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Abstract: For a commutative ring R, the torsion graph of an R-module M is I'(M) whose
vertices are nonzero torsion elements of M, and two distinct vertices x and y are adjacent
if and only if [z : M]ly : M]M = 0. In this article we show that if S = R\ Z(M), then
(M) and T'(S™' M) are isomorphic for a multiplication R-module M. Also we prove that
for a multiplication R-module M, if T'(M) is uniquely complemented, then S™'M is von
Neumann regular or I'(M) is a star graph.
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1. INTRODUCTION

The idea of a zero-divisor graph of a commutative ring was introduced by
I. Beck in 1988 [6]. He suppose that all elements of the ring are vertices of the
graph and was mainly interested in colorings and then this investigation of
coloring of a commutative ring was continued by Anderson and Naseer in [1].
Anderson and Livingston [3], studied the zero-divisor graph whose vertices are
the nonzero zero-divisors. Let R be a commutative ring with identity and let
Z(R) be the set of zero-divisors of R. The zero-divisor graph of R denoted by
I'(R), is a graph with vertices Z(R)* = Z(R)\{0} and for distinct z,y € Z(R)*
the vertices x and y are adjacent if and only if zy = 0. This graph turns out
to exhibit properties of the set of the zero divisors of a commutative ring with
best way. The zero-divisor graph helps us to study the algebraic properties of
rings using graph theoretical tools. We can translate some algebraic properties
of a ring to graph theory language and then the geometric properties of graphs
help us explore some interesting results in algebraic structures of rings.

The zero-divisor graph of a commutative ring has also been studied by
several other authors (e.g., [1, 6, 4]). The zero divisor graph has also been
introduced and studied for semigroups in [8], nearrings in [7], and for non-
commutative rings, in [10].
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Throughout, R is a commutative ring with unity and M is a unitary R-
module. In this paper, motivated by the work of [2], we will investigate the
concept of torsion-graph for modules as a natural generalization of zero-divisor
graph for rings. For € M the residual of Rx by M, denoted by [z : M], is
a set of elements » € R such that rM C Rx. The annihilator of an R-module
M denoted by Anng(M) is [0 : M]. Let T'(M) be the set of torsion elements
of M. Tt is clear that if R is an integral domain then T'(M) is a submodule
of M which is called torsion submodule of M. If T'(M) = 0 then the module
M is said to be torsion-free and it is called a torsion module if T'(M) = M.
An R-module M is a multiplication module if for every R-submodule K of M
there is an ideal I of R such that K = IM. We will study some properties of
['(M), when M is a multiplication R-module. Here the torsion graph T'(M)
of M is a simple graph whose vertices are nonzero torsion elements of M and
two distinct vertices x and y are adjacent if and only if [z : M|y : M]M = 0.
Thus, I'(M) is an empty graph if and only if M is a torsion-free R-module.
In this paper, we will investigate the interplay of module properties of M in
relation to the properties of I'(M). We also think that torsion-graph helps us
to study the algebraic properties of modules using graph theoretical tools. A
graph G is connected if there is a path between any two distinct vertices. The
distance, d(z,y) between connected vertices x, y is the length of the shortest
path from z to y (d(z,y) = oo if there is no such path).

A ring R is called reduced if Nil(R) = 0, and an R-module M is called a
reduced module if rm = 0 for r € R and m € M, implies that rM N Rm = 0.
Also a ring R is von Neumann regular if for each a € R, there is an element
b € R such that a = a?b. It is clear that every von Neumann regular ring is
reduced. An R-module M is called a von Neumann regular module if every
cyclic submodule of M is pure in M. Anderson and Fuller in [5], called the
submodule N, a pure submodule of M if IM NN = IN for every ideal I of
R. And so it is clear that every von Neumann regular modules is reduced.

Let T’ be a graph and V(I') denotes the vertices of I'. Let v € V(I'), as
in [2], w € V(T') is called a complement of v, if v is adjacent to w and no
vertex is adjacent to both v and w; i.e., the edge v — w is not an edge of any
triangle in I'. In this case, we write v L w. In module-theoretic terms, for
multiplication R-module M, this is the same as saying that v L w in I'(M) if
and only if v, w € T(M)* and Ann(w)MNAnn(v)M C {0,v,w}. Moreover, we
will follow the authors in [2], and say that I" is complemented if every vertex
has a complement, and is uniquely complemented if it is complemented and
any two complements of vertex set are adjacent to the same vertices. From
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[2, Theorem 3.5 and Theorem 3.9], we know that for a ring R with nonzero
nilpotent elements, I'(R) is uniquely complemented if and only if T'(R) is a
star graph. Moreover, we know that, if R is reduced, then S™!'R is a von
Neumann regular ring.

In Section 2, as a generalization of [2, Theorem 2.2], we show that if M
is a multiplication R-module and S = R\ Z(M), then I'(M) 2 T(S~1M). In
Section 3, we investigate the complemented and uniquely complemented tor-
sion graph. We also extend [2, Theorem 3.9], to the multiplication R-modules.
And furthermore for a multiplication R-module M, we prove that if I'(M) is
complemented, but not uniquely complemented, then M = M; & M, where
M, M5 are submodules of M. Also for a reduced multiplication R-module M,
we show that if I'(M) is complemented, then S~!1M is a von Neumann regular
module, where S = R\ Z(M), also for a faithful multiplication R-module M
with Nil(M) # 0, we prove that I'(M) is uniquely complemented if and only
if I'(M) is a star graph.

Let R be a ring and M be an R-module, throughout Nil(R) is an ideal
consisting of nilpotent elements of R,

Nil(M):= (] N,
NeSpec(M)

Spec(M) is the set of all prime submodules of M, T(M)* = T (M) \ {0},
Z(M)={reR:rm=0forsome0#mec M} WeletQ, Z and Z, denote
the rings of rational numbers, integers and integers modulo n, respectively.

2. ISOMORPHISMS

Recall that two graphs G and H are isomorphic, denoted by G = H, if
there exists a bijection, say ¢, from V(G) to V(H) of vertices such that the
vertices  and y are adjacent in G if and only if ¢(z) and ¢(y) are adjacent
in H.

Let S =R\ Z(M). Tt is clear that the well defined map

x:M — S7IM
mo— x(m) =
is a monomorphism. So we can identify M with its image in S™'M. Thus if
m denotes an element of M, then the same symbol is also used to denote the

fraction % In this manner M becomes a submodule of S™1M.
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Let M be an R-module. For m,m’ € T(M)*, we define m ~y; m’ if and
only if Ann(m)M = Ann(m/)M. Clearly ~ is an equivalence relation on
T(M)*. Let S= R\ Z(M) and denote equivalence classes by [m], so

mlar = {m' € T(M)* : m ~y m'}

and
!

qumz{ﬁznﬂqmﬁes}
Now we would like to show that I'(S~1M) and I'(M) are isomorphic by show-
ing that there is a bijection map between equivalence classes of vertex sets
[(S™1M) and I'(M) such that the corresponding equivalence classes have the
same cardinality.

THEOREM 2.1. Let M be a faithful multiplication R-module and S =
R\ Z(M). Then T'(M) and T'(S~'M) are isomorphic.

Proof. (Our proof is quite similar to the proof in [2], applied for a ring.)
Let S=R\ Z(M), Mg = S™'M, Rg = ST'R and

(T(M)g)* = {% cmeT(M)",s e 5}.
Denote the equivalence relations defined above on T'(M)* and T'(Mg)* by ~s
and ~y, respectively. For all m € T'(M)*, we have Anngg () = Anng(m)s
and [Ng : Mg]|Mg = [N : M]sMg. By the above comments (T'(M)g)* =
T(Ms)*, (Imlar)s = ([7])ms and

Ty = Y, T4 = U [B]
AEA AEA s
(both are disjoint unions). We next show that |[z]n| = |[$]a| for all = €

T(M)*. It is clear that [x]ys C [T]amg. For the reverse inclusion, let % €
[T, such that m € [z]a, s € S, so Ann(m)M = Ann(z)M and thus,
{s"m : n > 1} C [z]p. Now let |[2]p| be finite, then there exists i € I such
that s'm = s"*'m. So

= ——=——-—=mE€ [z]|p,

m ms ms'tl
s gt gt
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and therefore |[z]a| = |[%]a|. Now suppose that |[z]a] is infinite. We define
an equivalence relation ~ on S by s ~ ¢ if and only if sz = tx. It is easily
verified that the map

[zl x S/~ —  [Tlug
(b [s]) — 2

is well-defined and surjective, because if (b,[s]) = (a,][t]), then a = b and
[s] = [t]. Hence,

(s —t)M C Ann(z)M = Ann(a)M = Ann(b)M

and since M is multiplication sa = ta and sb = tb, therefore § = g. Thus,

x
(3] < lizdullsy ~ 1.
Also, the map
S/~ — [zlm
[s] — sa
is clearly well-defined and injective. Hence, |S / =~ ’ < Hm] M| and thus,

5], ] = il
1] Mg

<|lelm|” = |[2]m]|,

since Hx]M‘ is infinite. Hence, Hx]M| = H%]Ms‘ Thus, there is a bijection
map @q : [Ta] — [%*] for each o € A. Now define

o: T(M)* — T(Mg)*
m —  @(m) = pa(m).

Clearly ¢ is a bijection map. Thus, we need only to show that m and n are
adjacent in I'(M) if and only if ¢(m) and p(n) are adjacent in I'(Mg); i.e.,

m:M]n: M|]M =0 <— [o(m) : Ms|[e(n) : Mg]|Mg =0.

Let m € [z]a, n € [ylm, w € [§]mg and z € [¥]arg. It is sufficient to show
that

m: Mn: MM=0 < [%:MS}E:MS}Mgzo.
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Note that
[m: Mln: MM =0
<= m € Anng(n)M = Anng(y)M
— ? S AnnRS (%) Mg = AnnRS (%) Mg = ADDRS (%) Mg
g [?:Ms}[%:Ms}Mszo
= % € Anng, (%) Mg = Annpg, (%) Mg = Ann (%) Mg

<~ [%:Ms} [%:Ms} Mg =0.
Hence, I'(M) and I'(Mg) are isomorphic as graphs. 1

COROLLARY 2.2. Let M and N be multiplication R-modules with
S=IM = S7IN, then I'(M) = T'(N). In particular T(M) = T'(N) when
S~IM = S7IN.

3. COMPLEMENTED GRAPH AND MULTIPLICATION MODULE

In this section we prove that, if M is a reduced multiplication R-module
and I'(M) is uniquely complemented, then S~!M is von Neumann regular and
furthermore we show that if M is a multiplication R-module with Nil(M) # 0,
then I'(M) is uniquely complemented if and only if I'(M) is a star graph with
at most six edges or is an infinite star graph (i.e., I'(M) has an infinite vertices
such that there exists a vertex adjacent to every other vertices, and these
are only adjacent relation). Finally we show that if M is a multiplication
R-module and I'(M) is uniquely complemented, then either I'(M) is a star
graph or S™'M is von Neumann regular, where S = R\ Z(M).

Let G be a (undirected) graph. We will follow the authors in [4], and
define that a < b if @ and b are not adjacent and each vertex of G adjacent
to b is also adjacent to a; and we define a ~ b if and only if a < b and b < a.
Thus, a ~ b if and only if @ and b are adjacent to exactly the same vertices.
Clearly ~ is an equivalence relation on G.

Now let M be a multiplication R-module and m,n € T'(M)*, then m ~n
if and only if Ann(m)M \ {m} = Ann(n)M \ {n}. Also we know that if m_Ln,
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then [m : M][n : M]M = 0 and Ann(m)M N Ann(n)M C {0,m,n}. Now if
Ann(m)M N Ann(n)M = {0, m,n}, then

[m : M>M = [n: MM = [m : M][n: MM =0.

On the other hand, since m L n, m+n € {0,m,n}, so m+n is adjacent to m
and n, which is a contradiction. Therefore m L n if and only if Ann(m)M N
Ann(n)M C {0,m,n} and [m : M][n: MM = 0.

LEMMA 3.1.  Consider the following statements for a multiplication
R-module M with m,m' € T(M)*:
(a) m~m';
(b) Rm = Rm/;
(¢) Ann(m)M = Ann(m/)M .
Then under the above conditions we have:

(1) If M is reduced, then statements (a) and (c) are equivalent.

(2) If M is von Neumann regular, then all three statements are equivalent.

Proof. (1) Let M be reduced, one can easily check that (a) < (c).

(2) Since every von Neumann regular module is reduced, so (a) < (c).
Clearly (b) = (c). We show that (b) < (c). Since M is von Neumann regular
RmnNm: M|M = [m : M]Rm. So m = sm for some s € [m : M], hence,
(1—s)m’ € Aun(m)M = Ann(m')M. Therefore [m' : M]m' € Rm. Moreover,
since M is a von Neumann regular multiplication module [m' : M|m’ = Rm/
and so Rm’ € Rm and similarly Rm C Rm’. Consequently Rm = Rm/.

LEMMA 3.2. Let M be a reduced multiplication R-module and let
m,m’,m"” € T(M)*. If m L m' and m L m”, then m’ ~m”. Thus, I'(M) is
uniquely complemented if and only if T'(M) is complemented.

Proof. Let m,m’,m” € T(M)*. Suppose m L m’ and m L m”. Tt is
sufficient to show that Ann(m')M = Ann(m”)M. Suppose x € Ann(m’)M,
so [z : M][m’: M]M = 0. One can easily show that for all « € [z : M],

[am” : M][m' : M]M =0 = [am” : M][m : M]M.

So am” € {0,m,m'}. If am” =m or am” =m/, then m =0 or m' =0, is a
contradiction. Thus, am” = 0 for all « € [x : M|. Therefore x € Ann(m”)M
and so Ann(m/)M C Ann(m”)M. Similarly Ann(m”)M C Ann(m/)M. 1
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THEOREM 3.3. Let M be a reduced multiplication R-module. If T'(M) is
complemented, then S~'M is von Neumann regular, where S = R\ Z(M).

Proof. Let 0# 2 € S™'M, where z € M and s € S. Let ¢ T(M)* and
n
i=1

where o; € [z : M| and m; € M. Suppose that o« = 3" | ;. If @ € Z(M),
then am = 0 for some non zero element m € M. So [m : M|z : M]M = 0,
hence, 0 # [m : M] C Ann(z) = 0, a contradiction. Therefore a € S =
R\ Z(M). Thus,
sTR(E)NsTM(L) = s7R(5D).
s t ts
Therefore S~'M is von Neumann regular.

Next we can suppose that x € T(M)*. By the hypothesis there is y €
T(M)* such that z L y. Hence, y € Ann(z)M and so y = Y .-, Bim,,
m; € M and 3; € Ann(z). Let 8 = Y./", ;. We show that « + 3 € S. If
a+p € Z(M), then (a+ )my = 0 for some non zero my € M. So

[amg : M][z: M]M =0 = [y : M][amo: M]M .

Since M is a reduced module z # amg and amgy # y. Thus, amg = 0 and
hence, Bmg = 0, so

[z : M][mo: MM =0=[y: M|[mgo: M]M.
By a similar argument we have my = 0, a contradiction. Therefore o+ 3 € S
and $ = —257. So a simple check yields that

atfs”
sin(2) s () =57 ).

Hence, S™'M is von Neumann regular. [

Next example shows that S~1M is von Neumann regular but M is not von
Neumann regular in spite of I'(M) = T'(S~1M).

We know that an r-partite graph is one whose vertex set can be partitioned
into r subsets so that no edge has both ends in any of these subsets. A com-
plete r-partite graph is one in which each vertex is joined to every vertex that
is in another subset. The complete bipartite graph (i.e., 2-partite graph) with
vertex sets having m and n elements, will be denoted by K,,,. A complete
bipartite graph of the form K, is called a star graph.
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ExAMPLES 3.4. (a) Let M; be an Ri-module and Ms be an Ryo-module,
then M = My x My is R = R1 X Ry module with this multiplication Rx M —
M, defined by (ri,r2)(m1,ma) = (rimy,rems). Now let M = Z x nZ and
R =7 xZ. 1t is clear that I'(M) is a complete bipartite graph (i.e., I'(M) may
be partitioned into two disjoint vertex sets Vi = {(m1,0) : m; € (Z)*} and
Vo ={(0,m2) : ma € (nZ)*} and two vertices = and y are adjacent if and only
if they are in distinct vertex sets). Therefore I'(M) is complemented. Also M
is a faithful multiplication R-module, because M = R(1,n). A simple check
yields that M is reduced, thus, S~'M is von Neumann regular, by Theorem
3.3. But M is not von Neumann regular (use N = R(2,2n) and I = [N : M]).

(b) Let R = Zo x Z and M = R as an R-module. So M is a faithful
multiplication R-module. Clearly M is reduced and I'(M) is an infinite star
graph with center (1,0). Thus, I'(M) is complemented and by Theorem 3.3,
S~1M is von Neumann regular, but M is not von Neumann regular.

COROLLARY 3.5. Let M be a cyclic faithful reduced R-module. The fol-
lowing statements are equivalent:

(1) S~'M is von Neumann regular, where S = R\ Z(M);
(2) T'(M) is uniquely complemented;
(3) T'(M) is complemented.

Proof. (1) = (2) Let M be a von Neumann regular R-module and
m € T(M)*. So [m: M]MNRm = Rm[m : M]. Since Rm is a weakly cancel-
lation module, R = [m : M]+ Ann(m). Say M := Rz for some = € M. Thus,
Rz = Rm+ Ann(m)z and therefore x = rm+vy for some r € R,y € Ann(m)zx.
One can easily check that y € T(M)* and y L m, so I'(M) is complemented.
Since M is a faithful cyclic R-module, then S~'M is a faithful cyclic S~'R-
module and therefore by the above comments, T'(S™1M) is complemented.
Moreover by Theorem 2.1, I'(M) = I'(S~'M), so T'(M) is complemented.
Consequently I'(M) is uniquely complemented by Lemma 3.2.

(2) = (3) This is true for any graph.

(3) = (1) By Theorem 3.3. 1§

COROLLARY 3.6. Let M be a reduced multiplication R-module with
T(M) # M. Then the following statements are equivalent:

(

(1) S~'M is von Neumann regular, where S = R\ Z(M);
(2) T'(M) is uniquely complemented;
(3) T'(M

3) I'(M) is complemented.
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Now we investigate some properties of M, when M is a multiplication R-
module with Nil(M) # 0. In this case, we extend [2, Theorem 3.9] in Theorem
3.12. First we give the following key lemma. Recall that a vertex of a graph
is called an end if there is only one other vertex adjacent to it.

LEMMA 3.7. Let R be a ring and M be a multiplication R-module with
Nil(M) # 0, then:

(a) If T'(M) is complemented, then either 8 < |M| < 16 or |M| > 17 and
Nil(M) = {0,z} for some 0 # x € M.

(b) If T'(M) is uniquely complemented and |M| > 17, then any complement
of the nonzero element = € Nil(M) is an end.

Proof. (a) We subdivide the proof of (a) in the following steps:

Step 1: Let I'(M) be complemented. We show that for all 0 # « € [z : M],
where z € Nil(M), a"x = 0 for some n € N. Let S = {a"x : n € N}, we must
show that 0 € S. Suppose that 0 ¢ S. Let X = {K : K < M,KnNS =0}. By
Zorn’s lemma, let H be a maximal member of ¥. We claim that [H : M] is a
prime ideal of R. Clearly [H : M| # R, let ab € [H : M| but a,b ¢ [H : M]
for a,b € R. Hence, (aM + H),(bM + H) € >, s0 ™z € SN (aM + H) and
a™x € SN (bM + H) for some ny,ny € N. Therefore o™+ tly ¢ HNS, is a
contradiction. Hence, [H : M] is a prime ideal and by [9, Corollary 2.11], H
is a prime submodule of M. Since z € Nil(M) we have ax € H N S, which is
a contradiction and consequently 0 € S.

Choose n to be as small as possible oz = 0. Then n > 1 and o™ !z # 0.

Step 2: In this step we claim that n < 3. Suppose that n > 3, so
az € T(M)*. Since I'(M) is complemented, there exists y € T'(M)* such that
y is a complement of ax. Then

[@"tz: M]ly: M]M =0 = [o" 'z : M][ax : MM,

and so a® 'z = y will be the only possibility. Thus, ax L o™ 'z. Similarly
o'z L o™z foreach 1 <i<mn—2. Let m = a" 2z + a" 'z, then

[m : M][a" Yz : M]M =0 = [m : M][a" 2z : MM,

1

which is a contradiction, since a2z L o™ 'z and

" 2r o lr g {0, a" e, 04”_2;10}.
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Thus, n < 3.

Step 3: Letn = 3, s0 oz = 0 but a?x # 0. We show that either |[M| = 16
or |M| = 8. Similar to Step 2, ar L o?z. Also Ann(z)M C {0,a%z},
since if z € Ann(x)M, then [z : M|[z : M|M = 0, hence, if 0 # z, z is
adjacent to two elements ax and az. Since ax L a’z, therefore z = o?x. So
Ann(z)M C {0,a2x}. Now for all 7 € R,

[ra’z : Ml[ax : M]M =0 = [ra’z : M][o?z : M]M,

hence, ra?z € {0, ax, a®z}. But ra?z = az, then oz = 0, is a contradiction
and so Ra’x = {0,a%x}. Also

Ann(a?z)M C {O, T, ox, 0z, + o, x + oz, ar + oz, x + ax + oz2x} ,

since if 2 € Ann(a?z)M, then o?z € Ann(z)M C {0,a?z} and so either

a?z =0 or o?z = o®x. Thus, either

[z : Mo : MM =0 = [az : M][a*z : M]M

or

[(az — ax) : M][axz : M]M =0 = [(az — ax) : M][a®z : M]M.

Since ax L o?z, we have either az € {0, ar, oz} or (az—azx) € {0, ax, a’z}.
Now let a?z = 0, so az # az and therefore either az = 0 or a(z — azx) = 0
and so
[z: M][azx : M]M =0 = [z : M][o®z : M]|M
or
[(z — az) : M]jaz: M]M =0 = [(z — azx) : M][a?z : MM,
hence, z € {0, ax, a®z, o’z +ax}. Thus, we may assume that a2 = oz, then
az—azx # az. On the other hand az—ax € {0, ax, a2}, so either az—azx = 0
or (az—ax) = oz and by similar argument z € {z, oz, v+az, r+ar+a’r}.
Now if a?[z : M]z = 0, then

Ann(a?z)M = {O, z, ax, oz, r + ox, ¢+ olx, ax + o, x + ox + a2x} . (1)
And if o[z : M]z # 0, then
Ann(a’z)M = {0, azx, oz, ar + an} . (ii)

Now we claim that |[M| = 16 in case (i) and |M| = 8 in case (ii). Since
o[z : M]M # 0, there are y € [z : M] and m € M such that a?ym # 0 and a
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simple check yields a?ym = a?z. Let mg € M, so a®>ymg € Ra’x = {0, a%x}.
If a®ymg = 0, then mo € Ann(a?x)M and if a?ymy = oz, then mg —m €
Ann(a?z). Consequently |[M| =16 in case (i) and |[M| = 8 in case (ii).

Step 4: In this step we show that H = Ann(a?z)M is the unique maximal
submodule of M. Clearly H # M and Ro’z = ﬁ. Since Ro’x =
{0, a®z}, we have Ann(a?z) is a maximal ideal of R. Hence, by [9, Theorem
2.5], Ann(az)M is a maximal submodule. Also

Ann(e’z)M C Rx C Nil(M) C Ann(a’z) M.

Therefore Ann(a?x)M = Nil(M) is the unique maximal submodule of M. If
T(M) C H = Ann(a?z)M, then T(M) = Ann(a?x)M, so T'(M) is a star

graph with 5 edges and center oz.

Step 5: Assume that n = 2, we show that [z : M]?z = 0. Let [z :
M]?z # 0, so there exist two elements a, 3 € [x : M] such that a8z # 0.
Also there are m € M and 7 € [x : M| such that afSym # 0, on the other
hand oz = %r = v%z = 0 and there is y € T(M)* such that ax L vy, a
simple check yields that Rax C {0,ax,y} and y = afx, hence, ax L afz.
So R(ax) = {0,az,afz} and Ann(azx)M = {0,az,afz}. Also afym is
adjacent to two vertices ax and afx, but afym # az, thus, afym = afz.
We know that af8m is adjacent to two vertices ax and afx but afm # afx
and afm # az, which is a contradiction. Thus, [z : M2z = 0.

Step 6: Assume that n = 2 and [x : M]?x = 0. We show that |M| < 12.
By hypothesis a?z = 0 but az # 0, hence, afz : M]M # 0, thus, afm # 0
for some 3 € [x : M] and m € M. We know that I'(M) is complemented and
x € T(M)*, so there is y € T(M)* such that x L y, but ax is adjacent to
two vertices z and y. Hence, either ax = x or ax = y. If ax = x then by
multiplying in a we have ax = 0, a contradiction. Therefore az = y, so ax L
x. Let z € Ann(x)M hence, z € {0,z,az}, since z L ax =y, if z = x, then
[z : M]x = 0 which is a contradiction. Therefore Ann(z)M = {0, ax}. Also a
simple check yields that R(az) = {0,ax}. On the other hand am € T'(M)*
and so there exists w € T(M)* such that am L w. But afm is adjacent
to two vertices am and w, therefore afm = w will be the only possibility
and so afm L am. Also afm is adjacent to two vertices ax and x. Hence,
afm = azx. Now we show that Ann(ax)M = {0, am, az,z,z + am,z + ax},
let v € Ann(az)M so av € Ann(z)M = {0, az}. If av =0, then

[v: Mllapm: MM =0=[v: M][am : M|M
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and if av = az, then
[v—a: Mlapm: M|]M =0=[v—a: M|[am: M]M.
Consequently,
Ann(az)M = {O, am,ar,r,r + am,x + am}

and so | Ann(az)M| < 6. For all mg € M, afimg € R(az) = {0,az}. So
either mg € Ann(ax)M or mg—m € Ann(ax)M, since afm = ax. Therefore
|M| < 12. And by a similar argument in Step 4, Ann(ax)M = Nil(M) is the
unique maximal submodule of M and I'(M) is a star graph.

Step 7: Suppose that n = 1. If [z : M]x # 0 by the above steps we have
8 < |M| < 16. So we can assume that [z : M]z = 0. We show that either
M| =9 or Nil(M) = {0,z} with 22 = 0 and |M| #9. Let x € [z : M]M so
x = X oym; where o; € [z : M] and m; € M for all 1 < i < n. Assume
that a;m; # 0. Since I'(M) is complemented, then there is y € T'(M)* such
that x L y, so Rx C {0,z,y}. If x # a;m,; for all i, then a;m; € Rz and
so a;m; = y for all <. Suppose that a;m; = aymy, thus x = £ ja1m; =
(X7 jo1)my = Pmy where f = X' a1 € [z : M]. Otherwise = aym, for
some 1 < ¢ < n. Hence, we may assume that z = am for some « € [z : M] and
m € M such that o®>m = 0 but 0 # am. We know that z+x € Rx C {0,z,y},
if  +x # 0, then Rx = {0,z,2z}, x L 22 and Ann(z)M = {0,z,2z}. And
for all mg € M, amg € Rz, therefore

[mo : Mz : M|M =0 = [mg : M][2x : M]

[mo—m : Mz : M]M =0=[my—m: M][2z : M]

[mo —2m : Mz : M]M =0 = [mg — 2m : M][2z : M].

Hence, |M| = 9 and by a similar argument in Step 4, Ann(z)M is the unique
maximal submodule of M and I'(M) is a star graph. Now let |M| # 9 so by
the above argument we must have 2z = 0. We claim that Nil(M) = {0, z}.
Suppose that z is another nonzero element of Nil(M), hence, [z : M]z = 0
and z = Bm/ for some 3 € [z : M] and m’ € M, such that 8?m/ = 0.
So that I'(M) is complemented there are 2/,2' € T(M)* such that L 2
and z L 2/, therefore Rx C {0,z,2'} and Rz C {0,z,2'}. Observe that
afm = 0. Let 0 # afm € Rx and afm € Rz, if afm = x € Rz, thus,
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x = 2,50 x L z and hence, aSm = 0 is a contradiction. And if a8m = 2/,
then Rx = {0,xz,afm} = Ann(x)M and similar to the above argument,
M| = 9 which is a contradiction. So afm = 0 and similarly afm’ = 0.
Let w be a complement of x + z. Clearly z + z is neither x nor z. Also
aw € Rx C {0,z,2'}, if aw = 0, then x is adjacent to two elements w and
x + z, a contradiction. While if aw = 2/, then Rz = {0, z, aw} = Ann(z)M
and it implies that |[M| = 9, a contradiction. Hence, we may assume that
aw = z and similarly fw = z. Then

O#xz+z=aw+ pwe [z: Mw: M]M + [z : M][w : M|M

since w L x + z,
[w: M]Rx + [w: MRy =0,

and so x + z = 0 which is a contradiction. Consequently Nil(M) = {0, z}.

(b) Let 0 # x= € Nil(M) and |M| > 17. By the proof of (a) we have
Nil(M) = {0,z} for some x € M such that + = —x and [z : M]z = 0. Since
I'(M) is complemented, there is y € T'(M)* such that x L y. We claim that
y is an end. We first show that = + y is also a complement for x. Clearly
x4y e T (M) and [x+y: M][z: M]M =0, because [z : M]xr =0and z L y.
If we T(M)* is adjacent to both z and x + y, then

[z+y: Mlw: MM =0=[z: M][w: M]M.

Hence, [w : M]R(x +y) = 0, so [y : M][w : M]M = 0. Moreover =z L y,
thus, either w = x or w = y . If w = y, then [y : M]y = 0. Therefore
y € Nil(M) = {0,z}, a contradiction. So z = w. Thus, z + y is a comple-
ment for z. Since I'(M) is uniquely complemented, z + y ~ y. Assume that
z € T(M)*\ {x} such that z is adjacent to y, hence, z is adjacent to = + y.
So [z : M][z : M]M = 0. Thus, z = y, because x L y. Consequently y
is an end. 1

Remark 3.8. The proof of Lemma 3.7 (a), shows that if M is a faithful
multiplication R-module such that I'(M) is complemented and | Nil(M)| > 2,
then 8 < |M| < 16 and I'(M) is a star graph with at most 5 edges. So
it is uniquely complemented. Also it shows that if I'(M) is not uniquely
complemented, then Nil(M) = {0, z}, which x is an element of M, such that
xz[z : M] = 0. Hence, x = Bm for some m € M and (€ [z : M].

Before stating the following proposition we define:

D(M):={meM : [m:M]m': M]M =0 for some nonzero m’ € M }.
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PROPOSITION 3.9. Let M = M; x Ms be a multiplication R-module,
R = Ry x Ry, in which M is a reduced module and Nil(My) # 0. If T'(M)
is complemented but not uniquely complemented, then M is torsion free,
Nil(Ms) is the unique maximal submodule of My with ’Nﬂ(Mg)‘ = 2 and
‘Mg‘ = 4. Furthermore if D(Ms) # M, then the converse is true.

Proof. Suppose that Nil(Msy) # 0 and T'(M) is complemented but not
uniquely complemented. Let 0 # b € Nil(Ms), by the proof of Lemma 3.7,
Step 1, b = 0 for some n € N and all § € [b: Ms|. Therefore b € Nil(M).
Since I'(M) is not uniquely complemented, by Remark 3.8, |Nil(M)| = 2
and b = Bm, for some 3 € [b: M] and m € M such that 3?m = 0. So
| Nil(Mz)| = 2. Let Nil(M3) = {0,b} for some nonzero b € Ma. Since Rb C
Nil(Mz) = {0, b}, hence, Rb = {0, b}. First we show that Ann(b)My = {0, b}.
Suppose that ¢ € Ann(b)My — {0,b} and 0 # my € M, a simple check yields
that (m1,b) € T(M)*. So there is (z,y) € T'(M)* for some = € M; and
y € Ms such that (x,y) is a complement of (m1,b). Hence, if y = b, then (0, ¢)
is adjacent to both (mq,b) and (z,y), which is a contradiction. Thus, y # b,
SO

[(0,6) : M][(ma,b) : M]M = 0 = [(0,0) : M][(z,y) : M]M,

again a contradiction. Therefore Ann(b)Ms = {0,b}. One can easily show
that |Ms| = 4 (similar to the proof of Lemma 3.7). Also similar to Step 4
of the proof of Lemma 3.7, Nil(M2) = Ann(b) My will be the unique maximal
submodule of Ms. Next we show that D(M;) = 0. If not, let 0 # m; €
D(M;y). Since M is reduced, then there is 0 # m)} € D(M;p) such that
my # mj. Therefore [my : My][m} : M1]M; = 0. On the other hand there
is m = (x,y) € T(M)* such that m L (mq,b). If x # 0, then b is adjacent
to both m and (mi,b), a contradiction. And if x = 0, then y # 0, but
y € Ann(b)Ms = {0, b}, thus,

[(m1,0) : M][(ma,0) : MM =0 = [(m},b) : M][(x,y) : M]M,

a contradiction. Therefore D(M;) = 0. Suppose that m; € T(M;)*, by
hypothesis, there is a (x1,y1) € T(M)* such that (mq,0) L (z1,y1), hence,
[(m1,0) : M][(z1,y1) : M]M = 0. So [my : Mi]lx; : Mi]M; = 0. Hence,
mq = 0. Thus, M is torsion free.

Conversely, let M = M; x My be a multiplication R-module, R = Ry X R,
where M is torsion free and Nil(M3) is the unique maximal submodule of My,
also, D(My) # Ma and |Mz| = 4. So, by [9, Theorem 2.5], Nil(Mz) = D(My).
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Let D(Ma2) = {0, b}, therefore
T(M) = {(O,mg) : Mg € Mg} U {(m1,b) :mq € Ml)}

U {(ml,O) P my € Ml}.

Thus, I'(M) is complemented but not uniquely complemented, because
(mq,0) L (0,b) and (0,b) L (mq,b) but (mq,0) % (m1,b). 1

EXAMPLE 3.10. Let M = Z X Ei[fi as R-module, R = Z X Zz[x]. By
Proposition 3.9, I'(M) is complemented but not uniquely complemented.

THEOREM 3.11. Let R be a ring and M be a multiplication R-module. If
I'(M) is complemented, but not uniquely complemented, then M = M; @ Ma,
where My, My are submodules of M.

Proof. Let T'(M) be complemented, but not uniquely complemented.
There is a vertex a with distinct complements z and y and a vertex w which
is adjacent to y, but not z. Thus, [w : M|[z : M]M # 0. So there is
B € [z : M] such that fw # 0. Also pw € T(M)*, on the other hand,
[Bw : Mlly : M]M = 0 and [fw : M][a : M|]M = 0. Since a L y and
0 # pw, we have either fw = y or fw = a and hence, [y : M]y = 0 or
[a : M]a = 0. Thus, y € Nil(M) or a € Nil(M). Furthermore, by Re-
mark 3.8, Nil(M) = {0,m}. Suppose that a = m, since m L y, we have
[w: M][m : M]M # 0 and so there is 8; € [w : M| such that 8;m # 0, also
we know that Sym € Nil(M), so fim = m. Let v = fjw — w. Clearly
[v: My : M]M = 0, let r € [m : M], rv = rfiw — rw = 0, hence
[m : MJv = 0. Since m L y, we have v € {0,y,m}. If v = y, then
y € Nil(M), a contradiction. If v = 0, then fjw = w and so (81 —1) € Ann(w).
Thus, M = Rw & Ann(w)M. If v = m, then fjw — w € Nil(M). Let
n = 32 — 1. Hence, n € [fyw — w : M] and by the proof of Lemma 3.7, Step
1, (n)*(Biw — w) = 0, for some s € N. Thus, n*1w = 0. Let

1 4, 6 25 -2 4

=—2n—-n*+_n’+...+(-1)° s
r=g|2n—gn +3n+ + ( )s—ln ,

and suppose that * = rw and e = f1w + z(1 — 20). Clearly
(r? —7)(1 4 4n)w +nw = 0.

Suppose that a = [31; + 7(1 — 231)]. Therefore aw = o?w and « € [w : M].
As a similar argument we have M = RBjw & Ann(81)M. |
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Clearly star graphs are uniquely complemented. Next theorem shows that
for a multiplication R-module M with Nil(M) # 0, if I'(M) is uniquely com-
plemented, then I'(M) is an star graph.

THEOREM 3.12. Let R be a ring and M be a multiplication R-module
with Nil(M) # 0. If T'(M) is a uniquely complemented graph, then either
I'(M) is a star graph with at most six edges or I'(M) is an infinite star graph
with center x, where Nil(M) = {0, z}.

Proof. Suppose that I'(M) is uniquely complemented and Nil(M) # 0.
By the proof of Lemma 3.7 (a), M has a unique maximal submodule. Let H
be the maximal submodule. Since I'(M) is complemented, Rm # M for all
m € T(M) therefore, by [9, Theorem 2.5], Rm C H,so T (M) C H.

Let |M| < 16, then by Remark 3.8 T'(M) is a star graph with at most six
edges.

Now let |M| > 16. Hence by Step 7 of Lemma 3.7 (a), Nil(M) = {0, z} for
some 0 # z € M and [z : M]z = 0.

We first show that I'(M) is an infinite graph. Let ¢ be a complement of
x, so Ann(c)M = {0,2} = Nil(M), by Lemma 3.7 (b). Let ¢ = X7, (aym;) €
[c: M]M, where a; € [c: M] and m; € M, for 1 < i < n and suppose that
a = X" a;. We claim that ac is also a complement of x. If z is adjacent to
both vertices x and ac, then

[ac: Mz : MM =0 = [z : M][z: M]M.

Therefore az € Ann(c)M = {0,x}. So either az = 0 or az = z. If az = 0,
then z € Ann(c)M, a contradiction. Thus az = z. Hence a[z : M|z =
xz[z : M] = 0. Therefore z[z : M] C Ann(c)M = Nil(M) and hence z €
Nil(M) = {0,z}, again a contradiction. Consequently e L x and so, by
Lemma 3.7 (b), Ann(ac)M = {0,x}. By a similar argument a‘c 1 x and
Ann(a’c)M = {0,z} for 1 < i < n . Hence each a‘c is an end. Next note
that o’c are all distinct. If not, suppose that a‘c = afc for some 1 < i < j.
Therefore o'(1 — o/~ ")e = 0, so (1 — a/~%) € Ann(a’c). By the proof of
Lemma 3.7 (a), Step 7, z = fm for some § € [z : M] and m € M such that
B%2m = 0 but fm # 0. Hence (1 — a/~%)m € Ann(a‘c)M = {0,x}. So either
m—aoIm=0orm—aoIm=z. If m=a'"Im, then

z=pm=pBa""Ime Ba" I ' Re C ozt M[c: MIM =0,
a contradiction. Thus m —a’/m = z. So

x—ai_jﬁm:ﬁm—ai_jﬂm:ﬁx:().
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Hence x € o' 7713Rc = 0, again a contradiction. Consequently T'(M) is
infinite.

We next show that I'(M) is a star graph with center x. By contradiction,
suppose that I'(M) is not a star graph. Let ¢ € T(M)* be a complement
of z, so there is a a € T(M)* \ {z,c} such that [a : M|[xz : M]M = 0 but
a is not an end. Hence there is y € T(M)* \ {a,z,c} such that y L a.
Let ¢ = 3 ;(aym;), where a; € [c : M] and m; € M, for 1 < i < n and
let @« = X ;o;. We can check that ay & {0,a,z,¢c,y}. If ay = 0, then
[y : M]e = 0, which is a contradiction with ¢ is an end. If ay = =, then
aly : M][c: MM =0, soy € Ann(ac)M = {0, z}, a contradiction. If ay =y,
then ay[z : M] C [x : M]Rc = 0, a contradiction. If ay = ¢, then a is
adjacent to ¢, which is a contradiction. At last if ay = a, then ayly : M] = 0.
So yly : M] € Ann(ac)M = Nil(M) and therefore y € Nil(M), which is a
contradiction. Thus ay € T(M)* \ {a,z,c,y}. By the hypothesis, there is
z € T(M)* such that z is a complement of ay. One can also verify that
z ¢ {0,ay,a,x,c,y}. (Usey ¢ Nil(M) to show that z & {c,y} and use ay L z
to show that z ¢ {a,z}.) Clearly [z : M]|[z : M|M # 0. Let z = X;_,r;ymy,
where 7; € [z : M] and m; € M, for 1 <i < s and let v =X 1. If yo =0,
then [z : M][z: M]M = 0, a contradiction. So we must suppose that vya # 0.
Also [yz : Ml[c : M]M = 0, hence vz € Ann(c)M. Thus yz = z. On the
other hand, ay L z, so

vy : M[e: MIM = [y : M]R(%, (yaimi)) € [y - M]Raz = 0.

Therefore vy € Ann(c)M. Hence either vy = 0 or vy = x. So x is adjacent
to both y and a. But this is a contradiction that a L y. Consequently I'(M)
is an infinite star graph with center x. |

COROLLARY 3.13. Let M be a multiplication R module. If T'(M) is
uniquely complemented, then either I'(M) is a star graph or S~'M is von
Neumann regular, where S = R\ Z(M).

Morovere, for faithful cyclic R-module M, the converse is true.

Proof. Let I'(M) be uniquely complemented. If Nil(M) = 0, then M is a
reduced and by Theorem 3.3, S™'M is von Neumann regular. If Nil(M) # 0,
then by Theorem 3.12. T'(M) is a star graph. Converse is true by Corollary
3.5. 11

COROLLARY 3.14. Let M be a multiplication R module with T'(M) # M.
Then T'(M) is uniquely complemented, if and only if either I'(M) is a star
graph or S~'M is von Neumann regular, where S = R\ Z(M).
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