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Abstract : For a commutative ring R, the torsion graph of an R-module M is Γ(M) whose
vertices are nonzero torsion elements of M , and two distinct vertices x and y are adjacent
if and only if [x : M ][y : M ]M = 0. In this article we show that if S = R \ Z(M), then
Γ(M) and Γ(S−1M) are isomorphic for a multiplication R-module M . Also we prove that
for a multiplication R-module M , if Γ(M) is uniquely complemented, then S−1M is von
Neumann regular or Γ(M) is a star graph.
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1. Introduction

The idea of a zero-divisor graph of a commutative ring was introduced by
I. Beck in 1988 [6]. He suppose that all elements of the ring are vertices of the
graph and was mainly interested in colorings and then this investigation of
coloring of a commutative ring was continued by Anderson and Naseer in [1].
Anderson and Livingston [3], studied the zero-divisor graph whose vertices are
the nonzero zero-divisors. Let R be a commutative ring with identity and let
Z(R) be the set of zero-divisors of R. The zero-divisor graph of R denoted by
Γ(R), is a graph with vertices Z(R)∗ = Z(R)\{0} and for distinct x, y ∈ Z(R)∗

the vertices x and y are adjacent if and only if xy = 0. This graph turns out
to exhibit properties of the set of the zero divisors of a commutative ring with
best way. The zero-divisor graph helps us to study the algebraic properties of
rings using graph theoretical tools. We can translate some algebraic properties
of a ring to graph theory language and then the geometric properties of graphs
help us explore some interesting results in algebraic structures of rings.

The zero-divisor graph of a commutative ring has also been studied by
several other authors (e.g., [1, 6, 4]). The zero divisor graph has also been
introduced and studied for semigroups in [8], nearrings in [7], and for non-
commutative rings, in [10].
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Throughout, R is a commutative ring with unity and M is a unitary R-
module. In this paper, motivated by the work of [2], we will investigate the
concept of torsion-graph for modules as a natural generalization of zero-divisor
graph for rings. For x ∈ M the residual of Rx by M , denoted by [x : M ], is
a set of elements r ∈ R such that rM ⊆ Rx. The annihilator of an R-module
M denoted by AnnR(M) is [0 : M ]. Let T (M) be the set of torsion elements
of M . It is clear that if R is an integral domain then T (M) is a submodule
of M which is called torsion submodule of M . If T (M) = 0 then the module
M is said to be torsion-free and it is called a torsion module if T (M) = M .
An R-module M is a multiplication module if for every R-submodule K of M
there is an ideal I of R such that K = IM . We will study some properties of
Γ(M), when M is a multiplication R-module. Here the torsion graph Γ(M)
of M is a simple graph whose vertices are nonzero torsion elements of M and
two distinct vertices x and y are adjacent if and only if [x : M ][y : M ]M = 0.
Thus, Γ(M) is an empty graph if and only if M is a torsion-free R-module.
In this paper, we will investigate the interplay of module properties of M in
relation to the properties of Γ(M). We also think that torsion-graph helps us
to study the algebraic properties of modules using graph theoretical tools. A
graph G is connected if there is a path between any two distinct vertices. The
distance, d(x, y) between connected vertices x, y is the length of the shortest
path from x to y (d(x, y) = ∞ if there is no such path).

A ring R is called reduced if Nil(R) = 0, and an R-module M is called a
reduced module if rm = 0 for r ∈ R and m ∈ M , implies that rM ∩Rm = 0.
Also a ring R is von Neumann regular if for each a ∈ R, there is an element
b ∈ R such that a = a2b. It is clear that every von Neumann regular ring is
reduced. An R-module M is called a von Neumann regular module if every
cyclic submodule of M is pure in M . Anderson and Fuller in [5], called the
submodule N , a pure submodule of M if IM ∩ N = IN for every ideal I of
R. And so it is clear that every von Neumann regular modules is reduced.

Let Γ be a graph and V (Γ) denotes the vertices of Γ. Let v ∈ V (Γ), as
in [2], w ∈ V (Γ) is called a complement of v, if v is adjacent to w and no
vertex is adjacent to both v and w; i.e., the edge v − w is not an edge of any
triangle in Γ. In this case, we write v ⊥ w. In module-theoretic terms, for
multiplication R-module M , this is the same as saying that v ⊥ w in Γ(M) if
and only if v, w ∈ T (M)∗ and Ann(w)M∩Ann(v)M ⊂ {0, v, w}. Moreover, we
will follow the authors in [2], and say that Γ is complemented if every vertex
has a complement, and is uniquely complemented if it is complemented and
any two complements of vertex set are adjacent to the same vertices. From
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[2, Theorem 3.5 and Theorem 3.9], we know that for a ring R with nonzero
nilpotent elements, Γ(R) is uniquely complemented if and only if Γ(R) is a
star graph. Moreover, we know that, if R is reduced, then S−1R is a von
Neumann regular ring.

In Section 2, as a generalization of [2, Theorem 2.2], we show that if M
is a multiplication R-module and S = R \ Z(M), then Γ(M) ∼= Γ(S−1M). In
Section 3, we investigate the complemented and uniquely complemented tor-
sion graph. We also extend [2, Theorem 3.9], to the multiplication R-modules.
And furthermore for a multiplication R-module M , we prove that if Γ(M) is
complemented, but not uniquely complemented, then M = M1 ⊕M2, where
M1,M2 are submodules of M . Also for a reduced multiplication R-module M ,
we show that if Γ(M) is complemented, then S−1M is a von Neumann regular
module, where S = R \ Z(M), also for a faithful multiplication R-module M
with Nil(M) 6= 0, we prove that Γ(M) is uniquely complemented if and only
if Γ(M) is a star graph.

Let R be a ring and M be an R-module, throughout Nil(R) is an ideal
consisting of nilpotent elements of R,

Nil(M) :=
⋂

N∈Spec(M)

N ,

Spec(M) is the set of all prime submodules of M , T (M)∗ = T (M) \ {0},
Z(M) = {r ∈ R : rm = 0 for some 0 6= m ∈ M}. We let Q, Z and Zn denote
the rings of rational numbers, integers and integers modulo n, respectively.

2. Isomorphisms

Recall that two graphs G and H are isomorphic, denoted by G ∼= H, if
there exists a bijection, say ϕ, from V (G) to V (H) of vertices such that the
vertices x and y are adjacent in G if and only if ϕ(x) and ϕ(y) are adjacent
in H.

Let S = R \ Z(M). It is clear that the well defined map

χ : M −→ S−1M

m 7−→ χ(m) = ms
s ,

is a monomorphism. So we can identify M with its image in S−1M . Thus if
m denotes an element of M , then the same symbol is also used to denote the
fraction m

1 . In this manner M becomes a submodule of S−1M .
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Let M be an R-module. For m, m′ ∈ T (M)∗, we define m ∼M m′ if and
only if Ann(m)M = Ann(m′)M . Clearly ∼ is an equivalence relation on
T (M)∗. Let S = R \ Z(M) and denote equivalence classes by [m]M , so

[m]M =
{
m′ ∈ T (M)∗ : m ∼M m′}

and

([m]M )S =
{

m′

s
: m′ ∈ [m], s ∈ S

}
.

Now we would like to show that Γ(S−1M) and Γ(M) are isomorphic by show-
ing that there is a bijection map between equivalence classes of vertex sets
Γ(S−1M) and Γ(M) such that the corresponding equivalence classes have the
same cardinality.

Theorem 2.1. Let M be a faithful multiplication R-module and S =
R \ Z(M). Then Γ(M) and Γ(S−1M) are isomorphic.

Proof. (Our proof is quite similar to the proof in [2], applied for a ring.)
Let S = R \ Z(M), MS = S−1M , RS = S−1R and

(T (M)S)∗ =
{m

s
: m ∈ T (M)∗, s ∈ S

}
.

Denote the equivalence relations defined above on T (M)∗ and T (MS)∗ by ∼M

and ∼MS
, respectively. For all m ∈ T (M)∗, we have AnnRS

(m
s ) = AnnR(m)S

and [NS : MS ]MS = [N : M ]SMS . By the above comments (T (M)S)∗ =
T (MS)∗, ([m]M )S = ([m1 ])MS

and

T (M)∗ =
⋃

λ∈Λ

[mλ]M , T (MS)∗ =
⋃

λ∈Λ

[mλ

1

]
MS

(both are disjoint unions). We next show that
∣∣[x]M

∣∣ =
∣∣[x1 ]MS

∣∣ for all x ∈
T (M)∗. It is clear that [x]M ⊆ [x

1 ]MS
. For the reverse inclusion, let m

s ∈
[x1 ]MS

, such that m ∈ [x]M , s ∈ S, so Ann(m)M = Ann(x)M and thus,
{snm : n ≥ 1} ⊆ [x]M . Now let

∣∣[x]M
∣∣ be finite, then there exists i ∈ I such

that sim = si+1m. So

m

s
=

msi

si+1
=

msi+1

si+1
= m ∈ [x]M ,
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and therefore
∣∣[x]M

∣∣ =
∣∣[x1 ]MS

∣∣. Now suppose that
∣∣[x]M

∣∣ is infinite. We define
an equivalence relation ≈ on S by s ≈ t if and only if sx = tx. It is easily
verified that the map

[x]M × S/ ≈ −→ [x
1 ]MS

(b, [s]) 7−→ b
s

is well-defined and surjective, because if (b, [s]) = (a, [t]), then a = b and
[s] = [t]. Hence,

(s− t)M ⊆ Ann(x)M = Ann(a)M = Ann(b)M

and since M is multiplication sa = ta and sb = tb, therefore a
t = b

s . Thus,
∣∣∣
[x

1

]∣∣∣ ≤
∣∣[x]M

∣∣∣∣S/ ≈ ∣∣ .

Also, the map
S/ ≈ −→ [x]M

[s] 7−→ sa

is clearly well-defined and injective. Hence,
∣∣S/ ≈ ∣∣ ≤ ∣∣[x]M

∣∣ and thus,
∣∣∣
[x

1

]
MS

∣∣∣ ≤
∣∣[x]M

∣∣2 =
∣∣[x]M

∣∣ ,

since
∣∣[x]M

∣∣ is infinite. Hence,
∣∣[x]M

∣∣ =
∣∣[x

1 ]MS

∣∣. Thus, there is a bijection
map ϕα : [xα] −→ [xα

1 ] for each α ∈ Λ. Now define

ϕ : T (M)∗ −→ T (MS)∗

m 7−→ ϕ(m) = ϕα(m) .

Clearly ϕ is a bijection map. Thus, we need only to show that m and n are
adjacent in Γ(M) if and only if ϕ(m) and ϕ(n) are adjacent in Γ(MS); i.e.,

[m : M ][n : M ]M = 0 ⇐⇒ [ϕ(m) : MS ][ϕ(n) : MS ]MS = 0 .

Let m ∈ [x]M , n ∈ [y]M , w ∈ [x1 ]MS
and z ∈ [y1 ]MS

. It is sufficient to show
that

[m : M ][n : M ]M = 0 ⇐⇒
[w

1
: MS

][z

1
: MS

]
MS = 0 .
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Note that

[m : M ][n : M ]M = 0

⇐⇒ m ∈ AnnR(n)M = AnnR(y)M

⇐⇒ m

1
∈ AnnRS

(n

1

)
MS = AnnRS

(y

1

)
MS = AnnRS

(z

1

)
MS

⇐⇒
[m

1
: MS

] [z

1
: MS

]
MS = 0

⇐⇒ z

1
∈ AnnRS

(m

1

)
MS = AnnRS

(x

1

)
MS = Ann

(w

1

)
MS

⇐⇒
[z

1
: MS

] [w

1
: MS

]
MS = 0 .

Hence, Γ(M) and Γ(MS) are isomorphic as graphs.

Corollary 2.2. Let M and N be multiplication R-modules with
S−1M ∼= S−1N , then Γ(M) ∼= Γ(N). In particular Γ(M) ∼= Γ(N) when
S−1M = S−1N .

3. Complemented graph and multiplication module

In this section we prove that, if M is a reduced multiplication R-module
and Γ(M) is uniquely complemented, then S−1M is von Neumann regular and
furthermore we show that if M is a multiplication R-module with Nil(M) 6= 0,
then Γ(M) is uniquely complemented if and only if Γ(M) is a star graph with
at most six edges or is an infinite star graph (i.e., Γ(M) has an infinite vertices
such that there exists a vertex adjacent to every other vertices, and these
are only adjacent relation). Finally we show that if M is a multiplication
R-module and Γ(M) is uniquely complemented, then either Γ(M) is a star
graph or S−1M is von Neumann regular, where S = R \ Z(M).

Let G be a (undirected) graph. We will follow the authors in [4], and
define that a ≤ b if a and b are not adjacent and each vertex of G adjacent
to b is also adjacent to a; and we define a ∼ b if and only if a ≤ b and b ≤ a.
Thus, a ∼ b if and only if a and b are adjacent to exactly the same vertices.
Clearly ∼ is an equivalence relation on G.

Now let M be a multiplication R-module and m,n ∈ T (M)∗, then m ∼ n
if and only if Ann(m)M \ {m} = Ann(n)M \ {n}. Also we know that if m⊥n,
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then [m : M ][n : M ]M = 0 and Ann(m)M ∩ Ann(n)M ⊆ {0,m, n}. Now if
Ann(m)M ∩Ann(n)M = {0,m, n}, then

[m : M ]2M = [n : M ]2M = [m : M ][n : M ]M = 0 .

On the other hand, since m ⊥ n, m+n ∈ {0,m, n}, so m+n is adjacent to m
and n, which is a contradiction. Therefore m ⊥ n if and only if Ann(m)M ∩
Ann(n)M ⊂ {0,m, n} and [m : M ][n : M ]M = 0.

Lemma 3.1. Consider the following statements for a multiplication
R-module M with m,m′ ∈ T (M)∗:

(a) m ∼ m′ ;

(b) Rm = Rm′ ;

(c) Ann(m)M = Ann(m′)M .

Then under the above conditions we have:

(1) If M is reduced, then statements (a) and (c) are equivalent.

(2) If M is von Neumann regular, then all three statements are equivalent.

Proof. (1) Let M be reduced, one can easily check that (a) ⇔ (c).
(2) Since every von Neumann regular module is reduced, so (a) ⇔ (c).

Clearly (b) ⇒ (c). We show that (b) ⇐ (c). Since M is von Neumann regular
Rm ∩ [m : M ]M = [m : M ]Rm. So m = sm for some s ∈ [m : M ], hence,
(1−s)m′ ∈ Ann(m)M = Ann(m′)M . Therefore [m′ : M ]m′ ∈ Rm. Moreover,
since M is a von Neumann regular multiplication module [m′ : M ]m′ = Rm′

and so Rm′ ⊆ Rm and similarly Rm ⊆ Rm′. Consequently Rm = Rm′.

Lemma 3.2. Let M be a reduced multiplication R-module and let
m,m′,m′′ ∈ T (M)∗. If m ⊥ m′ and m ⊥ m′′, then m′ ∼ m′′. Thus, Γ(M) is
uniquely complemented if and only if Γ(M) is complemented.

Proof. Let m,m′,m′′ ∈ T (M)∗. Suppose m ⊥ m′ and m ⊥ m′′. It is
sufficient to show that Ann(m′)M = Ann(m′′)M . Suppose x ∈ Ann(m′)M ,
so [x : M ][m′ : M ]M = 0. One can easily show that for all α ∈ [x : M ],

[αm′′ : M ][m′ : M ]M = 0 = [αm′′ : M ][m : M ]M.

So αm′′ ∈ {0,m, m′}. If αm′′ = m or αm′′ = m′, then m = 0 or m′ = 0, is a
contradiction. Thus, αm′′ = 0 for all α ∈ [x : M ]. Therefore x ∈ Ann(m′′)M
and so Ann(m′)M ⊆ Ann(m′′)M . Similarly Ann(m′′)M ⊆ Ann(m′)M .
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Theorem 3.3. Let M be a reduced multiplication R-module. If Γ(M) is
complemented, then S−1M is von Neumann regular, where S = R \ Z(M).

Proof. Let 0 6= x
s ∈ S−1M , where x ∈ M and s ∈ S. Let x 6∈ T (M)∗ and

x =
n∑

i=1

αimi ∈ [x : M ]M ,

where αi ∈ [x : M ] and mi ∈ M . Suppose that α =
∑n

i=1 αi. If α ∈ Z(M),
then αm = 0 for some non zero element m ∈ M . So [m : M ][x : M ]M = 0,
hence, 0 6= [m : M ] ⊆ Ann(x) = 0, a contradiction. Therefore α ∈ S =
R \ Z(M). Thus,

S−1R
(x

s

)∩ S−1M
(r

t

)
= S−1R

(r

t

x

s

)
.

Therefore S−1M is von Neumann regular.
Next we can suppose that x ∈ T (M)∗. By the hypothesis there is y ∈

T (M)∗ such that x ⊥ y. Hence, y ∈ Ann(x)M and so y =
∑m

i=1 βimi,
mi ∈ M and βi ∈ Ann(x). Let β =

∑m
i=1 βi. We show that α + β ∈ S. If

α + β ∈ Z(M), then (α + β)m0 = 0 for some non zero m0 ∈ M . So

[αm0 : M ][x : M ]M = 0 = [y : M ][αm0 : M ]M .

Since M is a reduced module x 6= αm0 and αm0 6= y. Thus, αm0 = 0 and
hence, βm0 = 0, so

[x : M ][m0 : M ]M = 0 = [y : M ][m0 : M ]M.

By a similar argument we have m0 = 0, a contradiction. Therefore α + β ∈ S
and x

s = α
α+β

x
s . So a simple check yields that

S−1R
(x

s

)∩ S−1M
(r

t

)
= S−1R

(r

t

x

s

)
.

Hence, S−1M is von Neumann regular.

Next example shows that S−1M is von Neumann regular but M is not von
Neumann regular in spite of Γ(M) ∼= Γ(S−1M).

We know that an r-partite graph is one whose vertex set can be partitioned
into r subsets so that no edge has both ends in any of these subsets. A com-
plete r-partite graph is one in which each vertex is joined to every vertex that
is in another subset. The complete bipartite graph (i.e., 2-partite graph) with
vertex sets having m and n elements, will be denoted by Km,n. A complete
bipartite graph of the form K1,n is called a star graph.
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Examples 3.4. (a) Let M1 be an R1-module and M2 be an R2-module,
then M = M1×M2 is R = R1×R2 module with this multiplication R×M −→
M , defined by (r1, r2)(m1,m2) = (r1m1, r2m2). Now let M = Z × nZ and
R = Z×Z. It is clear that Γ(M) is a complete bipartite graph (i.e., Γ(M) may
be partitioned into two disjoint vertex sets V1 = {(m1, 0) : m1 ∈ (Z)∗} and
V2 = {(0,m2) : m2 ∈ (nZ)∗} and two vertices x and y are adjacent if and only
if they are in distinct vertex sets). Therefore Γ(M) is complemented. Also M
is a faithful multiplication R-module, because M = R(1, n). A simple check
yields that M is reduced, thus, S−1M is von Neumann regular, by Theorem
3.3. But M is not von Neumann regular (use N = R(2, 2n) and I = [N : M ]).

(b) Let R = Z2 × Z and M = R as an R-module. So M is a faithful
multiplication R-module. Clearly M is reduced and Γ(M) is an infinite star
graph with center (1̄, 0). Thus, Γ(M) is complemented and by Theorem 3.3,
S−1M is von Neumann regular, but M is not von Neumann regular.

Corollary 3.5. Let M be a cyclic faithful reduced R-module. The fol-
lowing statements are equivalent:

(1) S−1M is von Neumann regular, where S = R \ Z(M);
(2) Γ(M) is uniquely complemented;

(3) Γ(M) is complemented.

Proof. (1) ⇒ (2) Let M be a von Neumann regular R-module and
m ∈ T (M)∗. So [m : M ]M∩Rm = Rm[m : M ]. Since Rm is a weakly cancel-
lation module, R = [m : M ] + Ann(m). Say M := Rx for some x ∈ M . Thus,
Rx = Rm+Ann(m)x and therefore x = rm+y for some r ∈ R, y ∈ Ann(m)x.
One can easily check that y ∈ T (M)∗ and y ⊥ m, so Γ(M) is complemented.
Since M is a faithful cyclic R-module, then S−1M is a faithful cyclic S−1R-
module and therefore by the above comments, Γ(S−1M) is complemented.
Moreover by Theorem 2.1, Γ(M) ∼= Γ(S−1M), so Γ(M) is complemented.
Consequently Γ(M) is uniquely complemented by Lemma 3.2.

(2) ⇒ (3) This is true for any graph.
(3) ⇒ (1) By Theorem 3.3.

Corollary 3.6. Let M be a reduced multiplication R-module with
T (M) 6= M . Then the following statements are equivalent:

(1) S−1M is von Neumann regular, where S = R \ Z(M);
(2) Γ(M) is uniquely complemented;

(3) Γ(M) is complemented.
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Now we investigate some properties of M , when M is a multiplication R-
module with Nil(M) 6= 0. In this case, we extend [2, Theorem 3.9] in Theorem
3.12. First we give the following key lemma. Recall that a vertex of a graph
is called an end if there is only one other vertex adjacent to it.

Lemma 3.7. Let R be a ring and M be a multiplication R-module with
Nil(M) 6= 0, then:

(a) If Γ(M) is complemented, then either 8 ≤ |M | ≤ 16 or |M | ≥ 17 and
Nil(M) = {0, x} for some 0 6= x ∈ M .

(b) If Γ(M) is uniquely complemented and |M | ≥ 17, then any complement
of the nonzero element x ∈ Nil(M) is an end.

Proof. (a) We subdivide the proof of (a) in the following steps:
Step 1: Let Γ(M) be complemented. We show that for all 0 6= α ∈ [x : M ],

where x ∈ Nil(M), αnx = 0 for some n ∈ N. Let S = {αnx : n ∈ N}, we must
show that 0 ∈ S. Suppose that 0 6∈ S. Let Σ = {K : K ≤ M, K ∩S = ∅}. By
Zorn’s lemma, let H be a maximal member of Σ. We claim that [H : M ] is a
prime ideal of R. Clearly [H : M ] 6= R, let ab ∈ [H : M ] but a, b 6∈ [H : M ]
for a, b ∈ R. Hence, (aM + H), (bM + H) 6∈ ∑

, so αn1x ∈ S ∩ (aM + H) and
αn2x ∈ S ∩ (bM +H) for some n1, n2 ∈ N. Therefore αn1+n2+1x ∈ H ∩S, is a
contradiction. Hence, [H : M ] is a prime ideal and by [9, Corollary 2.11], H
is a prime submodule of M . Since x ∈ Nil(M) we have αx ∈ H ∩ S, which is
a contradiction and consequently 0 ∈ S.

Choose n to be as small as possible αnx = 0. Then n ≥ 1 and αn−1x 6= 0.
Step 2: In this step we claim that n ≤ 3. Suppose that n > 3, so

αx ∈ T (M)∗. Since Γ(M) is complemented, there exists y ∈ T (M)∗ such that
y is a complement of αx. Then

[αn−1x : M ][y : M ]M = 0 = [αn−1x : M ][αx : M ]M,

and so αn−1x = y will be the only possibility. Thus, αx ⊥ αn−1x. Similarly
αix ⊥ αn−1x for each 1 ≤ i ≤ n− 2. Let m = αn−2x + αn−1x, then

[m : M ][αn−1x : M ]M = 0 = [m : M ][αn−2x : M ]M,

which is a contradiction, since αn−2x ⊥ αn−1x and

αn−2x + αn−1x 6∈ {
0, αn−1x, αn−2x

}
.
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Thus, n ≤ 3.
Step 3: Let n = 3, so α3x = 0 but α2x 6= 0. We show that either |M | = 16

or |M | = 8. Similar to Step 2, αx ⊥ α2x. Also Ann(x)M ⊆ {0, α2x},
since if z ∈ Ann(x)M , then [z : M ][x : M ]M = 0, hence, if 0 6= z, z is
adjacent to two elements αx and α2x. Since αx ⊥ α2x, therefore z = α2x. So
Ann(x)M ⊆ {0, α2x}. Now for all r ∈ R,

[rα2x : M ][αx : M ]M = 0 = [rα2x : M ][α2x : M ]M,

hence, rα2x ∈ {0, αx, α2x}. But rα2x = αx, then α2x = 0, is a contradiction
and so Rα2x = {0, α2x}. Also

Ann(α2x)M ⊆ {
0, x, αx, α2x, x + αx, x + α2x, αx + α2x, x + αx + α2x

}
,

since if z ∈ Ann(α2x)M , then α2z ∈ Ann(x)M ⊆ {0, α2x} and so either
α2z = 0 or α2z = α2x. Thus, either

[αz : M ][αx : M ]M = 0 = [αz : M ][α2x : M ]M

or
[(αz − αx) : M ][αx : M ]M = 0 = [(αz − αx) : M ][α2x : M ]M.

Since αx ⊥ α2x, we have either αz ∈ {0, αx, α2x} or (αz−αx) ∈ {0, αx, α2x}.
Now let α2z = 0, so αz 6= αx and therefore either αz = 0 or α(z − αx) = 0
and so

[z : M ][αx : M ]M = 0 = [z : M ][α2x : M ]M

or
[(z − αx) : M ][αx : M ]M = 0 = [(z − αx) : M ][α2x : M ]M,

hence, z ∈ {0, αx, α2x, α2x+αx}. Thus, we may assume that α2z = α2x, then
αz−αx 6= αx. On the other hand αz−αx ∈ {0, αx, α2x}, so either αz−αx = 0
or (αz−αx) = α2x and by similar argument z ∈ {x, α2x, x+αx, x+αx+α2x}.

Now if α2[x : M ]x = 0, then

Ann(α2x)M =
{
0, x, αx, α2x, x + αx, x + α2x, αx + α2x, x + αx + α2x

}
. (i)

And if α2[x : M ]x 6= 0, then

Ann(α2x)M =
{
0, αx, α2x, αx + α2x

}
. (ii)

Now we claim that |M | = 16 in case (i) and |M | = 8 in case (ii). Since
α2[x : M ]M 6= 0, there are γ ∈ [x : M ] and m ∈ M such that α2γm 6= 0 and a
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simple check yields α2γm = α2x. Let m0 ∈ M , so α2γm0 ∈ Rα2x = {0, α2x}.
If α2γm0 = 0, then m0 ∈ Ann(α2x)M and if α2γm0 = α2x, then m0 −m ∈
Ann(α2x). Consequently |M | = 16 in case (i) and |M | = 8 in case (ii).

Step 4: In this step we show that H = Ann(α2x)M is the unique maximal
submodule of M. Clearly H 6= M and Rα2x ∼= R

Ann(α2x)
. Since Rα2x =

{0, α2x}, we have Ann(α2x) is a maximal ideal of R. Hence, by [9, Theorem
2.5], Ann(α2x)M is a maximal submodule. Also

Ann(α2x)M ⊆ Rx ⊆ Nil(M) ⊆ Ann(α2x)M.

Therefore Ann(α2x)M = Nil(M) is the unique maximal submodule of M . If
T (M) ⊆ H = Ann(α2x)M , then T (M) = Ann(α2x)M , so Γ(M) is a star
graph with 5 edges and center α2x.

Step 5: Assume that n = 2, we show that [x : M ]2x = 0. Let [x :
M ]2x 6= 0, so there exist two elements α, β ∈ [x : M ] such that αβx 6= 0.
Also there are m ∈ M and γ ∈ [x : M ] such that αβγm 6= 0, on the other
hand α2x = β2x = γ2x = 0 and there is y ∈ T (M)∗ such that αx ⊥ y, a
simple check yields that Rαx ⊆ {0, αx, y} and y = αβx, hence, αx ⊥ αβx.
So R(αx) = {0, αx, αβx} and Ann(αx)M = {0, αx, αβx}. Also αβγm is
adjacent to two vertices αx and αβx, but αβγm 6= αx, thus, αβγm = αβx.
We know that αβm is adjacent to two vertices αx and αβx but αβm 6= αβx
and αβm 6= αx, which is a contradiction. Thus, [x : M ]2x = 0.

Step 6: Assume that n = 2 and [x : M ]2x = 0. We show that |M | ≤ 12.
By hypothesis α2x = 0 but αx 6= 0, hence, α[x : M ]M 6= 0, thus, αβm 6= 0
for some β ∈ [x : M ] and m ∈ M . We know that Γ(M) is complemented and
x ∈ T (M)∗, so there is y ∈ T (M)∗ such that x ⊥ y, but αx is adjacent to
two vertices x and y. Hence, either αx = x or αx = y. If αx = x then by
multiplying in α we have αx = 0, a contradiction. Therefore αx = y, so αx ⊥
x. Let z ∈ Ann(x)M hence, z ∈ {0, x, αx}, since x ⊥ αx = y, if z = x, then
[x : M ]x = 0 which is a contradiction. Therefore Ann(x)M = {0, αx}. Also a
simple check yields that R(αx) = {0, αx}. On the other hand αm ∈ T (M)∗

and so there exists w ∈ T (M)∗ such that αm ⊥ w. But αβm is adjacent
to two vertices αm and w, therefore αβm = w will be the only possibility
and so αβm ⊥ αm. Also αβm is adjacent to two vertices αx and x. Hence,
αβm = αx. Now we show that Ann(αx)M = {0, αm, αx, x, x + αm, x + αx},
let v ∈ Ann(αx)M so αv ∈ Ann(x)M = {0, αx}. If αv = 0, then

[v : M ][αβm : M ]M = 0 = [v : M ][αm : M ]M
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and if αv = αx, then

[v − x : M ][αβm : M ]M = 0 = [v − x : M ][αm : M ]M.

Consequently,

Ann(αx)M =
{
0, αm,αx, x, x + αm, x + αx

}

and so
∣∣Ann(αx)M

∣∣ ≤ 6. For all m0 ∈ M , αβm0 ∈ R(αx) = {0, αx}. So
either m0 ∈ Ann(αx)M or m0−m ∈ Ann(αx)M , since αβm = αx. Therefore
|M | ≤ 12. And by a similar argument in Step 4, Ann(αx)M = Nil(M) is the
unique maximal submodule of M and Γ(M) is a star graph.

Step 7: Suppose that n = 1. If [x : M ]x 6= 0 by the above steps we have
8 ≤ |M | ≤ 16. So we can assume that [x : M ]x = 0. We show that either
|M | = 9 or Nil(M) = {0, x} with 2x = 0 and |M | 6= 9. Let x ∈ [x : M ]M so
x = Σn

i=1αimi where αi ∈ [x : M ] and mi ∈ M for all 1 ≤ i ≤ n. Assume
that αimi 6= 0. Since Γ(M) is complemented, then there is y ∈ T (M)∗ such
that x ⊥ y, so Rx ⊆ {0, x, y}. If x 6= αimi for all i, then αimi ∈ Rx and
so αimi = y for all i. Suppose that αimi = α1m1, thus x = Σn

i=1α1m1 =
(Σn

i=1α1)m1 = βm1 where β = Σn
i=1α1 ∈ [x : M ]. Otherwise x = αimi for

some 1 ≤ i ≤ n. Hence, we may assume that x = αm for some α ∈ [x : M ] and
m ∈ M such that α2m = 0 but 0 6= αm. We know that x+x ∈ Rx ⊆ {0, x, y},
if x + x 6= 0, then Rx = {0, x, 2x}, x ⊥ 2x and Ann(x)M = {0, x, 2x}. And
for all m0 ∈ M , αm0 ∈ Rx, therefore

[m0 : M ][x : M ]M = 0 = [m0 : M ][2x : M ]

or
[m0 −m : M ][x : M ]M = 0 = [m0 −m : M ][2x : M ]

or
[m0 − 2m : M ][x : M ]M = 0 = [m0 − 2m : M ][2x : M ].

Hence, |M | = 9 and by a similar argument in Step 4, Ann(x)M is the unique
maximal submodule of M and Γ(M) is a star graph. Now let |M | 6= 9 so by
the above argument we must have 2x = 0. We claim that Nil(M) = {0, x}.
Suppose that z is another nonzero element of Nil(M), hence, [z : M ]z = 0
and z = βm′ for some β ∈ [z : M ] and m′ ∈ M , such that β2m′ = 0.
So that Γ(M) is complemented there are x′, z′ ∈ T (M)∗ such that x ⊥ x′

and z ⊥ z′, therefore Rx ⊆ {0, x, x′} and Rz ⊆ {0, z, z′}. Observe that
αβm = 0. Let 0 6= αβm ∈ Rx and αβm ∈ Rz, if αβm = x ∈ Rz, thus,
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x = z′, so x ⊥ z and hence, αβm = 0 is a contradiction. And if αβm = x′,
then Rx = {0, x, αβm} = Ann(x)M and similar to the above argument,
|M | = 9 which is a contradiction. So αβm = 0 and similarly αβm′ = 0.
Let w be a complement of x + z. Clearly x + z is neither x nor z. Also
αw ∈ Rx ⊆ {0, x, x′}, if αw = 0, then x is adjacent to two elements w and
x + z, a contradiction. While if αw = x′, then Rx = {0, x, αw} = Ann(x)M
and it implies that |M | = 9, a contradiction. Hence, we may assume that
αw = x and similarly βw = z. Then

0 6= x + z = αw + βw ∈ [x : M ][w : M ]M + [z : M ][w : M ]M

since w ⊥ x + z,
[w : M ]Rx + [w : M ]Ry = 0,

and so x + z = 0 which is a contradiction. Consequently Nil(M) = {0, x}.
(b) Let 0 6= x ∈ Nil(M) and |M | ≥ 17. By the proof of (a) we have

Nil(M) = {0, x} for some x ∈ M such that x = −x and [x : M ]x = 0. Since
Γ(M) is complemented, there is y ∈ T (M)∗ such that x ⊥ y. We claim that
y is an end. We first show that x + y is also a complement for x. Clearly
x+y ∈ T (M)∗ and [x+y : M ][x : M ]M = 0, because [x : M ]x = 0 and x ⊥ y.
If w ∈ T (M)∗ is adjacent to both x and x + y, then

[x + y : M ][w : M ]M = 0 = [x : M ][w : M ]M.

Hence, [w : M ]R(x + y) = 0, so [y : M ][w : M ]M = 0. Moreover x ⊥ y,
thus, either w = x or w = y . If w = y, then [y : M ]y = 0. Therefore
y ∈ Nil(M) = {0, x}, a contradiction. So x = w. Thus, x + y is a comple-
ment for x. Since Γ(M) is uniquely complemented, x + y ∼ y. Assume that
z ∈ T (M)∗ \ {x} such that z is adjacent to y, hence, z is adjacent to x + y.
So [z : M ][x : M ]M = 0. Thus, z = y, because x ⊥ y. Consequently y
is an end.

Remark 3.8. The proof of Lemma 3.7 (a), shows that if M is a faithful
multiplication R-module such that Γ(M) is complemented and

∣∣Nil(M)
∣∣ > 2,

then 8 ≤ |M | ≤ 16 and Γ(M) is a star graph with at most 5 edges. So
it is uniquely complemented. Also it shows that if Γ(M) is not uniquely
complemented, then Nil(M) = {0, x}, which x is an element of M , such that
x[x : M ] = 0. Hence, x = βm for some m ∈ M and β ∈ [x : M ].

Before stating the following proposition we define:

D(M) :=
{
m ∈ M : [m : M ][m′ : M ]M = 0 for some nonzero m′ ∈ M

}
.
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Proposition 3.9. Let M = M1 × M2 be a multiplication R-module,
R = R1 × R2, in which M1 is a reduced module and Nil(M2) 6= 0. If Γ(M)
is complemented but not uniquely complemented, then M1 is torsion free,
Nil(M2) is the unique maximal submodule of M2 with

∣∣ Nil(M2)
∣∣ = 2 and∣∣M2

∣∣ = 4. Furthermore if D(M2) 6= M2, then the converse is true.

Proof. Suppose that Nil(M2) 6= 0 and Γ(M) is complemented but not
uniquely complemented. Let 0 6= b ∈ Nil(M2), by the proof of Lemma 3.7,
Step 1, βnb = 0 for some n ∈ N and all β ∈ [b : M2]. Therefore b ∈ Nil(M).
Since Γ(M) is not uniquely complemented, by Remark 3.8,

∣∣Nil(M)
∣∣ = 2

and b = βm, for some β ∈ [b : M ] and m ∈ M such that β2m = 0. So∣∣Nil(M2)
∣∣ = 2. Let Nil(M2) = {0, b} for some nonzero b ∈ M2. Since Rb ⊆

Nil(M2) = {0, b}, hence, Rb = {0, b}. First we show that Ann(b)M2 = {0, b}.
Suppose that c ∈ Ann(b)M2 − {0, b} and 0 6= m1 ∈ M1, a simple check yields
that (m1, b) ∈ T (M)∗. So there is (x, y) ∈ T (M)∗ for some x ∈ M1 and
y ∈ M2 such that (x, y) is a complement of (m1, b). Hence, if y = b, then (0, c)
is adjacent to both (m1, b) and (x, y), which is a contradiction. Thus, y 6= b,
so

[(0, b) : M ][(m1, b) : M ]M = 0 = [(0, b) : M ][(x, y) : M ]M,

again a contradiction. Therefore Ann(b)M2 = {0, b}. One can easily show
that

∣∣M2

∣∣ = 4 (similar to the proof of Lemma 3.7). Also similar to Step 4
of the proof of Lemma 3.7, Nil(M2) = Ann(b)M2 will be the unique maximal
submodule of M2. Next we show that D(M1) = 0. If not, let 0 6= m1 ∈
D(M1). Since M1 is reduced, then there is 0 6= m′

1 ∈ D(M1) such that
m1 6= m′

1. Therefore [m1 : M1][m′
1 : M1]M1 = 0. On the other hand there

is m = (x, y) ∈ T (M)∗ such that m ⊥ (m1, b). If x 6= 0, then b is adjacent
to both m and (m1, b), a contradiction. And if x = 0, then y 6= 0, but
y ∈ Ann(b)M2 = {0, b}, thus,

[(m′
1, b) : M ][(m1, b) : M ]M = 0 = [(m′

1, b) : M ][(x, y) : M ]M,

a contradiction. Therefore D(M1) = 0. Suppose that m1 ∈ T (M1)∗, by
hypothesis, there is a (x1, y1) ∈ T (M)∗ such that (m1, 0) ⊥ (x1, y1), hence,
[(m1, 0) : M ][(x1, y1) : M ]M = 0. So [m1 : M1][x1 : M1]M1 = 0. Hence,
m1 = 0. Thus, M1 is torsion free.

Conversely, let M = M1×M2 be a multiplication R-module, R = R1×R2,
where M1 is torsion free and Nil(M2) is the unique maximal submodule of M2,
also, D(M2) 6= M2 and

∣∣M2

∣∣ = 4. So, by [9, Theorem 2.5], Nil(M2) = D(M2).
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Let D(M2) = {0, b}, therefore

T (M) =
{
(0,m2) : m2 ∈ M2

} ∪ {
(m1, b) : m1 ∈ M1)

}

∪ {
(m1, 0) : m1 ∈ M1

}
.

Thus, Γ(M) is complemented but not uniquely complemented, because
(m1, 0) ⊥ (0, b) and (0, b) ⊥ (m1, b) but (m1, 0) 6∼ (m1, b).

Example 3.10. Let M = Z × Z2[x]
<x2>

as R-module, R = Z × Z2[x]. By
Proposition 3.9, Γ(M) is complemented but not uniquely complemented.

Theorem 3.11. Let R be a ring and M be a multiplication R-module. If
Γ(M) is complemented, but not uniquely complemented, then M = M1⊕M2,
where M1,M2 are submodules of M .

Proof. Let Γ(M) be complemented, but not uniquely complemented.
There is a vertex a with distinct complements z and y and a vertex w which
is adjacent to y, but not z. Thus, [w : M ][z : M ]M 6= 0. So there is
β ∈ [z : M ] such that βw 6= 0. Also βw ∈ T (M)∗, on the other hand,
[βw : M ][y : M ]M = 0 and [βw : M ][a : M ]M = 0. Since a ⊥ y and
0 6= βw, we have either βw = y or βw = a and hence, [y : M ]y = 0 or
[a : M ]a = 0. Thus, y ∈ Nil(M) or a ∈ Nil(M). Furthermore, by Re-
mark 3.8, Nil(M) = {0, m}. Suppose that a = m, since m ⊥ y, we have
[w : M ][m : M ]M 6= 0 and so there is β1 ∈ [w : M ] such that β1m 6= 0, also
we know that β1m ∈ Nil(M), so β1m = m. Let v = β1w − w. Clearly
[v : M ][y : M ]M = 0, let r ∈ [m : M ], rv = rβ1w − rw = 0, hence
[m : M ]v = 0. Since m ⊥ y, we have v ∈ {0, y, m}. If v = y, then
y ∈ Nil(M), a contradiction. If v = 0, then β1w = w and so (β1−1) ∈ Ann(w).
Thus, M = Rw ⊕ Ann(w)M . If v = m, then β1w − w ∈ Nil(M). Let
n = β2

1 − β1. Hence, n ∈ [β1w −w : M ] and by the proof of Lemma 3.7, Step
1, (n)s(β1w − w) = 0, for some s ∈ N. Thus, ns+1w = 0. Let

r =
1
2

[
2n− 4

2
n2 +

6
3
n3 + . . . + (−1)s 2s− 2

s− 1
ns−1

]
,

and suppose that x = rw and e = β1w + x(1− 2β1). Clearly

(r2 − r)(1 + 4n)w + nw = 0 .

Suppose that α = [β1 + r(1 − 2β1)]. Therefore αw = α2w and α ∈ [w : M ].
As a similar argument we have M = Rβ1w ⊕Ann(β1)M .
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Clearly star graphs are uniquely complemented. Next theorem shows that
for a multiplication R-module M with Nil(M) 6= 0, if Γ(M) is uniquely com-
plemented, then Γ(M) is an star graph.

Theorem 3.12. Let R be a ring and M be a multiplication R-module
with Nil(M) 6= 0. If Γ(M) is a uniquely complemented graph, then either
Γ(M) is a star graph with at most six edges or Γ(M) is an infinite star graph
with center x, where Nil(M) = {0, x}.

Proof. Suppose that Γ(M) is uniquely complemented and Nil(M) 6= 0.
By the proof of Lemma 3.7 (a), M has a unique maximal submodule. Let H
be the maximal submodule. Since Γ(M) is complemented, Rm 6= M for all
m ∈ T (M) therefore, by [9, Theorem 2.5], Rm ⊆ H, so T (M) ⊆ H.

Let |M | ≤ 16, then by Remark 3.8 Γ(M) is a star graph with at most six
edges.

Now let |M | > 16. Hence by Step 7 of Lemma 3.7 (a), Nil(M) = {0, x} for
some 0 6= x ∈ M and [x : M ]x = 0.

We first show that Γ(M) is an infinite graph. Let c be a complement of
x, so Ann(c)M = {0, x} = Nil(M), by Lemma 3.7 (b). Let c = Σn

i=1(αimi) ∈
[c : M ]M , where αi ∈ [c : M ] and mi ∈ M , for 1 ≤ i ≤ n and suppose that
α = Σn

i=1αi. We claim that αc is also a complement of x. If z is adjacent to
both vertices x and αc, then

[αc : M ][z : M ]M = 0 = [x : M ][z : M ]M.

Therefore αz ∈ Ann(c)M = {0, x}. So either αz = 0 or αz = x. If αz = 0,
then z ∈ Ann(c)M , a contradiction. Thus αz = x. Hence α[z : M ]z =
x[z : M ] = 0. Therefore z[z : M ] ⊆ Ann(c)M = Nil(M) and hence z ∈
Nil(M) = {0, x}, again a contradiction. Consequently αc ⊥ x and so, by
Lemma 3.7 (b), Ann(αc)M = {0, x}. By a similar argument αic ⊥ x and
Ann(αic)M = {0, x} for 1 ≤ i ≤ n . Hence each αic is an end. Next note
that αic are all distinct. If not, suppose that αic = αjc for some 1 ≤ i < j.
Therefore αi(1 − αj−i)c = 0, so (1 − αj−i) ∈ Ann(αic). By the proof of
Lemma 3.7 (a), Step 7, x = βm for some β ∈ [x : M ] and m ∈ M such that
β2m = 0 but βm 6= 0. Hence (1 − αj−i)m ∈ Ann(αic)M = {0, x}. So either
m− αi−jm = 0 or m− αi−jm = x. If m = αi−jm, then

x = βm = βαi−jm ∈ βαi−j−1Rc ⊆ αi−j−1[x : M ][c : M ]M = 0,

a contradiction. Thus m− αi−jm = x. So

x− αi−jβm = βm− αi−jβm = βx = 0.
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Hence x ∈ αi−j−1βRc = 0, again a contradiction. Consequently Γ(M) is
infinite.

We next show that Γ(M) is a star graph with center x. By contradiction,
suppose that Γ(M) is not a star graph. Let c ∈ T (M)∗ be a complement
of x, so there is a a ∈ T (M)∗ \ {x, c} such that [a : M ][x : M ]M = 0 but
a is not an end. Hence there is y ∈ T (M)∗ \ {a, x, c} such that y ⊥ a.
Let c = Σn

i=1(αimi), where αi ∈ [c : M ] and mi ∈ M , for 1 ≤ i ≤ n and
let α = Σn

i=1αi. We can check that αy 6∈ {0, a, x, c, y}. If αy = 0, then
[y : M ]c = 0, which is a contradiction with c is an end. If αy = x, then
α[y : M ][c : M ]M = 0, so y ∈ Ann(αc)M = {0, x}, a contradiction. If αy = y,
then αy[x : M ] ⊆ [x : M ]Rc = 0, a contradiction. If αy = c , then a is
adjacent to c, which is a contradiction. At last if αy = a, then αy[y : M ] = 0.
So y[y : M ] ∈ Ann(αc)M = Nil(M) and therefore y ∈ Nil(M), which is a
contradiction. Thus αy ∈ T (M)∗ \ {a, x, c, y}. By the hypothesis, there is
z ∈ T (M)∗ such that z is a complement of αy. One can also verify that
z 6∈ {0, αy, a, x, c, y}. (Use y 6∈ Nil(M) to show that z 6∈ {c, y} and use αy ⊥ z
to show that z 6∈ {a, x}.) Clearly [x : M ][z : M ]M 6= 0. Let z = Σs

i=1rimi,
where ri ∈ [z : M ] and mi ∈ M , for 1 ≤ i ≤ s and let γ = Σn

i=1ri. If γx = 0,
then [x : M ][z : M ]M = 0, a contradiction. So we must suppose that γx 6= 0.
Also [γx : M ][c : M ]M = 0, hence γx ∈ Ann(c)M . Thus γx = x. On the
other hand, αy ⊥ z, so

[γy : M ][c : M ]M = [y : M ]R(Σn
i=1(γαimi)) ⊆ [y : M ]Rαz = 0.

Therefore γy ∈ Ann(c)M . Hence either γy = 0 or γy = x. So x is adjacent
to both y and a. But this is a contradiction that a ⊥ y. Consequently Γ(M)
is an infinite star graph with center x.

Corollary 3.13. Let M be a multiplication R module. If Γ(M) is
uniquely complemented, then either Γ(M) is a star graph or S−1M is von
Neumann regular, where S = R \ Z(M).

Morovere, for faithful cyclic R-module M , the converse is true.

Proof. Let Γ(M) be uniquely complemented. If Nil(M) = 0, then M is a
reduced and by Theorem 3.3, S−1M is von Neumann regular. If Nil(M) 6= 0,
then by Theorem 3.12. Γ(M) is a star graph. Converse is true by Corollary
3.5.

Corollary 3.14. Let M be a multiplication R module with T (M) 6= M .
Then Γ(M) is uniquely complemented, if and only if either Γ(M) is a star
graph or S−1M is von Neumann regular, where S = R \ Z(M).



torsion graph over multiplication modules 299

References

[1] D.D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, J.
Algebra 159 (2) (1993), 500 – 514.

[2] D.F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann
regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (3) (2003),
221 – 241.

[3] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commuta-
tive ring, J. Algebra 217 (2) (1999), 434 – 447.

[4] D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, The zero
divisor graph of a commutative ring, II, in “ Ideal Theoretic Methods in Com-
mutative Algebra ”, Lecture Notes in Pure and Appl. Math., 220, Dekker,
New York, 2001, 61 – 72.

[5] F.W. Anderson, K.R. Fuller, “ Rings and Categories of Modules, Second
edition ”, Graduate Texts in Mathematics, 13, Springer-Verlag, New York,
1992.

[6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1) (1988), 208 – 226.
[7] G.A. Cannon, K.M. Neuerburg, S.P. Redmond, Zero-divisor graphs

of nearrings and semigroups, in “ Nearrings and Nearfields ” (eds: H. Kiechle,
A. Kreuzer, M.J. Thomsen), Springer, Dordrecht, 2005, 189 – 200.

[8] F.R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph
of a commutative semigroup, Semigroup Forum 65 (2) (2002), 206 – 214.

[9] Z.A. El-Bast, P.F. Smith, Multiplication modules, Comm. Algebra 16 (4)
(1988), 755 – 779.

[10] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J.
Commut. Rings 1 (4) (2002), 203 – 211.


