Torsion Graph over Multiplication Modules

SH. GHALANDARZADEH, P. MALAKOOTI RAD

Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

 $ghalandarzadeh@kntu.ac.ir, \quad pmalakooti@dena.kntu.ac.ir$

Presented by Consuelo Martínez

Received October 27, 2009

Abstract: For a commutative ring R, the torsion graph of an R-module M is $\Gamma(M)$ whose vertices are nonzero torsion elements of M, and two distinct vertices x and y are adjacent if and only if [x:M][y:M]M = 0. In this article we show that if $S = R \setminus Z(M)$, then $\Gamma(M)$ and $\Gamma(S^{-1}M)$ are isomorphic for a multiplication R-module M. Also we prove that for a multiplication R-module M, if $\Gamma(M)$ is uniquely complemented, then $S^{-1}M$ is von Neumann regular or $\Gamma(M)$ is a star graph.

Key words: Torsion graph, multiplication module, von Neumann regular module. AMS *Subject Class.* (2000): 13A99, 05C99, 13C99.

1. INTRODUCTION

The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [6]. He suppose that all elements of the ring are vertices of the graph and was mainly interested in colorings and then this investigation of coloring of a commutative ring was continued by Anderson and Naseer in [1]. Anderson and Livingston [3], studied the zero-divisor graph whose vertices are the nonzero zero-divisors. Let R be a commutative ring with identity and let Z(R) be the set of zero-divisors of R. The zero-divisor graph of R denoted by $\Gamma(R)$, is a graph with vertices $Z(R)^* = Z(R) \setminus \{0\}$ and for distinct $x, y \in Z(R)^*$ the vertices x and y are adjacent if and only if xy = 0. This graph turns out to exhibit properties of the set of the zero divisors of a commutative ring with best way. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us explore some interesting results in algebraic structures of rings.

The zero-divisor graph of a commutative ring has also been studied by several other authors (e.g., [1, 6, 4]). The zero divisor graph has also been introduced and studied for semigroups in [8], nearrings in [7], and for non-commutative rings, in [10].

281

Throughout, R is a commutative ring with unity and M is a unitary Rmodule. In this paper, motivated by the work of [2], we will investigate the concept of torsion-graph for modules as a natural generalization of zero-divisor graph for rings. For $x \in M$ the residual of Rx by M, denoted by [x:M], is a set of elements $r \in R$ such that $rM \subseteq Rx$. The annihilator of an R-module M denoted by $\operatorname{Ann}_{R}(M)$ is [0:M]. Let T(M) be the set of torsion elements of M. It is clear that if R is an integral domain then T(M) is a submodule of M which is called torsion submodule of M. If T(M) = 0 then the module M is said to be torsion-free and it is called a torsion module if T(M) = M. An *R*-module M is a multiplication module if for every *R*-submodule K of M there is an ideal I of R such that K = IM. We will study some properties of $\Gamma(M)$, when M is a multiplication R-module. Here the torsion graph $\Gamma(M)$ of M is a simple graph whose vertices are nonzero torsion elements of M and two distinct vertices x and y are adjacent if and only if [x:M][y:M]M = 0. Thus, $\Gamma(M)$ is an empty graph if and only if M is a torsion-free R-module. In this paper, we will investigate the interplay of module properties of M in relation to the properties of $\Gamma(M)$. We also think that torsion-graph helps us to study the algebraic properties of modules using graph theoretical tools. A graph G is connected if there is a path between any two distinct vertices. The distance, d(x, y) between connected vertices x, y is the length of the shortest path from x to y $(d(x, y) = \infty$ if there is no such path).

A ring R is called reduced if $\operatorname{Nil}(R) = 0$, and an R-module M is called a reduced module if rm = 0 for $r \in R$ and $m \in M$, implies that $rM \cap Rm = 0$. Also a ring R is von Neumann regular if for each $a \in R$, there is an element $b \in R$ such that $a = a^2b$. It is clear that every von Neumann regular ring is reduced. An R-module M is called a von Neumann regular module if every cyclic submodule of M is pure in M. Anderson and Fuller in [5], called the submodule N, a pure submodule of M if $IM \cap N = IN$ for every ideal I of R. And so it is clear that every von Neumann regular modules is reduced.

Let Γ be a graph and $V(\Gamma)$ denotes the vertices of Γ . Let $v \in V(\Gamma)$, as in [2], $w \in V(\Gamma)$ is called a complement of v, if v is adjacent to w and no vertex is adjacent to both v and w; i.e., the edge v - w is not an edge of any triangle in Γ . In this case, we write $v \perp w$. In module-theoretic terms, for multiplication *R*-module M, this is the same as saying that $v \perp w$ in $\Gamma(M)$ if and only if $v, w \in T(M)^*$ and $\operatorname{Ann}(w)M \cap \operatorname{Ann}(v)M \subset \{0, v, w\}$. Moreover, we will follow the authors in [2], and say that Γ is complemented if every vertex has a complement, and is uniquely complemented if it is complemented and any two complements of vertex set are adjacent to the same vertices. From [2, Theorem 3.5 and Theorem 3.9], we know that for a ring R with nonzero nilpotent elements, $\Gamma(R)$ is uniquely complemented if and only if $\Gamma(R)$ is a star graph. Moreover, we know that, if R is reduced, then $S^{-1}R$ is a von Neumann regular ring.

In Section 2, as a generalization of [2, Theorem 2.2], we show that if Mis a multiplication R-module and $S = R \setminus Z(M)$, then $\Gamma(M) \cong \Gamma(S^{-1}M)$. In Section 3, we investigate the complemented and uniquely complemented torsion graph. We also extend [2, Theorem 3.9], to the multiplication R-modules. And furthermore for a multiplication R-module M, we prove that if $\Gamma(M)$ is complemented, but not uniquely complemented, then $M = M_1 \oplus M_2$, where M_1, M_2 are submodules of M. Also for a reduced multiplication R-module M, we show that if $\Gamma(M)$ is complemented, then $S^{-1}M$ is a von Neumann regular module, where $S = R \setminus Z(M)$, also for a faithful multiplication R-module Mwith Nil $(M) \neq 0$, we prove that $\Gamma(M)$ is uniquely complemented if and only if $\Gamma(M)$ is a star graph.

Let R be a ring and M be an R-module, throughout Nil(R) is an ideal consisting of nilpotent elements of R,

$$\operatorname{Nil}(M) := \bigcap_{N \in \operatorname{Spec}(M)} N \,,$$

Spec(M) is the set of all prime submodules of M, $T(M)^* = T(M) \setminus \{0\}$, $Z(M) = \{r \in R : rm = 0 \text{ for some } 0 \neq m \in M\}$. We let \mathbb{Q}, \mathbb{Z} and \mathbb{Z}_n denote the rings of rational numbers, integers and integers modulo n, respectively.

2. Isomorphisms

Recall that two graphs G and H are isomorphic, denoted by $G \cong H$, if there exists a bijection, say φ , from V(G) to V(H) of vertices such that the vertices x and y are adjacent in G if and only if $\varphi(x)$ and $\varphi(y)$ are adjacent in H.

Let $S = R \setminus Z(M)$. It is clear that the well defined map

$$\begin{array}{rcl} \chi: M & \longrightarrow & S^{-1}M \\ m & \longmapsto & \chi(m) = \frac{ms}{s} \ , \end{array}$$

is a monomorphism. So we can identify M with its image in $S^{-1}M$. Thus if m denotes an element of M, then the same symbol is also used to denote the fraction $\frac{m}{1}$. In this manner M becomes a submodule of $S^{-1}M$.

Let M be an R-module. For $m, m' \in T(M)^*$, we define $m \sim_M m'$ if and only if $\operatorname{Ann}(m)M = \operatorname{Ann}(m')M$. Clearly \sim is an equivalence relation on $T(M)^*$. Let $S = R \setminus Z(M)$ and denote equivalence classes by $[m]_M$, so

$$[m]_M = \{m' \in T(M)^* : m \sim_M m'\}$$

and

$$([m]_M)_S = \left\{ \frac{m'}{s} : m' \in [m], s \in S \right\}.$$

Now we would like to show that $\Gamma(S^{-1}M)$ and $\Gamma(M)$ are isomorphic by showing that there is a bijection map between equivalence classes of vertex sets $\Gamma(S^{-1}M)$ and $\Gamma(M)$ such that the corresponding equivalence classes have the same cardinality.

THEOREM 2.1. Let M be a faithful multiplication R-module and $S = R \setminus Z(M)$. Then $\Gamma(M)$ and $\Gamma(S^{-1}M)$ are isomorphic.

Proof. (Our proof is quite similar to the proof in [2], applied for a ring.) Let $S = R \setminus Z(M)$, $M_S = S^{-1}M$, $R_S = S^{-1}R$ and

$$(T(M)_S)^* = \left\{ \frac{m}{s} : m \in T(M)^*, s \in S \right\}.$$

Denote the equivalence relations defined above on $T(M)^*$ and $T(M_S)^*$ by \sim_M and \sim_{M_S} , respectively. For all $m \in T(M)^*$, we have $\operatorname{Ann}_{R_S}(\frac{m}{s}) = \operatorname{Ann}_R(m)_S$ and $[N_S : M_S]M_S = [N : M]_SM_S$. By the above comments $(T(M)_S)^* = T(M_S)^*$, $([m]_M)_S = ([\frac{m}{1}])_{M_S}$ and

$$T(M)^* = \bigcup_{\lambda \in \Lambda} [m_{\lambda}]_M, \qquad T(M_S)^* = \bigcup_{\lambda \in \Lambda} \left[\frac{m_{\lambda}}{1}\right]_{M_S}$$

(both are disjoint unions). We next show that $|[x]_M| = |[\frac{x}{1}]_{M_S}|$ for all $x \in T(M)^*$. It is clear that $[x]_M \subseteq [\frac{x}{1}]_{M_S}$. For the reverse inclusion, let $\frac{m}{s} \in [\frac{x}{1}]_{M_S}$, such that $m \in [x]_M$, $s \in S$, so $\operatorname{Ann}(m)M = \operatorname{Ann}(x)M$ and thus, $\{s^nm : n \ge 1\} \subseteq [x]_M$. Now let $|[x]_M|$ be finite, then there exists $i \in I$ such that $s^im = s^{i+1}m$. So

$$\frac{m}{s} = \frac{ms^i}{s^{i+1}} = \frac{ms^{i+1}}{s^{i+1}} = m \in [x]_M,$$

and therefore $|[x]_M| = |[\frac{x}{1}]_{M_S}|$. Now suppose that $|[x]_M|$ is infinite. We define an equivalence relation \approx on S by $s \approx t$ if and only if sx = tx. It is easily verified that the map

$$\begin{aligned} [x]_M \times S/ \approx & \longrightarrow & [\frac{x}{1}]_{M_S} \\ (b, [s]) & \longmapsto & \frac{b}{s} \end{aligned}$$

is well-defined and surjective, because if (b, [s]) = (a, [t]), then a = b and [s] = [t]. Hence,

$$(s-t)M \subseteq \operatorname{Ann}(x)M = \operatorname{Ann}(a)M = \operatorname{Ann}(b)M$$

and since M is multiplication sa = ta and sb = tb, therefore $\frac{a}{t} = \frac{b}{s}$. Thus,

$$\left| \left[\frac{x}{1} \right] \right| \le \left| [x]_M \right| \left| S \right| \approx \left| \right|.$$

Also, the map

$$\begin{array}{cccc} S/\approx & \longrightarrow & [x]_M \\ [s] & \longmapsto & sa \end{array}$$

is clearly well-defined and injective. Hence, $|S| \approx |\leq |[x]_M|$ and thus,

$$\left| \left[\frac{x}{1} \right]_{M_S} \right| \le \left| [x]_M \right|^2 = \left| [x]_M \right|,$$

since $|[x]_M|$ is infinite. Hence, $|[x]_M| = |[\frac{x}{1}]_{M_S}|$. Thus, there is a bijection map $\varphi_\alpha : [x_\alpha] \longrightarrow [\frac{x_\alpha}{1}]$ for each $\alpha \in \Lambda$. Now define

$$\begin{aligned} \varphi : T(M)^* &\longrightarrow T(M_S)^* \\ m &\longmapsto & \varphi(m) = \varphi_\alpha(m) \,. \end{aligned}$$

Clearly φ is a bijection map. Thus, we need only to show that m and n are adjacent in $\Gamma(M)$ if and only if $\varphi(m)$ and $\varphi(n)$ are adjacent in $\Gamma(M_S)$; i.e.,

$$[m:M][n:M]M = 0 \qquad \Longleftrightarrow \qquad [\varphi(m):M_S][\varphi(n):M_S]M_S = 0.$$

Let $m \in [x]_M$, $n \in [y]_M$, $w \in [\frac{x}{1}]_{M_S}$ and $z \in [\frac{y}{1}]_{M_S}$. It is sufficient to show that

$$[m:M][n:M]M = 0 \qquad \Longleftrightarrow \qquad \left[\frac{w}{1}:M_S\right]\left[\frac{z}{1}:M_S\right]M_S = 0.$$

Note that

$$[m:M][n:M]M = 0$$

$$\iff m \in \operatorname{Ann}_{R}(n)M = \operatorname{Ann}_{R}(y)M$$

$$\iff \frac{m}{1} \in \operatorname{Ann}_{R_{S}}\left(\frac{n}{1}\right)M_{S} = \operatorname{Ann}_{R_{S}}\left(\frac{y}{1}\right)M_{S} = \operatorname{Ann}_{R_{S}}\left(\frac{z}{1}\right)M_{S}$$

$$\iff \left[\frac{m}{1}:M_{S}\right]\left[\frac{z}{1}:M_{S}\right]M_{S} = 0$$

$$\iff \frac{z}{1} \in \operatorname{Ann}_{R_{S}}\left(\frac{m}{1}\right)M_{S} = \operatorname{Ann}_{R_{S}}\left(\frac{x}{1}\right)M_{S} = \operatorname{Ann}\left(\frac{w}{1}\right)M_{S}$$

$$\iff \left[\frac{z}{1}:M_{S}\right]\left[\frac{w}{1}:M_{S}\right]M_{S} = 0.$$

Hence, $\Gamma(M)$ and $\Gamma(M_S)$ are isomorphic as graphs.

COROLLARY 2.2. Let M and N be multiplication R-modules with $S^{-1}M \cong S^{-1}N$, then $\Gamma(M) \cong \Gamma(N)$. In particular $\Gamma(M) \cong \Gamma(N)$ when $S^{-1}M = S^{-1}N$.

3. Complemented graph and multiplication module

In this section we prove that, if M is a reduced multiplication R-module and $\Gamma(M)$ is uniquely complemented, then $S^{-1}M$ is von Neumann regular and furthermore we show that if M is a multiplication R-module with $\operatorname{Nil}(M) \neq 0$, then $\Gamma(M)$ is uniquely complemented if and only if $\Gamma(M)$ is a star graph with at most six edges or is an infinite star graph (i.e., $\Gamma(M)$ has an infinite vertices such that there exists a vertex adjacent to every other vertices, and these are only adjacent relation). Finally we show that if M is a multiplication R-module and $\Gamma(M)$ is uniquely complemented, then either $\Gamma(M)$ is a star graph or $S^{-1}M$ is von Neumann regular, where $S = R \setminus Z(M)$.

Let G be a (undirected) graph. We will follow the authors in [4], and define that $a \leq b$ if a and b are not adjacent and each vertex of G adjacent to b is also adjacent to a; and we define $a \sim b$ if and only if $a \leq b$ and $b \leq a$. Thus, $a \sim b$ if and only if a and b are adjacent to exactly the same vertices. Clearly \sim is an equivalence relation on G.

Now let M be a multiplication R-module and $m, n \in T(M)^*$, then $m \sim n$ if and only if $\operatorname{Ann}(m)M \setminus \{m\} = \operatorname{Ann}(n)M \setminus \{n\}$. Also we know that if $m \perp n$,

286

then [m:M][n:M]M = 0 and $\operatorname{Ann}(m)M \cap \operatorname{Ann}(n)M \subseteq \{0, m, n\}$. Now if $\operatorname{Ann}(m)M \cap \operatorname{Ann}(n)M = \{0, m, n\}$, then

$$[m:M]^2 M = [n:M]^2 M = [m:M][n:M]M = 0.$$

On the other hand, since $m \perp n$, $m + n \in \{0, m, n\}$, so m + n is adjacent to m and n, which is a contradiction. Therefore $m \perp n$ if and only if $\operatorname{Ann}(m)M \cap \operatorname{Ann}(n)M \subset \{0, m, n\}$ and [m : M][n : M]M = 0.

LEMMA 3.1. Consider the following statements for a multiplication R-module M with $m, m' \in T(M)^*$:

- (a) $m \sim m'$;
- (b) Rm = Rm';
- (c) $\operatorname{Ann}(m)M = \operatorname{Ann}(m')M$.

Then under the above conditions we have:

- (1) If M is reduced, then statements (a) and (c) are equivalent.
- (2) If M is von Neumann regular, then all three statements are equivalent.

Proof. (1) Let M be reduced, one can easily check that (a) \Leftrightarrow (c).

(2) Since every von Neumann regular module is reduced, so (a) \Leftrightarrow (c). Clearly (b) \Rightarrow (c). We show that (b) \leftarrow (c). Since M is von Neumann regular $Rm \cap [m:M]M = [m:M]Rm$. So m = sm for some $s \in [m:M]$, hence, $(1-s)m' \in \operatorname{Ann}(m)M = \operatorname{Ann}(m')M$. Therefore $[m':M]m' \in Rm$. Moreover, since M is a von Neumann regular multiplication module [m':M]m' = Rm' and so $Rm' \subseteq Rm$ and similarly $Rm \subseteq Rm'$. Consequently Rm = Rm'.

LEMMA 3.2. Let M be a reduced multiplication R-module and let $m, m', m'' \in T(M)^*$. If $m \perp m'$ and $m \perp m''$, then $m' \sim m''$. Thus, $\Gamma(M)$ is uniquely complemented if and only if $\Gamma(M)$ is complemented.

Proof. Let $m, m', m'' \in T(M)^*$. Suppose $m \perp m'$ and $m \perp m''$. It is sufficient to show that $\operatorname{Ann}(m')M = \operatorname{Ann}(m'')M$. Suppose $x \in \operatorname{Ann}(m')M$, so [x:M][m':M]M = 0. One can easily show that for all $\alpha \in [x:M]$,

$$[\alpha m'': M][m': M]M = 0 = [\alpha m'': M][m: M]M.$$

So $\alpha m'' \in \{0, m, m'\}$. If $\alpha m'' = m$ or $\alpha m'' = m'$, then m = 0 or m' = 0, is a contradiction. Thus, $\alpha m'' = 0$ for all $\alpha \in [x : M]$. Therefore $x \in \operatorname{Ann}(m'')M$ and so $\operatorname{Ann}(m')M \subseteq \operatorname{Ann}(m'')M$. Similarly $\operatorname{Ann}(m'')M \subseteq \operatorname{Ann}(m')M$.

THEOREM 3.3. Let M be a reduced multiplication R-module. If $\Gamma(M)$ is complemented, then $S^{-1}M$ is von Neumann regular, where $S = R \setminus Z(M)$.

Proof. Let $0 \neq \frac{x}{s} \in S^{-1}M$, where $x \in M$ and $s \in S$. Let $x \notin T(M)^*$ and

$$x = \sum_{i=1}^{n} \alpha_i m_i \in [x:M]M,$$

where $\alpha_i \in [x:M]$ and $m_i \in M$. Suppose that $\alpha = \sum_{i=1}^n \alpha_i$. If $\alpha \in Z(M)$, then $\alpha m = 0$ for some non zero element $m \in M$. So [m:M][x:M]M = 0, hence, $0 \neq [m:M] \subseteq \operatorname{Ann}(x) = 0$, a contradiction. Therefore $\alpha \in S = R \setminus Z(M)$. Thus,

$$S^{-1}R\left(\frac{x}{s}\right) \cap S^{-1}M\left(\frac{r}{t}\right) = S^{-1}R\left(\frac{r}{t}\frac{x}{s}\right).$$

Therefore $S^{-1}M$ is von Neumann regular.

Next we can suppose that $x \in T(M)^*$. By the hypothesis there is $y \in T(M)^*$ such that $x \perp y$. Hence, $y \in \operatorname{Ann}(x)M$ and so $y = \sum_{i=1}^m \beta_i m_i$, $m_i \in M$ and $\beta_i \in \operatorname{Ann}(x)$. Let $\beta = \sum_{i=1}^m \beta_i$. We show that $\alpha + \beta \in S$. If $\alpha + \beta \in Z(M)$, then $(\alpha + \beta)m_0 = 0$ for some non zero $m_0 \in M$. So

$$[\alpha m_0: M][x: M]M = 0 = [y: M][\alpha m_0: M]M$$

Since M is a reduced module $x \neq \alpha m_0$ and $\alpha m_0 \neq y$. Thus, $\alpha m_0 = 0$ and hence, $\beta m_0 = 0$, so

$$[x:M][m_0:M]M = 0 = [y:M][m_0:M]M.$$

By a similar argument we have $m_0 = 0$, a contradiction. Therefore $\alpha + \beta \in S$ and $\frac{x}{s} = \frac{\alpha}{\alpha + \beta} \frac{x}{s}$. So a simple check yields that

$$S^{-1}R\left(\frac{x}{s}\right) \cap S^{-1}M\left(\frac{r}{t}\right) = S^{-1}R\left(\frac{r}{t}\frac{x}{s}\right).$$

Hence, $S^{-1}M$ is von Neumann regular.

Next example shows that $S^{-1}M$ is von Neumann regular but M is not von Neumann regular in spite of $\Gamma(M) \cong \Gamma(S^{-1}M)$.

We know that an r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any of these subsets. A complete r-partite graph is one in which each vertex is joined to every vertex that is in another subset. The complete bipartite graph (i.e., 2-partite graph) with vertex sets having m and n elements, will be denoted by $K_{m,n}$. A complete bipartite graph of the form $K_{1,n}$ is called a star graph. EXAMPLES 3.4. (a) Let M_1 be an R_1 -module and M_2 be an R_2 -module, then $M = M_1 \times M_2$ is $R = R_1 \times R_2$ module with this multiplication $R \times M \longrightarrow M$, defined by $(r_1, r_2)(m_1, m_2) = (r_1m_1, r_2m_2)$. Now let $M = \mathbb{Z} \times n\mathbb{Z}$ and $R = \mathbb{Z} \times \mathbb{Z}$. It is clear that $\Gamma(M)$ is a complete bipartite graph (i.e., $\Gamma(M)$ may be partitioned into two disjoint vertex sets $V_1 = \{(m_1, 0) : m_1 \in (\mathbb{Z})^*\}$ and $V_2 = \{(0, m_2) : m_2 \in (n\mathbb{Z})^*\}$ and two vertices x and y are adjacent if and only if they are in distinct vertex sets). Therefore $\Gamma(M)$ is complemented. Also Mis a faithful multiplication R-module, because M = R(1, n). A simple check yields that M is reduced, thus, $S^{-1}M$ is von Neumann regular, by Theorem 3.3. But M is not von Neumann regular (use N = R(2, 2n) and I = [N : M]).

(b) Let $R = \mathbb{Z}_2 \times \mathbb{Z}$ and M = R as an *R*-module. So *M* is a faithful multiplication *R*-module. Clearly *M* is reduced and $\Gamma(M)$ is an infinite star graph with center $(\bar{1}, 0)$. Thus, $\Gamma(M)$ is complemented and by Theorem 3.3, $S^{-1}M$ is von Neumann regular, but *M* is not von Neumann regular.

COROLLARY 3.5. Let M be a cyclic faithful reduced R-module. The following statements are equivalent:

- (1) $S^{-1}M$ is von Neumann regular, where $S = R \setminus Z(M)$;
- (2) $\Gamma(M)$ is uniquely complemented;
- (3) $\Gamma(M)$ is complemented.

Proof. (1) \Rightarrow (2) Let M be a von Neumann regular R-module and $m \in T(M)^*$. So $[m:M]M \cap Rm = Rm[m:M]$. Since Rm is a weakly cancellation module, $R = [m:M] + \operatorname{Ann}(m)$. Say M := Rx for some $x \in M$. Thus, $Rx = Rm + \operatorname{Ann}(m)x$ and therefore x = rm + y for some $r \in R, y \in \operatorname{Ann}(m)x$. One can easily check that $y \in T(M)^*$ and $y \perp m$, so $\Gamma(M)$ is complemented. Since M is a faithful cyclic R-module, then $S^{-1}M$ is a faithful cyclic $S^{-1}R$ -module and therefore by the above comments, $\Gamma(S^{-1}M)$ is complemented. Moreover by Theorem 2.1, $\Gamma(M) \cong \Gamma(S^{-1}M)$, so $\Gamma(M)$ is complemented. Consequently $\Gamma(M)$ is uniquely complemented by Lemma 3.2.

- $(2) \Rightarrow (3)$ This is true for any graph.
- $(3) \Rightarrow (1)$ By Theorem 3.3.

COROLLARY 3.6. Let M be a reduced multiplication R-module with $T(M) \neq M$. Then the following statements are equivalent:

- (1) $S^{-1}M$ is von Neumann regular, where $S = R \setminus Z(M)$;
- (2) $\Gamma(M)$ is uniquely complemented;
- (3) $\Gamma(M)$ is complemented.

Now we investigate some properties of M, when M is a multiplication R-module with Nil $(M) \neq 0$. In this case, we extend [2, Theorem 3.9] in Theorem 3.12. First we give the following key lemma. Recall that a vertex of a graph is called an end if there is only one other vertex adjacent to it.

LEMMA 3.7. Let R be a ring and M be a multiplication R-module with $Nil(M) \neq 0$, then:

- (a) If $\Gamma(M)$ is complemented, then either $8 \le |M| \le 16$ or $|M| \ge 17$ and $\operatorname{Nil}(M) = \{0, x\}$ for some $0 \ne x \in M$.
- (b) If $\Gamma(M)$ is uniquely complemented and $|M| \ge 17$, then any complement of the nonzero element $x \in Nil(M)$ is an end.

Proof. (a) We subdivide the proof of (a) in the following steps:

Step 1: Let $\Gamma(M)$ be complemented. We show that for all $0 \neq \alpha \in [x:M]$, where $x \in \operatorname{Nil}(M)$, $\alpha^n x = 0$ for some $n \in \mathbb{N}$. Let $S = \{\alpha^n x : n \in \mathbb{N}\}$, we must show that $0 \in S$. Suppose that $0 \notin S$. Let $\Sigma = \{K : K \leq M, K \cap S = \emptyset\}$. By Zorn's lemma, let H be a maximal member of Σ . We claim that [H:M] is a prime ideal of R. Clearly $[H:M] \neq R$, let $ab \in [H:M]$ but $a, b \notin [H:M]$ for $a, b \in R$. Hence, $(aM + H), (bM + H) \notin \Sigma$, so $\alpha^{n_1} x \in S \cap (aM + H)$ and $\alpha^{n_2} x \in S \cap (bM + H)$ for some $n_1, n_2 \in \mathbb{N}$. Therefore $\alpha^{n_1+n_2+1} x \in H \cap S$, is a contradiction. Hence, [H:M] is a prime ideal and by [9, Corollary 2.11], His a prime submodule of M. Since $x \in \operatorname{Nil}(M)$ we have $\alpha x \in H \cap S$, which is a contradiction and consequently $0 \in S$.

Choose n to be as small as possible $\alpha^n x = 0$. Then $n \ge 1$ and $\alpha^{n-1} x \ne 0$. Step 2: In this step we claim that $n \le 3$. Suppose that n > 3, so $\alpha x \in T(M)^*$. Since $\Gamma(M)$ is complemented, there exists $y \in T(M)^*$ such that y is a complement of αx . Then

$$[\alpha^{n-1}x:M][y:M]M = 0 = [\alpha^{n-1}x:M][\alpha x:M]M,$$

and so $\alpha^{n-1}x = y$ will be the only possibility. Thus, $\alpha x \perp \alpha^{n-1}x$. Similarly $\alpha^i x \perp \alpha^{n-1}x$ for each $1 \leq i \leq n-2$. Let $m = \alpha^{n-2}x + \alpha^{n-1}x$, then

$$[m:M][\alpha^{n-1}x:M]M = 0 = [m:M][\alpha^{n-2}x:M]M,$$

which is a contradiction, since $\alpha^{n-2}x \perp \alpha^{n-1}x$ and

$$\alpha^{n-2}x + \alpha^{n-1}x \notin \{0, \alpha^{n-1}x, \alpha^{n-2}x\}.$$

Thus, $n \leq 3$.

Step 3: Let n = 3, so $\alpha^3 x = 0$ but $\alpha^2 x \neq 0$. We show that either |M| = 16or |M| = 8. Similar to Step 2, $\alpha x \perp \alpha^2 x$. Also $\operatorname{Ann}(x)M \subseteq \{0, \alpha^2 x\}$, since if $z \in \operatorname{Ann}(x)M$, then [z : M][x : M]M = 0, hence, if $0 \neq z$, z is adjacent to two elements αx and $\alpha^2 x$. Since $\alpha x \perp \alpha^2 x$, therefore $z = \alpha^2 x$. So $\operatorname{Ann}(x)M \subseteq \{0, \alpha^2 x\}$. Now for all $r \in R$,

$$[r\alpha^2 x:M][\alpha x:M]M = 0 = [r\alpha^2 x:M][\alpha^2 x:M]M,$$

hence, $r\alpha^2 x \in \{0, \alpha x, \alpha^2 x\}$. But $r\alpha^2 x = \alpha x$, then $\alpha^2 x = 0$, is a contradiction and so $R\alpha^2 x = \{0, \alpha^2 x\}$. Also

Ann
$$(\alpha^2 x)M \subseteq \{0, x, \alpha x, \alpha^2 x, x + \alpha x, x + \alpha^2 x, \alpha x + \alpha^2 x, x + \alpha x + \alpha^2 x\},\$$

since if $z \in \operatorname{Ann}(\alpha^2 x)M$, then $\alpha^2 z \in \operatorname{Ann}(x)M \subseteq \{0, \alpha^2 x\}$ and so either $\alpha^2 z = 0$ or $\alpha^2 z = \alpha^2 x$. Thus, either

$$[\alpha z:M][\alpha x:M]M = 0 = [\alpha z:M][\alpha^2 x:M]M$$

or

$$[(\alpha z - \alpha x) : M][\alpha x : M]M = 0 = [(\alpha z - \alpha x) : M][\alpha^2 x : M]M.$$

Since $\alpha x \perp \alpha^2 x$, we have either $\alpha z \in \{0, \alpha x, \alpha^2 x\}$ or $(\alpha z - \alpha x) \in \{0, \alpha x, \alpha^2 x\}$. Now let $\alpha^2 z = 0$, so $\alpha z \neq \alpha x$ and therefore either $\alpha z = 0$ or $\alpha(z - \alpha x) = 0$ and so

$$[z:M][\alpha x:M]M = 0 = [z:M][\alpha^2 x:M]M$$

or

$$[(z - \alpha x) : M][\alpha x : M]M = 0 = [(z - \alpha x) : M][\alpha^2 x : M]M,$$

hence, $z \in \{0, \alpha x, \alpha^2 x, \alpha^2 x + \alpha x\}$. Thus, we may assume that $\alpha^2 z = \alpha^2 x$, then $\alpha z - \alpha x \neq \alpha x$. On the other hand $\alpha z - \alpha x \in \{0, \alpha x, \alpha^2 x\}$, so either $\alpha z - \alpha x = 0$ or $(\alpha z - \alpha x) = \alpha^2 x$ and by similar argument $z \in \{x, \alpha^2 x, x + \alpha x, x + \alpha x + \alpha^2 x\}$. Now if $\alpha^2 [x : M] x = 0$, then

Ann
$$(\alpha^2 x)M = \{0, x, \alpha x, \alpha^2 x, x + \alpha x, x + \alpha^2 x, \alpha x + \alpha^2 x, x + \alpha x + \alpha^2 x\}.$$
 (i)

And if $\alpha^2 [x:M] x \neq 0$, then

$$\operatorname{Ann}(\alpha^2 x)M = \left\{0, \alpha x, \alpha^2 x, \alpha x + \alpha^2 x\right\}.$$
 (ii)

Now we claim that |M| = 16 in case (i) and |M| = 8 in case (ii). Since $\alpha^2[x:M]M \neq 0$, there are $\gamma \in [x:M]$ and $m \in M$ such that $\alpha^2 \gamma m \neq 0$ and a

simple check yields $\alpha^2 \gamma m = \alpha^2 x$. Let $m_0 \in M$, so $\alpha^2 \gamma m_0 \in R \alpha^2 x = \{0, \alpha^2 x\}$. If $\alpha^2 \gamma m_0 = 0$, then $m_0 \in \operatorname{Ann}(\alpha^2 x)M$ and if $\alpha^2 \gamma m_0 = \alpha^2 x$, then $m_0 - m \in \operatorname{Ann}(\alpha^2 x)$. Consequently |M| = 16 in case (i) and |M| = 8 in case (ii).

Step 4: In this step we show that $H = \operatorname{Ann}(\alpha^2 x)M$ is the unique maximal submodule of M. Clearly $H \neq M$ and $R\alpha^2 x \cong \frac{R}{\operatorname{Ann}(\alpha^2 x)}$. Since $R\alpha^2 x = \{0, \alpha^2 x\}$, we have $\operatorname{Ann}(\alpha^2 x)$ is a maximal ideal of R. Hence, by [9, Theorem 2.5], $\operatorname{Ann}(\alpha^2 x)M$ is a maximal submodule. Also

$$\operatorname{Ann}(\alpha^2 x)M \subseteq Rx \subseteq \operatorname{Nil}(M) \subseteq \operatorname{Ann}(\alpha^2 x)M.$$

Therefore $\operatorname{Ann}(\alpha^2 x)M = \operatorname{Nil}(M)$ is the unique maximal submodule of M. If $T(M) \subseteq H = \operatorname{Ann}(\alpha^2 x)M$, then $T(M) = \operatorname{Ann}(\alpha^2 x)M$, so $\Gamma(M)$ is a star graph with 5 edges and center $\alpha^2 x$.

Step 5: Assume that n = 2, we show that $[x : M]^2 x = 0$. Let $[x : M]^2 x \neq 0$, so there exist two elements $\alpha, \beta \in [x : M]$ such that $\alpha\beta x \neq 0$. Also there are $m \in M$ and $\gamma \in [x : M]$ such that $\alpha\beta\gamma m \neq 0$, on the other hand $\alpha^2 x = \beta^2 x = \gamma^2 x = 0$ and there is $y \in T(M)^*$ such that $\alpha x \perp y$, a simple check yields that $R\alpha x \subseteq \{0, \alpha x, y\}$ and $y = \alpha\beta x$, hence, $\alpha x \perp \alpha\beta x$. So $R(\alpha x) = \{0, \alpha x, \alpha\beta x\}$ and $Ann(\alpha x)M = \{0, \alpha x, \alpha\beta x\}$. Also $\alpha\beta\gamma m$ is adjacent to two vertices αx and $\alpha\beta x$, but $\alpha\beta\gamma m \neq \alpha x$, thus, $\alpha\beta\gamma m = \alpha\beta x$. We know that $\alpha\beta m$ is adjacent to two vertices αx and $\alpha\beta x$ but $\alpha\beta m \neq \alpha\beta x$ and $\alpha\beta m \neq \alpha x$, which is a contradiction. Thus, $[x : M]^2 x = 0$.

Step 6: Assume that n = 2 and $[x : M]^2 x = 0$. We show that $|M| \le 12$. By hypothesis $\alpha^2 x = 0$ but $\alpha x \ne 0$, hence, $\alpha [x : M]M \ne 0$, thus, $\alpha \beta m \ne 0$ for some $\beta \in [x : M]$ and $m \in M$. We know that $\Gamma(M)$ is complemented and $x \in T(M)^*$, so there is $y \in T(M)^*$ such that $x \perp y$, but αx is adjacent to two vertices x and y. Hence, either $\alpha x = x$ or $\alpha x = y$. If $\alpha x = x$ then by multiplying in α we have $\alpha x = 0$, a contradiction. Therefore $\alpha x = y$, so $\alpha x \perp$ x. Let $z \in \operatorname{Ann}(x)M$ hence, $z \in \{0, x, \alpha x\}$, since $x \perp \alpha x = y$, if z = x, then [x : M]x = 0 which is a contradiction. Therefore $\operatorname{Ann}(x)M = \{0, \alpha x\}$. Also a simple check yields that $R(\alpha x) = \{0, \alpha x\}$. On the other hand $\alpha m \in T(M)^*$ and so there exists $w \in T(M)^*$ such that $\alpha m \perp w$. But $\alpha \beta m$ is adjacent to two vertices αm and w, therefore $\alpha \beta m = w$ will be the only possibility and so $\alpha \beta m \perp \alpha m$. Also $\alpha \beta m$ is adjacent to two vertices αx and x. Hence, $\alpha \beta m = \alpha x$. Now we show that $\operatorname{Ann}(\alpha x)M = \{0, \alpha x\}$. If $\alpha v = 0$, then

$$[v:M][\alpha\beta m:M]M = 0 = [v:M][\alpha m:M]M$$

and if $\alpha v = \alpha x$, then

$$[v - x : M][\alpha\beta m : M]M = 0 = [v - x : M][\alpha m : M]M.$$

Consequently,

$$\operatorname{Ann}(\alpha x)M = \{0, \alpha m, \alpha x, x, x + \alpha m, x + \alpha x\}$$

and so $|\operatorname{Ann}(\alpha x)M| \leq 6$. For all $m_0 \in M$, $\alpha\beta m_0 \in R(\alpha x) = \{0, \alpha x\}$. So either $m_0 \in \operatorname{Ann}(\alpha x)M$ or $m_0 - m \in \operatorname{Ann}(\alpha x)M$, since $\alpha\beta m = \alpha x$. Therefore $|M| \leq 12$. And by a similar argument in Step 4, $\operatorname{Ann}(\alpha x)M = \operatorname{Nil}(M)$ is the unique maximal submodule of M and $\Gamma(M)$ is a star graph.

Step 7: Suppose that n = 1. If $[x : M]x \neq 0$ by the above steps we have $8 \leq |M| \leq 16$. So we can assume that [x : M]x = 0. We show that either |M| = 9 or Nil $(M) = \{0, x\}$ with 2x = 0 and $|M| \neq 9$. Let $x \in [x : M]M$ so $x = \sum_{i=1}^{n} \alpha_i m_i$ where $\alpha_i \in [x : M]$ and $m_i \in M$ for all $1 \leq i \leq n$. Assume that $\alpha_i m_i \neq 0$. Since $\Gamma(M)$ is complemented, then there is $y \in T(M)^*$ such that $x \perp y$, so $Rx \subseteq \{0, x, y\}$. If $x \neq \alpha_i m_i$ for all i, then $\alpha_i m_i \in Rx$ and so $\alpha_i m_i = y$ for all i. Suppose that $\alpha_i m_i = \alpha_1 m_1$, thus $x = \sum_{i=1}^{n} \alpha_1 m_1 = (\sum_{i=1}^{n} \alpha_1)m_1 = \beta m_1$ where $\beta = \sum_{i=1}^{n} \alpha_1 \in [x : M]$. Otherwise $x = \alpha_i m_i$ for some $1 \leq i \leq n$. Hence, we may assume that $x = \alpha m$ for some $\alpha \in [x : M]$ and $m \in M$ such that $\alpha^2 m = 0$ but $0 \neq \alpha m$. We know that $x + x \in Rx \subseteq \{0, x, y\}$, if $x + x \neq 0$, then $Rx = \{0, x, 2x\}, x \perp 2x$ and $\operatorname{Ann}(x)M = \{0, x, 2x\}$. And for all $m_0 \in M$, $\alpha m_0 \in Rx$, therefore

$$[m_0:M][x:M]M = 0 = [m_0:M][2x:M]$$

or

$$[m_0 - m : M][x : M]M = 0 = [m_0 - m : M][2x : M]$$

or

$$[m_0 - 2m: M][x: M]M = 0 = [m_0 - 2m: M][2x: M].$$

Hence, |M| = 9 and by a similar argument in Step 4, $\operatorname{Ann}(x)M$ is the unique maximal submodule of M and $\Gamma(M)$ is a star graph. Now let $|M| \neq 9$ so by the above argument we must have 2x = 0. We claim that $\operatorname{Nil}(M) = \{0, x\}$. Suppose that z is another nonzero element of $\operatorname{Nil}(M)$, hence, [z : M]z = 0and $z = \beta m'$ for some $\beta \in [z : M]$ and $m' \in M$, such that $\beta^2 m' = 0$. So that $\Gamma(M)$ is complemented there are $x', z' \in T(M)^*$ such that $x \perp x'$ and $z \perp z'$, therefore $Rx \subseteq \{0, x, x'\}$ and $Rz \subseteq \{0, z, z'\}$. Observe that $\alpha\beta m = 0$. Let $0 \neq \alpha\beta m \in Rx$ and $\alpha\beta m \in Rz$, if $\alpha\beta m = x \in Rz$, thus, x = z', so $x \perp z$ and hence, $\alpha\beta m = 0$ is a contradiction. And if $\alpha\beta m = x'$, then $Rx = \{0, x, \alpha\beta m\} = \operatorname{Ann}(x)M$ and similar to the above argument, |M| = 9 which is a contradiction. So $\alpha\beta m = 0$ and similarly $\alpha\beta m' = 0$. Let w be a complement of x + z. Clearly x + z is neither x nor z. Also $\alpha w \in Rx \subseteq \{0, x, x'\}$, if $\alpha w = 0$, then x is adjacent to two elements w and x + z, a contradiction. While if $\alpha w = x'$, then $Rx = \{0, x, \alpha w\} = \operatorname{Ann}(x)M$ and it implies that |M| = 9, a contradiction. Hence, we may assume that $\alpha w = x$ and similarly $\beta w = z$. Then

$$0 \neq x + z = \alpha w + \beta w \in [x:M][w:M]M + [z:M][w:M]M$$

since $w \perp x + z$,

$$[w:M]Rx + [w:M]Ry = 0,$$

and so x + z = 0 which is a contradiction. Consequently Nil $(M) = \{0, x\}$.

(b) Let $0 \neq x \in \operatorname{Nil}(M)$ and $|M| \geq 17$. By the proof of (a) we have Nil $(M) = \{0, x\}$ for some $x \in M$ such that x = -x and [x : M]x = 0. Since $\Gamma(M)$ is complemented, there is $y \in T(M)^*$ such that $x \perp y$. We claim that y is an end. We first show that x + y is also a complement for x. Clearly $x + y \in T(M)^*$ and [x + y : M][x : M]M = 0, because [x : M]x = 0 and $x \perp y$. If $w \in T(M)^*$ is adjacent to both x and x + y, then

$$[x + y : M][w : M]M = 0 = [x : M][w : M]M.$$

Hence, [w: M]R(x + y) = 0, so [y: M][w: M]M = 0. Moreover $x \perp y$, thus, either w = x or w = y. If w = y, then [y: M]y = 0. Therefore $y \in \operatorname{Nil}(M) = \{0, x\}$, a contradiction. So x = w. Thus, x + y is a complement for x. Since $\Gamma(M)$ is uniquely complemented, $x + y \sim y$. Assume that $z \in T(M)^* \setminus \{x\}$ such that z is adjacent to y, hence, z is adjacent to x + y. So [z: M][x: M]M = 0. Thus, z = y, because $x \perp y$. Consequently y is an end.

Remark 3.8. The proof of Lemma 3.7 (a), shows that if M is a faithful multiplication R-module such that $\Gamma(M)$ is complemented and $|\operatorname{Nil}(M)| > 2$, then $8 \leq |M| \leq 16$ and $\Gamma(M)$ is a star graph with at most 5 edges. So it is uniquely complemented. Also it shows that if $\Gamma(M)$ is not uniquely complemented, then $\operatorname{Nil}(M) = \{0, x\}$, which x is an element of M, such that x[x:M] = 0. Hence, $x = \beta m$ for some $m \in M$ and $\beta \in [x:M]$.

Before stating the following proposition we define:

$$D(M) := \{ m \in M : [m:M] | m':M] M = 0 \text{ for some nonzero } m' \in M \}.$$

PROPOSITION 3.9. Let $M = M_1 \times M_2$ be a multiplication *R*-module, $R = R_1 \times R_2$, in which M_1 is a reduced module and $\operatorname{Nil}(M_2) \neq 0$. If $\Gamma(M)$ is complemented but not uniquely complemented, then M_1 is torsion free, $\operatorname{Nil}(M_2)$ is the unique maximal submodule of M_2 with $|\operatorname{Nil}(M_2)| = 2$ and $|M_2| = 4$. Furthermore if $D(M_2) \neq M_2$, then the converse is true.

Proof. Suppose that $\operatorname{Nil}(M_2) \neq 0$ and $\Gamma(M)$ is complemented but not uniquely complemented. Let $0 \neq b \in \operatorname{Nil}(M_2)$, by the proof of Lemma 3.7, Step 1, $\beta^n b = 0$ for some $n \in \mathbb{N}$ and all $\beta \in [b : M_2]$. Therefore $b \in \operatorname{Nil}(M)$. Since $\Gamma(M)$ is not uniquely complemented, by Remark 3.8, $|\operatorname{Nil}(M)| = 2$ and $b = \beta m$, for some $\beta \in [b : M]$ and $m \in M$ such that $\beta^2 m = 0$. So $|\operatorname{Nil}(M_2)| = 2$. Let $\operatorname{Nil}(M_2) = \{0, b\}$ for some nonzero $b \in M_2$. Since $Rb \subseteq$ $\operatorname{Nil}(M_2) = \{0, b\}$, hence, $Rb = \{0, b\}$. First we show that $\operatorname{Ann}(b)M_2 = \{0, b\}$. Suppose that $c \in \operatorname{Ann}(b)M_2 - \{0, b\}$ and $0 \neq m_1 \in M_1$, a simple check yields that $(m_1, b) \in T(M)^*$. So there is $(x, y) \in T(M)^*$ for some $x \in M_1$ and $y \in M_2$ such that (x, y) is a complement of (m_1, b) . Hence, if y = b, then (0, c)is adjacent to both (m_1, b) and (x, y), which is a contradiction. Thus, $y \neq b$, so

$$[(0,b):M][(m_1,b):M]M = 0 = [(0,b):M][(x,y):M]M,$$

again a contradiction. Therefore $\operatorname{Ann}(b)M_2 = \{0, b\}$. One can easily show that $|M_2| = 4$ (similar to the proof of Lemma 3.7). Also similar to Step 4 of the proof of Lemma 3.7, $\operatorname{Nil}(M_2) = \operatorname{Ann}(b)M_2$ will be the unique maximal submodule of M_2 . Next we show that $D(M_1) = 0$. If not, let $0 \neq m_1 \in$ $D(M_1)$. Since M_1 is reduced, then there is $0 \neq m'_1 \in D(M_1)$ such that $m_1 \neq m'_1$. Therefore $[m_1 : M_1][m'_1 : M_1]M_1 = 0$. On the other hand there is $m = (x, y) \in T(M)^*$ such that $m \perp (m_1, b)$. If $x \neq 0$, then b is adjacent to both m and (m_1, b) , a contradiction. And if x = 0, then $y \neq 0$, but $y \in \operatorname{Ann}(b)M_2 = \{0, b\}$, thus,

$$[(m'_1, b) : M][(m_1, b) : M]M = 0 = [(m'_1, b) : M][(x, y) : M]M,$$

a contradiction. Therefore $D(M_1) = 0$. Suppose that $m_1 \in T(M_1)^*$, by hypothesis, there is a $(x_1, y_1) \in T(M)^*$ such that $(m_1, 0) \perp (x_1, y_1)$, hence, $[(m_1, 0) : M][(x_1, y_1) : M]M = 0$. So $[m_1 : M_1][x_1 : M_1]M_1 = 0$. Hence, $m_1 = 0$. Thus, M_1 is torsion free.

Conversely, let $M = M_1 \times M_2$ be a multiplication *R*-module, $R = R_1 \times R_2$, where M_1 is torsion free and Nil (M_2) is the unique maximal submodule of M_2 , also, $D(M_2) \neq M_2$ and $|M_2| = 4$. So, by [9, Theorem 2.5], Nil $(M_2) = D(M_2)$. Let $D(M_2) = \{0, b\}$, therefore

$$T(M) = \{(0, m_2) : m_2 \in M_2\} \cup \{(m_1, b) : m_1 \in M_1)\}$$
$$\cup \{(m_1, 0) : m_1 \in M_1\}.$$

Thus, $\Gamma(M)$ is complemented but not uniquely complemented, because $(m_1, 0) \perp (0, b)$ and $(0, b) \perp (m_1, b)$ but $(m_1, 0) \not\sim (m_1, b)$.

EXAMPLE 3.10. Let $M = \mathbb{Z} \times \frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}$ as *R*-module, $R = \mathbb{Z} \times \mathbb{Z}_2[x]$. By Proposition 3.9, $\Gamma(M)$ is complemented but not uniquely complemented.

THEOREM 3.11. Let R be a ring and M be a multiplication R-module. If $\Gamma(M)$ is complemented, but not uniquely complemented, then $M = M_1 \oplus M_2$, where M_1, M_2 are submodules of M.

Proof. Let $\Gamma(M)$ be complemented, but not uniquely complemented. There is a vertex a with distinct complements z and y and a vertex w which is adjacent to y, but not z. Thus, $[w : M][z : M]M \neq 0$. So there is $\beta \in [z : M]$ such that $\beta w \neq 0$. Also $\beta w \in T(M)^*$, on the other hand, $[\beta w : M][y : M]M = 0$ and $[\beta w : M][a : M]M = 0$. Since $a \perp y$ and $0 \neq \beta w$, we have either $\beta w = y$ or $\beta w = a$ and hence, [y : M]y = 0 or [a: M]a = 0. Thus, $y \in Nil(M)$ or $a \in Nil(M)$. Furthermore, by Remark 3.8, Nil(M) = $\{0, m\}$. Suppose that a = m, since $m \perp y$, we have $[w:M][m:M]M \neq 0$ and so there is $\beta_1 \in [w:M]$ such that $\beta_1 m \neq 0$, also we know that $\beta_1 m \in \operatorname{Nil}(M)$, so $\beta_1 m = m$. Let $v = \beta_1 w - w$. Clearly [v : M][y : M]M = 0, let $r \in [m : M]$, $rv = r\beta_1 w - rw = 0$, hence [m : M]v = 0. Since $m \perp y$, we have $v \in \{0, y, m\}$. If v = y, then $y \in \operatorname{Nil}(M)$, a contradiction. If v = 0, then $\beta_1 w = w$ and so $(\beta_1 - 1) \in \operatorname{Ann}(w)$. Thus, $M = Rw \oplus Ann(w)M$. If v = m, then $\beta_1 w - w \in Nil(M)$. Let $n = \beta_1^2 - \beta_1$. Hence, $n \in [\beta_1 w - w : M]$ and by the proof of Lemma 3.7, Step 1, $(n)^s(\beta_1 w - w) = 0$, for some $s \in \mathbb{N}$. Thus, $n^{s+1}w = 0$. Let

$$r = \frac{1}{2} \left[2n - \frac{4}{2}n^2 + \frac{6}{3}n^3 + \ldots + (-1)^s \frac{2s - 2}{s - 1}n^{s - 1} \right],$$

and suppose that x = rw and $e = \beta_1 w + x(1 - 2\beta_1)$. Clearly

$$(r^2 - r)(1 + 4n)w + nw = 0.$$

Suppose that $\alpha = [\beta_1 + r(1 - 2\beta_1)]$. Therefore $\alpha w = \alpha^2 w$ and $\alpha \in [w : M]$. As a similar argument we have $M = R\beta_1 w \oplus \operatorname{Ann}(\beta_1)M$. Clearly star graphs are uniquely complemented. Next theorem shows that for a multiplication *R*-module *M* with $Nil(M) \neq 0$, if $\Gamma(M)$ is uniquely complemented, then $\Gamma(M)$ is an star graph.

THEOREM 3.12. Let R be a ring and M be a multiplication R-module with Nil(M) $\neq 0$. If $\Gamma(M)$ is a uniquely complemented graph, then either $\Gamma(M)$ is a star graph with at most six edges or $\Gamma(M)$ is an infinite star graph with center x, where Nil(M) = $\{0, x\}$.

Proof. Suppose that $\Gamma(M)$ is uniquely complemented and $\operatorname{Nil}(M) \neq 0$. By the proof of Lemma 3.7 (a), M has a unique maximal submodule. Let H be the maximal submodule. Since $\Gamma(M)$ is complemented, $Rm \neq M$ for all $m \in T(M)$ therefore, by [9, Theorem 2.5], $Rm \subseteq H$, so $T(M) \subseteq H$.

Let $|M| \leq 16$, then by Remark 3.8 $\Gamma(M)$ is a star graph with at most six edges.

Now let |M| > 16. Hence by Step 7 of Lemma 3.7 (a), Nil $(M) = \{0, x\}$ for some $0 \neq x \in M$ and [x : M]x = 0.

We first show that $\Gamma(M)$ is an infinite graph. Let c be a complement of x, so $\operatorname{Ann}(c)M = \{0, x\} = \operatorname{Nil}(M)$, by Lemma 3.7 (b). Let $c = \sum_{i=1}^{n} (\alpha_i m_i) \in [c:M]M$, where $\alpha_i \in [c:M]$ and $m_i \in M$, for $1 \leq i \leq n$ and suppose that $\alpha = \sum_{i=1}^{n} \alpha_i$. We claim that αc is also a complement of x. If z is adjacent to both vertices x and αc , then

$$[\alpha c: M][z: M]M = 0 = [x: M][z: M]M.$$

Therefore $\alpha z \in \operatorname{Ann}(c)M = \{0, x\}$. So either $\alpha z = 0$ or $\alpha z = x$. If $\alpha z = 0$, then $z \in \operatorname{Ann}(c)M$, a contradiction. Thus $\alpha z = x$. Hence $\alpha[z : M]z = x[z : M] = 0$. Therefore $z[z : M] \subseteq \operatorname{Ann}(c)M = \operatorname{Nil}(M)$ and hence $z \in \operatorname{Nil}(M) = \{0, x\}$, again a contradiction. Consequently $\alpha c \perp x$ and so, by Lemma 3.7 (b), $\operatorname{Ann}(\alpha c)M = \{0, x\}$. By a similar argument $\alpha^i c \perp x$ and $\operatorname{Ann}(\alpha^i c)M = \{0, x\}$ for $1 \leq i \leq n$. Hence each $\alpha^i c$ is an end. Next note that $\alpha^i c$ are all distinct. If not, suppose that $\alpha^i c = \alpha^j c$ for some $1 \leq i < j$. Therefore $\alpha^i(1 - \alpha^{j-i})c = 0$, so $(1 - \alpha^{j-i}) \in \operatorname{Ann}(\alpha^i c)$. By the proof of Lemma 3.7 (a), Step 7, $x = \beta m$ for some $\beta \in [x : M]$ and $m \in M$ such that $\beta^2 m = 0$ but $\beta m \neq 0$. Hence $(1 - \alpha^{j-i})m \in \operatorname{Ann}(\alpha^i c)M = \{0, x\}$. So either $m - \alpha^{i-j}m = 0$ or $m - \alpha^{i-j}m = x$. If $m = \alpha^{i-j}m$, then

$$x = \beta m = \beta \alpha^{i-j} m \in \beta \alpha^{i-j-1} Rc \subseteq \alpha^{i-j-1} [x:M][c:M]M = 0,$$

a contradiction. Thus $m - \alpha^{i-j}m = x$. So

$$x - \alpha^{i-j}\beta m = \beta m - \alpha^{i-j}\beta m = \beta x = 0.$$

Hence $x \in \alpha^{i-j-1}\beta Rc = 0$, again a contradiction. Consequently $\Gamma(M)$ is infinite.

We next show that $\Gamma(M)$ is a star graph with center x. By contradiction, suppose that $\Gamma(M)$ is not a star graph. Let $c \in T(M)^*$ be a complement of x, so there is a $a \in T(M)^* \setminus \{x, c\}$ such that [a : M][x : M]M = 0 but a is not an end. Hence there is $y \in T(M)^* \setminus \{a, x, c\}$ such that $y \perp a$. Let $c = \sum_{i=1}^{n} (\alpha_i m_i)$, where $\alpha_i \in [c:M]$ and $m_i \in M$, for $1 \leq i \leq n$ and let $\alpha = \sum_{i=1}^{n} \alpha_i$. We can check that $\alpha y \notin \{0, a, x, c, y\}$. If $\alpha y = 0$, then [y: M]c = 0, which is a contradiction with c is an end. If $\alpha y = x$, then $\alpha[y:M][c:M]M = 0$, so $y \in Ann(\alpha c)M = \{0, x\}$, a contradiction. If $\alpha y = y$, then $\alpha y[x:M] \subseteq [x:M]Rc = 0$, a contradiction. If $\alpha y = c$, then a is adjacent to c, which is a contradiction. At last if $\alpha y = a$, then $\alpha y[y:M] = 0$. So $y[y:M] \in \operatorname{Ann}(\alpha c)M = \operatorname{Nil}(M)$ and therefore $y \in \operatorname{Nil}(M)$, which is a contradiction. Thus $\alpha y \in T(M)^* \setminus \{a, x, c, y\}$. By the hypothesis, there is $z \in T(M)^*$ such that z is a complement of αy . One can also verify that $z \notin \{0, \alpha y, a, x, c, y\}$. (Use $y \notin Nil(M)$ to show that $z \notin \{c, y\}$ and use $\alpha y \perp z$ to show that $z \notin \{a, x\}$.) Clearly $[x : M][z : M]M \neq 0$. Let $z = \sum_{i=1}^{s} r_i m_i$, where $r_i \in [z:M]$ and $m_i \in M$, for $1 \le i \le s$ and let $\gamma = \sum_{i=1}^n r_i$. If $\gamma x = 0$, then [x:M][z:M]M = 0, a contradiction. So we must suppose that $\gamma x \neq 0$. Also $[\gamma x : M][c : M]M = 0$, hence $\gamma x \in Ann(c)M$. Thus $\gamma x = x$. On the other hand, $\alpha y \perp z$, so

$$[\gamma y: M][c: M]M = [y: M]R(\sum_{i=1}^{n} (\gamma \alpha_i m_i)) \subseteq [y: M]R\alpha z = 0.$$

Therefore $\gamma y \in \operatorname{Ann}(c)M$. Hence either $\gamma y = 0$ or $\gamma y = x$. So x is adjacent to both y and a. But this is a contradiction that $a \perp y$. Consequently $\Gamma(M)$ is an infinite star graph with center x.

COROLLARY 3.13. Let M be a multiplication R module. If $\Gamma(M)$ is uniquely complemented, then either $\Gamma(M)$ is a star graph or $S^{-1}M$ is von Neumann regular, where $S = R \setminus Z(M)$.

Morovere, for faithful cyclic R-module M, the converse is true.

Proof. Let $\Gamma(M)$ be uniquely complemented. If Nil(M) = 0, then M is a reduced and by Theorem 3.3, $S^{-1}M$ is von Neumann regular. If Nil(M) ≠ 0, then by Theorem 3.12. $\Gamma(M)$ is a star graph. Converse is true by Corollary 3.5. ■

COROLLARY 3.14. Let M be a multiplication R module with $T(M) \neq M$. Then $\Gamma(M)$ is uniquely complemented, if and only if either $\Gamma(M)$ is a star graph or $S^{-1}M$ is von Neumann regular, where $S = R \setminus Z(M)$.

References

- D.D. ANDERSON, M. NASEER, Beck's coloring of a commutative ring, J. Algebra 159 (2) (1993), 500-514.
- [2] D.F. ANDERSON, R. LEVY, J. SHAPIRO, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (3) (2003), 221-241.
- [3] D.F. ANDERSON, P.S. LIVINGSTON, The zero-divisor graph of a commutative ring, J. Algebra **217**(2) (1999), 434–447.
- [4] D.F. ANDERSON, A. FRAZIER, A. LAUVE, P.S. LIVINGSTON, The zero divisor graph of a commutative ring, II, in "Ideal Theoretic Methods in Commutative Algebra", Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001, 61–72.
- [5] F.W. ANDERSON, K.R. FULLER, "Rings and Categories of Modules, Second edition", Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
- [6] I. BECK, Coloring of commutative rings, J. Algebra 116 (1) (1988), 208-226.
- [7] G.A. CANNON, K.M. NEUERBURG, S.P. REDMOND, Zero-divisor graphs of nearrings and semigroups, in "Nearrings and Nearfields" (eds: H. Kiechle, A. Kreuzer, M.J. Thomsen), Springer, Dordrecht, 2005, 189–200.
- [8] F.R. DEMEYER, T. MCKENZIE, K. SCHNEIDER, The zero-divisor graph of a commutative semigroup, *Semigroup Forum* **65** (2) (2002), 206–214.
- [9] Z.A. EL-BAST, P.F. SMITH, Multiplication modules, Comm. Algebra 16 (4) (1988), 755-779.
- [10] S.P. REDMOND, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (4) (2002), 203-211.