.406] [0.252] [−0.406]

VaR I EWMA (1%) 1.60% 1.60% 2.29%∗ 1.83%
[1.264] [1.264] [2.707] [1.745]

VaR I EWMA (2%) 2.97% 2.52% 2.52% 2.97%
[1.456] [0.772] [0.772] [1.456]

VaR I EWMA (3%) 3.66% 2.75% 3.43% 3.89%
[0.810] [−0.311] [0.530] [1.091]

VaR I EWMA (4%) 4.35% 3.43% 3.66% 4.35%
[0.371] [−0.605] [−0.361] [0.371]

VaR I EWMA (5%) 4.35% 4.35% 4.35% 5.49%
[−0.626] [−0.626] [−0.626] [0.472]

VaR I GARCH (1%) 1.37% 1.37% 1.37% 1.37%
[0.784] [0.784] [0.784] [0.784]

VaR I GARCH (2%) 2.52% 2.06% 1.83% 2.06%
[0.772] [0.089] [−0.253] [0.089]

VaR I GARCH (3%) 2.75% 2.29% 2.52% 2.52%
[−0.311] [−0.872] [−0.592] [−0.592]

VaR I GARCH (4%) 3.66% 2.29% 2.97% 2.97%
[−0.361] [−1.826] [−1.094] [−1.094]

VaR I GARCH (5%) 4.35% 2.97% 3.20% 4.35%
[−0.626] [−1.942] [−1.723] [−0.626]

Note: Sample period 4/15/2002 to 12/31/2004. Percentage of exceptions. In square brackets Back-testing
Criterion: The Z statistic for determining the significance of departure for α̂= x/T from α%. An ∗ indicates
that there is evidence to reject the null hypothesis at the 5% level type I error rate.
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Table 8 presents the percentage of exception and, in square brackets, the Z statistic
for VaR measures. For measures computed with EWMA (independently of the quantile
considered) we reject the null hypothesis that the percentage of exceptions coincides
with the corresponding quantile in three cases. More precisely, in two occasions with
the VaR D EWMA measure and once with the VaR I EWMA measure. On the other
hand, the null hypothesis is never rejected for the VaR I GARCH measure.

In summary, we can say that the VaR measures we obtain using the simplification
proposed in this paper are, at least as good as those computed with RiskMetrics method
(VaR D EWMA). Nevertheless, the advantage of the proposed method is a much lower
computational cost to calculate VaR.

5. Conclusion

When we use the most commonly implemented parametric approach, we need to
estimate the variance-covariance matrix of the portfolio assets. The variance-covariance
matrix of prices of a bonds vector from a portfolio depends on the variance-covariance
matrix of the interest rates that determine its value. The estimation of the interest rates
matrix entails two types of practical problems: dimensionality (the number of variances
and covariances to be estimated may be very large), and feasibility (the estimation
of interest rates covariances using multivariate methods becomes unfeasible as the
dimension increases).

The aim of this paper is to propose a method for calculating the variance-covariance
matrix of a large set of interest rates with a low computational cost. The suggested
methodology exploits the parameterization of the underlying interest rates proposed by
Nelson and Siegel (1987) for estimating the term structure of interest rate (TSIR). Our
method turns out to be useful for estimating Value at Risk (VaR), since it considerably
simplifies the calculation of this measure.

We start with an explanatory model of interest rates: the Nelson and Siegel (1987)
model originally developed to estimate the TSIR. This model provides a relationship
to account for changes in interest rates as a function of changes in four parameters,
using a linear approximation. Although this approximation reduces the dimension of
the variance-covariance matrix, it still requires covariance to be estimated. In order to
solve this problem, we propose applying principal components of the changes in the
four parameters of the Nelson and Siegel model. Given orthogonality among principal
components, the resulting diagonal variance-covariance matrix has a smaller dimension,
i.e., all covariances are zero.

The procedure we propose in this paper has been tested using data from the Spanish
debt market. The results obtained from applying our methodology are very satisfactory.
On the one hand, the variances estimated with our procedure and those from a direct
estimation are quite similar, regardless of the method used to estimate the volatility
(exponentially weighted moving average or RiskMetrics methodology vs. Generalized
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Autoregressive Conditional Heteroskedasticity models). As for VaR calculation, the
estimations we obtain with this procedure are quite precise, independently of the method
used to estimate the volatility.

An additional advantage of the proposed method is that it is not necessary to
decompose the assets into cash-flow and subsequently assign cash to a series of vertexes
(RiskMetrics cash flow mapping method). This stems from the fact that our method
allows us to estimate the variances and covariances of a vector of interest rates at the
same cost and independently from the dimension of the problem. It is unnecessary to
reduce the TSIR to a small number of vertexes.

Finally, we should mention that the methodology proposed in this paper presupposes
a small implementation cost for financial institutions, since the majority of them already
use the Nelson and Siegel (1987) method to estimate TSIR or yield curve. Therefore,
these institutions already have the information required to implement our procedure.
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