Torsion Graph over Multiplication Modules

SH. Ghalandarzadeh, P. Malakooti Rad
Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
ghalandarzadeh@kntu.ac.ir, pmalakooti@dena.kntu.ac.ir

Presented by Consuelo Martínez
Received October 27, 2009

Abstract

For a commutative ring R, the torsion graph of an R-module M is $\Gamma(M)$ whose vertices are nonzero torsion elements of M, and two distinct vertices x and y are adjacent if and only if $[x: M][y: M] M=0$. In this article we show that if $S=R \backslash Z(M)$, then $\Gamma(M)$ and $\Gamma\left(S^{-1} M\right)$ are isomorphic for a multiplication R-module M. Also we prove that for a multiplication R-module M, if $\Gamma(M)$ is uniquely complemented, then $S^{-1} M$ is von Neumann regular or $\Gamma(M)$ is a star graph. Key words: Torsion graph, multiplication module, von Neumann regular module. AMS Subject Class. (2000): 13A99, 05C99, 13C99.

1. Introduction

The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [6]. He suppose that all elements of the ring are vertices of the graph and was mainly interested in colorings and then this investigation of coloring of a commutative ring was continued by Anderson and Naseer in [1]. Anderson and Livingston [3], studied the zero-divisor graph whose vertices are the nonzero zero-divisors. Let R be a commutative ring with identity and let $Z(R)$ be the set of zero-divisors of R. The zero-divisor graph of R denoted by $\Gamma(R)$, is a graph with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$ and for distinct $x, y \in Z(R)^{*}$ the vertices x and y are adjacent if and only if $x y=0$. This graph turns out to exhibit properties of the set of the zero divisors of a commutative ring with best way. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us explore some interesting results in algebraic structures of rings.

The zero-divisor graph of a commutative ring has also been studied by several other authors (e.g., $[1,6,4]$). The zero divisor graph has also been introduced and studied for semigroups in [8], nearrings in [7], and for noncommutative rings, in [10].

Throughout, R is a commutative ring with unity and M is a unitary R module. In this paper, motivated by the work of [2], we will investigate the concept of torsion-graph for modules as a natural generalization of zero-divisor graph for rings. For $x \in M$ the residual of $R x$ by M, denoted by $[x: M$], is a set of elements $r \in R$ such that $r M \subseteq R x$. The annihilator of an R-module M denoted by $\operatorname{Ann}_{R}(M)$ is $[0: M]$. Let $T(M)$ be the set of torsion elements of M. It is clear that if R is an integral domain then $T(M)$ is a submodule of M which is called torsion submodule of M. If $T(M)=0$ then the module M is said to be torsion-free and it is called a torsion module if $T(M)=M$. An R-module M is a multiplication module if for every R-submodule K of M there is an ideal I of R such that $K=I M$. We will study some properties of $\Gamma(M)$, when M is a multiplication R-module. Here the torsion graph $\Gamma(M)$ of M is a simple graph whose vertices are nonzero torsion elements of M and two distinct vertices x and y are adjacent if and only if $[x: M][y: M] M=0$. Thus, $\Gamma(M)$ is an empty graph if and only if M is a torsion-free R-module. In this paper, we will investigate the interplay of module properties of M in relation to the properties of $\Gamma(M)$. We also think that torsion-graph helps us to study the algebraic properties of modules using graph theoretical tools. A graph G is connected if there is a path between any two distinct vertices. The distance, $d(x, y)$ between connected vertices x, y is the length of the shortest path from x to $y(d(x, y)=\infty$ if there is no such path).

A ring R is called reduced if $\operatorname{Nil}(R)=0$, and an R-module M is called a reduced module if $r m=0$ for $r \in R$ and $m \in M$, implies that $r M \cap R m=0$. Also a ring R is von Neumann regular if for each $a \in R$, there is an element $b \in R$ such that $a=a^{2} b$. It is clear that every von Neumann regular ring is reduced. An R-module M is called a von Neumann regular module if every cyclic submodule of M is pure in M. Anderson and Fuller in [5], called the submodule N, a pure submodule of M if $I M \cap N=I N$ for every ideal I of R. And so it is clear that every von Neumann regular modules is reduced.

Let Γ be a graph and $V(\Gamma)$ denotes the vertices of Γ. Let $v \in V(\Gamma)$, as in [2], $w \in V(\Gamma)$ is called a complement of v, if v is adjacent to w and no vertex is adjacent to both v and w; i.e., the edge $v-w$ is not an edge of any triangle in Γ. In this case, we write $v \perp w$. In module-theoretic terms, for multiplication R-module M, this is the same as saying that $v \perp w$ in $\Gamma(M)$ if and only if $v, w \in T(M)^{*}$ and $\operatorname{Ann}(w) M \cap \operatorname{Ann}(v) M \subset\{0, v, w\}$. Moreover, we will follow the authors in [2], and say that Γ is complemented if every vertex has a complement, and is uniquely complemented if it is complemented and any two complements of vertex set are adjacent to the same vertices. From
[2, Theorem 3.5 and Theorem 3.9], we know that for a ring R with nonzero nilpotent elements, $\Gamma(R)$ is uniquely complemented if and only if $\Gamma(R)$ is a star graph. Moreover, we know that, if R is reduced, then $S^{-1} R$ is a von Neumann regular ring.

In Section 2, as a generalization of [2, Theorem 2.2], we show that if M is a multiplication R-module and $S=R \backslash Z(M)$, then $\Gamma(M) \cong \Gamma\left(S^{-1} M\right)$. In Section 3, we investigate the complemented and uniquely complemented torsion graph. We also extend [2, Theorem 3.9], to the multiplication R-modules. And furthermore for a multiplication R-module M, we prove that if $\Gamma(M)$ is complemented, but not uniquely complemented, then $M=M_{1} \oplus M_{2}$, where M_{1}, M_{2} are submodules of M. Also for a reduced multiplication R-module M, we show that if $\Gamma(M)$ is complemented, then $S^{-1} M$ is a von Neumann regular module, where $S=R \backslash Z(M)$, also for a faithful multiplication R-module M with $\operatorname{Nil}(M) \neq 0$, we prove that $\Gamma(M)$ is uniquely complemented if and only if $\Gamma(M)$ is a star graph.

Let R be a ring and M be an R-module, throughout $\operatorname{Nil}(R)$ is an ideal consisting of nilpotent elements of R,

$$
\operatorname{Nil}(M):=\bigcap_{N \in \operatorname{Spec}(M)} N
$$

$\operatorname{Spec}(M)$ is the set of all prime submodules of $M, T(M)^{*}=T(M) \backslash\{0\}$, $Z(M)=\{r \in R: r m=0$ for some $0 \neq m \in M\}$. We let \mathbb{Q}, \mathbb{Z} and \mathbb{Z}_{n} denote the rings of rational numbers, integers and integers modulo n, respectively.

2. Isomorphisms

Recall that two graphs G and H are isomorphic, denoted by $G \cong H$, if there exists a bijection, say φ, from $V(G)$ to $V(H)$ of vertices such that the vertices x and y are adjacent in G if and only if $\varphi(x)$ and $\varphi(y)$ are adjacent in H.

Let $S=R \backslash Z(M)$. It is clear that the well defined map

$$
\begin{aligned}
\chi: M & \longrightarrow S^{-1} M \\
m & \longmapsto \chi(m)=\frac{m s}{s},
\end{aligned}
$$

is a monomorphism. So we can identify M with its image in $S^{-1} M$. Thus if m denotes an element of M, then the same symbol is also used to denote the fraction $\frac{m}{1}$. In this manner M becomes a submodule of $S^{-1} M$.

Let M be an R-module. For $m, m^{\prime} \in T(M)^{*}$, we define $m \sim_{M} m^{\prime}$ if and only if $\operatorname{Ann}(m) M=\operatorname{Ann}\left(m^{\prime}\right) M$. Clearly \sim is an equivalence relation on $T(M)^{*}$. Let $S=R \backslash Z(M)$ and denote equivalence classes by $[m]_{M}$, so

$$
[m]_{M}=\left\{m^{\prime} \in T(M)^{*}: m \sim_{M} m^{\prime}\right\}
$$

and

$$
\left([m]_{M}\right)_{S}=\left\{\frac{m^{\prime}}{s}: m^{\prime} \in[m], s \in S\right\}
$$

Now we would like to show that $\Gamma\left(S^{-1} M\right)$ and $\Gamma(M)$ are isomorphic by showing that there is a bijection map between equivalence classes of vertex sets $\Gamma\left(S^{-1} M\right)$ and $\Gamma(M)$ such that the corresponding equivalence classes have the same cardinality.

Theorem 2.1. Let M be a faithful multiplication R-module and $S=$ $R \backslash Z(M)$. Then $\Gamma(M)$ and $\Gamma\left(S^{-1} M\right)$ are isomorphic.

Proof. (Our proof is quite similar to the proof in [2], applied for a ring.) Let $S=R \backslash Z(M), M_{S}=S^{-1} M, R_{S}=S^{-1} R$ and

$$
\left(T(M)_{S}\right)^{*}=\left\{\frac{m}{s}: m \in T(M)^{*}, s \in S\right\}
$$

Denote the equivalence relations defined above on $T(M)^{*}$ and $T\left(M_{S}\right)^{*}$ by \sim_{M} and $\sim_{M_{S}}$, respectively. For all $m \in T(M)^{*}$, we have $\operatorname{Ann}_{R_{S}}\left(\frac{m}{s}\right)=\operatorname{Ann}_{R}(m)_{S}$ and $\left[N_{S}: M_{S}\right] M_{S}=[N: M]_{S} M_{S}$. By the above comments $\left(T(M)_{S}\right)^{*}=$ $T\left(M_{S}\right)^{*},\left([m]_{M}\right)_{S}=\left(\left[\frac{m}{1}\right]\right)_{M_{S}}$ and

$$
T(M)^{*}=\bigcup_{\lambda \in \Lambda}\left[m_{\lambda}\right]_{M}, \quad T\left(M_{S}\right)^{*}=\bigcup_{\lambda \in \Lambda}\left[\frac{m_{\lambda}}{1}\right]_{M_{S}}
$$

(both are disjoint unions). We next show that $\left|[x]_{M}\right|=\left|\left[\frac{x}{1}\right]_{M_{S}}\right|$ for all $x \in$ $T(M)^{*}$. It is clear that $[x]_{M} \subseteq\left[\frac{x}{1}\right]_{M_{S}}$. For the reverse inclusion, let $\frac{m}{s} \in$ $\left[\frac{x}{1}\right]_{M_{S}}$, such that $m \in[x]_{M}, s \in S$, so $\operatorname{Ann}(m) M=\operatorname{Ann}(x) M$ and thus, $\left\{s^{n} m: n \geq 1\right\} \subseteq[x]_{M}$. Now let $\left|[x]_{M}\right|$ be finite, then there exists $i \in I$ such that $s^{i} m=s^{i+1} m$. So

$$
\frac{m}{s}=\frac{m s^{i}}{s^{i+1}}=\frac{m s^{i+1}}{s^{i+1}}=m \in[x]_{M}
$$

and therefore $\left|[x]_{M}\right|=\left|\left[\frac{x}{1}\right]_{M_{S}}\right|$. Now suppose that $\left|[x]_{M}\right|$ is infinite. We define an equivalence relation \approx on S by $s \approx t$ if and only if $s x=t x$. It is easily verified that the map

$$
\begin{aligned}
{[x]_{M} \times S / \approx } & \longrightarrow\left[\frac{x}{1}\right]_{M_{S}} \\
(b,[s]) & \longmapsto \frac{b}{s}
\end{aligned}
$$

is well-defined and surjective, because if $(b,[s])=(a,[t])$, then $a=b$ and $[s]=[t]$. Hence,

$$
(s-t) M \subseteq \operatorname{Ann}(x) M=\operatorname{Ann}(a) M=\operatorname{Ann}(b) M
$$

and since M is multiplication $s a=t a$ and $s b=t b$, therefore $\frac{a}{t}=\frac{b}{s}$. Thus,

$$
\left|\left[\frac{x}{1}\right]\right| \leq\left|[x]_{M}\right||S / \approx|
$$

Also, the map

$$
\begin{aligned}
S / \approx & \longrightarrow[x]_{M} \\
{[s] } & \longmapsto s a
\end{aligned}
$$

is clearly well-defined and injective. Hence, $|S / \approx| \leq\left|[x]_{M}\right|$ and thus,

$$
\left|\left[\frac{x}{1}\right]_{M_{S}}\right| \leq\left|[x]_{M}\right|^{2}=\left|[x]_{M}\right|
$$

since $\left|[x]_{M}\right|$ is infinite. Hence, $\left|[x]_{M}\right|=\left|\left[\frac{x}{1}\right]_{M_{S}}\right|$. Thus, there is a bijection $\operatorname{map} \varphi_{\alpha}:\left[x_{\alpha}\right] \longrightarrow\left[\frac{x_{\alpha}}{1}\right]$ for each $\alpha \in \Lambda$. Now define

$$
\begin{aligned}
\varphi: T(M)^{*} & \longrightarrow T\left(M_{S}\right)^{*} \\
m & \longmapsto \varphi(m)=\varphi_{\alpha}(m)
\end{aligned}
$$

Clearly φ is a bijection map. Thus, we need only to show that m and n are adjacent in $\Gamma(M)$ if and only if $\varphi(m)$ and $\varphi(n)$ are adjacent in $\Gamma\left(M_{S}\right)$; i.e.,

$$
[m: M][n: M] M=0 \quad \Longleftrightarrow \quad\left[\varphi(m): M_{S}\right]\left[\varphi(n): M_{S}\right] M_{S}=0
$$

Let $m \in[x]_{M}, n \in[y]_{M}, w \in\left[\frac{x}{1}\right]_{M_{S}}$ and $z \in\left[\frac{y}{1}\right]_{M_{S}}$. It is sufficient to show that

$$
[m: M][n: M] M=0 \quad \Longleftrightarrow \quad\left[\frac{w}{1}: M_{S}\right]\left[\frac{z}{1}: M_{S}\right] M_{S}=0
$$

Note that

$$
\begin{aligned}
& {[m: M][n: M] M=0 } \\
\Longleftrightarrow & m \in \operatorname{Ann}_{R}(n) M=\operatorname{Ann}_{R}(y) M \\
\Longleftrightarrow & \frac{m}{1} \in \operatorname{Ann}_{R_{S}}\left(\frac{n}{1}\right) M_{S}=\operatorname{Ann}_{R_{S}}\left(\frac{y}{1}\right) M_{S}=\operatorname{Ann}_{R_{S}}\left(\frac{z}{1}\right) M_{S} \\
\Longleftrightarrow & {\left[\frac{m}{1}: M_{S}\right]\left[\frac{z}{1}: M_{S}\right] M_{S}=0 } \\
\Longleftrightarrow & \frac{z}{1} \in \operatorname{Ann}_{R_{S}}\left(\frac{m}{1}\right) M_{S}=\operatorname{Ann}_{R_{S}}\left(\frac{x}{1}\right) M_{S}=\operatorname{Ann}\left(\frac{w}{1}\right) M_{S} \\
\Longleftrightarrow & {\left[\frac{z}{1}: M_{S}\right]\left[\frac{w}{1}: M_{S}\right] M_{S}=0 }
\end{aligned}
$$

Hence, $\Gamma(M)$ and $\Gamma\left(M_{S}\right)$ are isomorphic as graphs.
Corollary 2.2. Let M and N be multiplication R-modules with $S^{-1} M \cong S^{-1} N$, then $\Gamma(M) \cong \Gamma(N)$. In particular $\Gamma(M) \cong \Gamma(N)$ when $S^{-1} M=S^{-1} N$.

3. Complemented graph and multiplication module

In this section we prove that, if M is a reduced multiplication R-module and $\Gamma(M)$ is uniquely complemented, then $S^{-1} M$ is von Neumann regular and furthermore we show that if M is a multiplication R-module with $\operatorname{Nil}(M) \neq 0$, then $\Gamma(M)$ is uniquely complemented if and only if $\Gamma(M)$ is a star graph with at most six edges or is an infinite star graph (i.e., $\Gamma(M)$ has an infinite vertices such that there exists a vertex adjacent to every other vertices, and these are only adjacent relation). Finally we show that if M is a multiplication R-module and $\Gamma(M)$ is uniquely complemented, then either $\Gamma(M)$ is a star graph or $S^{-1} M$ is von Neumann regular, where $S=R \backslash Z(M)$.

Let G be a (undirected) graph. We will follow the authors in [4], and define that $a \leq b$ if a and b are not adjacent and each vertex of G adjacent to b is also adjacent to a; and we define $a \sim b$ if and only if $a \leq b$ and $b \leq a$. Thus, $a \sim b$ if and only if a and b are adjacent to exactly the same vertices. Clearly \sim is an equivalence relation on G.

Now let M be a multiplication R-module and $m, n \in T(M)^{*}$, then $m \sim n$ if and only if $\operatorname{Ann}(m) M \backslash\{m\}=\operatorname{Ann}(n) M \backslash\{n\}$. Also we know that if $m \perp n$,
then $[m: M][n: M] M=0$ and $\operatorname{Ann}(m) M \cap \operatorname{Ann}(n) M \subseteq\{0, m, n\}$. Now if $\operatorname{Ann}(m) M \cap \operatorname{Ann}(n) M=\{0, m, n\}$, then

$$
[m: M]^{2} M=[n: M]^{2} M=[m: M][n: M] M=0
$$

On the other hand, since $m \perp n, m+n \in\{0, m, n\}$, so $m+n$ is adjacent to m and n, which is a contradiction. Therefore $m \perp n$ if and only if $\operatorname{Ann}(m) M \cap$ $\operatorname{Ann}(n) M \subset\{0, m, n\}$ and $[m: M][n: M] M=0$.

Lemma 3.1. Consider the following statements for a multiplication R-module M with $m, m^{\prime} \in T(M)^{*}$:
(a) $m \sim m^{\prime}$;
(b) $R m=R m^{\prime}$;
(c) $\operatorname{Ann}(m) M=\operatorname{Ann}\left(m^{\prime}\right) M$.

Then under the above conditions we have:
(1) If M is reduced, then statements (a) and (c) are equivalent.
(2) If M is von Neumann regular, then all three statements are equivalent.

Proof. (1) Let M be reduced, one can easily check that (a) \Leftrightarrow (c).
(2) Since every von Neumann regular module is reduced, so (a) \Leftrightarrow (c). Clearly $(\mathrm{b}) \Rightarrow(\mathrm{c})$. We show that $(\mathrm{b}) \Leftarrow(\mathrm{c})$. Since M is von Neumann regular $R m \cap[m: M] M=[m: M] R m$. So $m=s m$ for some $s \in[m: M]$, hence, $(1-s) m^{\prime} \in \operatorname{Ann}(m) M=\operatorname{Ann}\left(m^{\prime}\right) M$. Therefore $\left[m^{\prime}: M\right] m^{\prime} \in R m$. Moreover, since M is a von Neumann regular multiplication module $\left[m^{\prime}: M\right] m^{\prime}=R m^{\prime}$ and so $R m^{\prime} \subseteq R m$ and similarly $R m \subseteq R m^{\prime}$. Consequently $R m=R m^{\prime}$.

Lemma 3.2. Let M be a reduced multiplication R-module and let $m, m^{\prime}, m^{\prime \prime} \in T(M)^{*}$. If $m \perp m^{\prime}$ and $m \perp m^{\prime \prime}$, then $m^{\prime} \sim m^{\prime \prime}$. Thus, $\Gamma(M)$ is uniquely complemented if and only if $\Gamma(M)$ is complemented.

Proof. Let $m, m^{\prime}, m^{\prime \prime} \in T(M)^{*}$. Suppose $m \perp m^{\prime}$ and $m \perp m^{\prime \prime}$. It is sufficient to show that $\operatorname{Ann}\left(m^{\prime}\right) M=\operatorname{Ann}\left(m^{\prime \prime}\right) M$. Suppose $x \in \operatorname{Ann}\left(m^{\prime}\right) M$, so $[x: M]\left[m^{\prime}: M\right] M=0$. One can easily show that for all $\alpha \in[x: M]$,

$$
\left[\alpha m^{\prime \prime}: M\right]\left[m^{\prime}: M\right] M=0=\left[\alpha m^{\prime \prime}: M\right][m: M] M
$$

So $\alpha m^{\prime \prime} \in\left\{0, m, m^{\prime}\right\}$. If $\alpha m^{\prime \prime}=m$ or $\alpha m^{\prime \prime}=m^{\prime}$, then $m=0$ or $m^{\prime}=0$, is a contradiction. Thus, $\alpha m^{\prime \prime}=0$ for all $\alpha \in[x: M]$. Therefore $x \in \operatorname{Ann}\left(m^{\prime \prime}\right) M$ and so $\operatorname{Ann}\left(m^{\prime}\right) M \subseteq \operatorname{Ann}\left(m^{\prime \prime}\right) M$. Similarly $\operatorname{Ann}\left(m^{\prime \prime}\right) M \subseteq \operatorname{Ann}\left(m^{\prime}\right) M$.

Theorem 3.3. Let M be a reduced multiplication R-module. If $\Gamma(M)$ is complemented, then $S^{-1} M$ is von Neumann regular, where $S=R \backslash Z(M)$.

Proof. Let $0 \neq \frac{x}{s} \in S^{-1} M$, where $x \in M$ and $s \in S$. Let $x \notin T(M)^{*}$ and

$$
x=\sum_{i=1}^{n} \alpha_{i} m_{i} \in[x: M] M
$$

where $\alpha_{i} \in[x: M]$ and $m_{i} \in M$. Suppose that $\alpha=\sum_{i=1}^{n} \alpha_{i}$. If $\alpha \in Z(M)$, then $\alpha m=0$ for some non zero element $m \in M$. So $[m: M][x: M] M=0$, hence, $0 \neq[m: M] \subseteq \operatorname{Ann}(x)=0$, a contradiction. Therefore $\alpha \in S=$ $R \backslash Z(M)$. Thus,

$$
S^{-1} R\left(\frac{x}{s}\right) \cap S^{-1} M\left(\frac{r}{t}\right)=S^{-1} R\left(\frac{r}{t} \frac{x}{s}\right) .
$$

Therefore $S^{-1} M$ is von Neumann regular.
Next we can suppose that $x \in T(M)^{*}$. By the hypothesis there is $y \in$ $T(M)^{*}$ such that $x \perp y$. Hence, $y \in \operatorname{Ann}(x) M$ and so $y=\sum_{i=1}^{m} \beta_{i} m_{i}$, $m_{i} \in M$ and $\beta_{i} \in \operatorname{Ann}(x)$. Let $\beta=\sum_{i=1}^{m} \beta_{i}$. We show that $\alpha+\beta \in S$. If $\alpha+\beta \in Z(M)$, then $(\alpha+\beta) m_{0}=0$ for some non zero $m_{0} \in M$. So

$$
\left[\alpha m_{0}: M\right][x: M] M=0=[y: M]\left[\alpha m_{0}: M\right] M .
$$

Since M is a reduced module $x \neq \alpha m_{0}$ and $\alpha m_{0} \neq y$. Thus, $\alpha m_{0}=0$ and hence, $\beta m_{0}=0$, so

$$
[x: M]\left[m_{0}: M\right] M=0=[y: M]\left[m_{0}: M\right] M
$$

By a similar argument we have $m_{0}=0$, a contradiction. Therefore $\alpha+\beta \in S$ and $\frac{x}{s}=\frac{\alpha}{\alpha+\beta} \frac{x}{s}$. So a simple check yields that

$$
S^{-1} R\left(\frac{x}{s}\right) \cap S^{-1} M\left(\frac{r}{t}\right)=S^{-1} R\left(\frac{r}{t} \frac{x}{s}\right) .
$$

Hence, $S^{-1} M$ is von Neumann regular.
Next example shows that $S^{-1} M$ is von Neumann regular but M is not von Neumann regular in spite of $\Gamma(M) \cong \Gamma\left(S^{-1} M\right)$.

We know that an r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any of these subsets. A complete r-partite graph is one in which each vertex is joined to every vertex that is in another subset. The complete bipartite graph (i.e., 2-partite graph) with vertex sets having m and n elements, will be denoted by $K_{m, n}$. A complete bipartite graph of the form $K_{1, n}$ is called a star graph.

Examples 3.4. (a) Let M_{1} be an R_{1}-module and M_{2} be an R_{2}-module, then $M=M_{1} \times M_{2}$ is $R=R_{1} \times R_{2}$ module with this multiplication $R \times M \longrightarrow$ M, defined by $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$. Now let $M=\mathbb{Z} \times n \mathbb{Z}$ and $R=\mathbb{Z} \times \mathbb{Z}$. It is clear that $\Gamma(M)$ is a complete bipartite graph (i.e., $\Gamma(M)$ may be partitioned into two disjoint vertex sets $V_{1}=\left\{\left(m_{1}, 0\right): m_{1} \in(\mathbb{Z})^{*}\right\}$ and $V_{2}=\left\{\left(0, m_{2}\right): m_{2} \in(n \mathbb{Z})^{*}\right\}$ and two vertices x and y are adjacent if and only if they are in distinct vertex sets). Therefore $\Gamma(M)$ is complemented. Also M is a faithful multiplication R-module, because $M=R(1, n)$. A simple check yields that M is reduced, thus, $S^{-1} M$ is von Neumann regular, by Theorem 3.3. But M is not von Neumann regular (use $N=R(2,2 n)$ and $I=[N: M]$).
(b) Let $R=\mathbb{Z}_{2} \times \mathbb{Z}$ and $M=R$ as an R-module. So M is a faithful multiplication R-module. Clearly M is reduced and $\Gamma(M)$ is an infinite star graph with center $(\overline{1}, 0)$. Thus, $\Gamma(M)$ is complemented and by Theorem 3.3, $S^{-1} M$ is von Neumann regular, but M is not von Neumann regular.

Corollary 3.5. Let M be a cyclic faithful reduced R-module. The following statements are equivalent:
(1) $S^{-1} M$ is von Neumann regular, where $S=R \backslash Z(M)$;
(2) $\Gamma(M)$ is uniquely complemented;
(3) $\Gamma(M)$ is complemented.

Proof. (1) \Rightarrow (2) Let M be a von Neumann regular R-module and $m \in T(M)^{*}$. So $[m: M] M \cap R m=R m[m: M]$. Since $R m$ is a weakly cancellation module, $R=[m: M]+\operatorname{Ann}(m)$. Say $M:=R x$ for some $x \in M$. Thus, $R x=R m+\operatorname{Ann}(m) x$ and therefore $x=r m+y$ for some $r \in R, y \in \operatorname{Ann}(m) x$. One can easily check that $y \in T(M)^{*}$ and $y \perp m$, so $\Gamma(M)$ is complemented. Since M is a faithful cyclic R-module, then $S^{-1} M$ is a faithful cyclic $S^{-1} R$ module and therefore by the above comments, $\Gamma\left(S^{-1} M\right)$ is complemented. Moreover by Theorem 2.1, $\Gamma(M) \cong \Gamma\left(S^{-1} M\right)$, so $\Gamma(M)$ is complemented. Consequently $\Gamma(M)$ is uniquely complemented by Lemma 3.2.
$(2) \Rightarrow(3)$ This is true for any graph.
$(3) \Rightarrow(1)$ By Theorem 3.3.
Corollary 3.6. Let M be a reduced multiplication R-module with $T(M) \neq M$. Then the following statements are equivalent:
(1) $S^{-1} M$ is von Neumann regular, where $S=R \backslash Z(M)$;
(2) $\Gamma(M)$ is uniquely complemented;
(3) $\Gamma(M)$ is complemented.

Now we investigate some properties of M, when M is a multiplication R module with $\operatorname{Nil}(M) \neq 0$. In this case, we extend $[2$, Theorem 3.9] in Theorem 3.12. First we give the following key lemma. Recall that a vertex of a graph is called an end if there is only one other vertex adjacent to it.

Lemma 3.7. Let R be a ring and M be a multiplication R-module with $\operatorname{Nil}(M) \neq 0$, then:
(a) If $\Gamma(M)$ is complemented, then either $8 \leq|M| \leq 16$ or $|M| \geq 17$ and $\operatorname{Nil}(M)=\{0, x\}$ for some $0 \neq x \in M$.
(b) If $\Gamma(M)$ is uniquely complemented and $|M| \geq 17$, then any complement of the nonzero element $x \in \operatorname{Nil}(M)$ is an end.

Proof. (a) We subdivide the proof of (a) in the following steps:
Step 1: Let $\Gamma(M)$ be complemented. We show that for all $0 \neq \alpha \in[x: M]$, where $x \in \operatorname{Nil}(M), \alpha^{n} x=0$ for some $n \in \mathbb{N}$. Let $S=\left\{\alpha^{n} x: n \in \mathbb{N}\right\}$, we must show that $0 \in S$. Suppose that $0 \notin S$. Let $\Sigma=\{K: K \leq M, K \cap S=\emptyset\}$. By Zorn's lemma, let H be a maximal member of Σ. We claim that $[H: M]$ is a prime ideal of R. Clearly $[H: M] \neq R$, let $a b \in[H: M]$ but $a, b \notin[H: M]$ for $a, b \in R$. Hence, $(a M+H),(b M+H) \notin \sum$, so $\alpha^{n_{1}} x \in S \cap(a M+H)$ and $\alpha^{n_{2}} x \in S \cap(b M+H)$ for some $n_{1}, n_{2} \in \mathbb{N}$. Therefore $\alpha^{n_{1}+n_{2}+1} x \in H \cap S$, is a contradiction. Hence, $[H: M]$ is a prime ideal and by [9, Corollary 2.11], H is a prime submodule of M. Since $x \in \operatorname{Nil}(M)$ we have $\alpha x \in H \cap S$, which is a contradiction and consequently $0 \in S$.

Choose n to be as small as possible $\alpha^{n} x=0$. Then $n \geq 1$ and $\alpha^{n-1} x \neq 0$.
Step 2: In this step we claim that $n \leq 3$. Suppose that $n>3$, so $\alpha x \in T(M)^{*}$. Since $\Gamma(M)$ is complemented, there exists $y \in T(M)^{*}$ such that y is a complement of αx. Then

$$
\left[\alpha^{n-1} x: M\right][y: M] M=0=\left[\alpha^{n-1} x: M\right][\alpha x: M] M,
$$

and so $\alpha^{n-1} x=y$ will be the only possibility. Thus, $\alpha x \perp \alpha^{n-1} x$. Similarly $\alpha^{i} x \perp \alpha^{n-1} x$ for each $1 \leq i \leq n-2$. Let $m=\alpha^{n-2} x+\alpha^{n-1} x$, then

$$
[m: M]\left[\alpha^{n-1} x: M\right] M=0=[m: M]\left[\alpha^{n-2} x: M\right] M,
$$

which is a contradiction, since $\alpha^{n-2} x \perp \alpha^{n-1} x$ and

$$
\alpha^{n-2} x+\alpha^{n-1} x \notin\left\{0, \alpha^{n-1} x, \alpha^{n-2} x\right\} .
$$

Thus, $n \leq 3$.
Step 3: Let $n=3$, so $\alpha^{3} x=0$ but $\alpha^{2} x \neq 0$. We show that either $|M|=16$ or $|M|=8$. Similar to Step $2, \alpha x \perp \alpha^{2} x$. Also $\operatorname{Ann}(x) M \subseteq\left\{0, \alpha^{2} x\right\}$, since if $z \in \operatorname{Ann}(x) M$, then $[z: M][x: M] M=0$, hence, if $0 \neq z, z$ is adjacent to two elements αx and $\alpha^{2} x$. Since $\alpha x \perp \alpha^{2} x$, therefore $z=\alpha^{2} x$. So $\operatorname{Ann}(x) M \subseteq\left\{0, \alpha^{2} x\right\}$. Now for all $r \in R$,

$$
\left[r \alpha^{2} x: M\right][\alpha x: M] M=0=\left[r \alpha^{2} x: M\right]\left[\alpha^{2} x: M\right] M
$$

hence, $r \alpha^{2} x \in\left\{0, \alpha x, \alpha^{2} x\right\}$. But $r \alpha^{2} x=\alpha x$, then $\alpha^{2} x=0$, is a contradiction and so $R \alpha^{2} x=\left\{0, \alpha^{2} x\right\}$. Also

$$
\operatorname{Ann}\left(\alpha^{2} x\right) M \subseteq\left\{0, x, \alpha x, \alpha^{2} x, x+\alpha x, x+\alpha^{2} x, \alpha x+\alpha^{2} x, x+\alpha x+\alpha^{2} x\right\}
$$

since if $z \in \operatorname{Ann}\left(\alpha^{2} x\right) M$, then $\alpha^{2} z \in \operatorname{Ann}(x) M \subseteq\left\{0, \alpha^{2} x\right\}$ and so either $\alpha^{2} z=0$ or $\alpha^{2} z=\alpha^{2} x$. Thus, either

$$
[\alpha z: M][\alpha x: M] M=0=[\alpha z: M]\left[\alpha^{2} x: M\right] M
$$

or

$$
[(\alpha z-\alpha x): M][\alpha x: M] M=0=[(\alpha z-\alpha x): M]\left[\alpha^{2} x: M\right] M
$$

Since $\alpha x \perp \alpha^{2} x$, we have either $\alpha z \in\left\{0, \alpha x, \alpha^{2} x\right\}$ or $(\alpha z-\alpha x) \in\left\{0, \alpha x, \alpha^{2} x\right\}$. Now let $\alpha^{2} z=0$, so $\alpha z \neq \alpha x$ and therefore either $\alpha z=0$ or $\alpha(z-\alpha x)=0$ and so

$$
[z: M][\alpha x: M] M=0=[z: M]\left[\alpha^{2} x: M\right] M
$$

or

$$
[(z-\alpha x): M][\alpha x: M] M=0=[(z-\alpha x): M]\left[\alpha^{2} x: M\right] M
$$

hence, $z \in\left\{0, \alpha x, \alpha^{2} x, \alpha^{2} x+\alpha x\right\}$. Thus, we may assume that $\alpha^{2} z=\alpha^{2} x$, then $\alpha z-\alpha x \neq \alpha x$. On the other hand $\alpha z-\alpha x \in\left\{0, \alpha x, \alpha^{2} x\right\}$, so either $\alpha z-\alpha x=0$ or $(\alpha z-\alpha x)=\alpha^{2} x$ and by similar argument $z \in\left\{x, \alpha^{2} x, x+\alpha x, x+\alpha x+\alpha^{2} x\right\}$.

Now if $\alpha^{2}[x: M] x=0$, then

$$
\begin{equation*}
\operatorname{Ann}\left(\alpha^{2} x\right) M=\left\{0, x, \alpha x, \alpha^{2} x, x+\alpha x, x+\alpha^{2} x, \alpha x+\alpha^{2} x, x+\alpha x+\alpha^{2} x\right\} \tag{i}
\end{equation*}
$$

And if $\alpha^{2}[x: M] x \neq 0$, then

$$
\begin{equation*}
\operatorname{Ann}\left(\alpha^{2} x\right) M=\left\{0, \alpha x, \alpha^{2} x, \alpha x+\alpha^{2} x\right\} \tag{ii}
\end{equation*}
$$

Now we claim that $|M|=16$ in case (i) and $|M|=8$ in case (ii). Since $\alpha^{2}[x: M] M \neq 0$, there are $\gamma \in[x: M]$ and $m \in M$ such that $\alpha^{2} \gamma m \neq 0$ and a
simple check yields $\alpha^{2} \gamma m=\alpha^{2} x$. Let $m_{0} \in M$, so $\alpha^{2} \gamma m_{0} \in R \alpha^{2} x=\left\{0, \alpha^{2} x\right\}$. If $\alpha^{2} \gamma m_{0}=0$, then $m_{0} \in \operatorname{Ann}\left(\alpha^{2} x\right) M$ and if $\alpha^{2} \gamma m_{0}=\alpha^{2} x$, then $m_{0}-m \in$ $\operatorname{Ann}\left(\alpha^{2} x\right)$. Consequently $|M|=16$ in case (i) and $|M|=8$ in case (ii).

Step 4: In this step we show that $H=\operatorname{Ann}\left(\alpha^{2} x\right) M$ is the unique maximal submodule of M. Clearly $H \neq M$ and $R \alpha^{2} x \cong \frac{R}{\operatorname{Ann}\left(\alpha^{2} x\right)}$. Since $R \alpha^{2} x=$ $\left\{0, \alpha^{2} x\right\}$, we have $\operatorname{Ann}\left(\alpha^{2} x\right)$ is a maximal ideal of R. Hence, by [9, Theorem 2.5], $\operatorname{Ann}\left(\alpha^{2} x\right) M$ is a maximal submodule. Also

$$
\operatorname{Ann}\left(\alpha^{2} x\right) M \subseteq R x \subseteq \operatorname{Nil}(M) \subseteq \operatorname{Ann}\left(\alpha^{2} x\right) M
$$

Therefore $\operatorname{Ann}\left(\alpha^{2} x\right) M=\operatorname{Nil}(M)$ is the unique maximal submodule of M. If $T(M) \subseteq H=\operatorname{Ann}\left(\alpha^{2} x\right) M$, then $T(M)=\operatorname{Ann}\left(\alpha^{2} x\right) M$, so $\Gamma(M)$ is a star graph with 5 edges and center $\alpha^{2} x$.

Step 5: Assume that $n=2$, we show that $[x: M]^{2} x=0$. Let $[x:$ $M]^{2} x \neq 0$, so there exist two elements $\alpha, \beta \in[x: M]$ such that $\alpha \beta x \neq 0$. Also there are $m \in M$ and $\gamma \in[x: M]$ such that $\alpha \beta \gamma m \neq 0$, on the other hand $\alpha^{2} x=\beta^{2} x=\gamma^{2} x=0$ and there is $y \in T(M)^{*}$ such that $\alpha x \perp y$, a simple check yields that $R \alpha x \subseteq\{0, \alpha x, y\}$ and $y=\alpha \beta x$, hence, $\alpha x \perp \alpha \beta x$. So $R(\alpha x)=\{0, \alpha x, \alpha \beta x\}$ and $\operatorname{Ann}(\alpha x) M=\{0, \alpha x, \alpha \beta x\}$. Also $\alpha \beta \gamma m$ is adjacent to two vertices αx and $\alpha \beta x$, but $\alpha \beta \gamma m \neq \alpha x$, thus, $\alpha \beta \gamma m=\alpha \beta x$. We know that $\alpha \beta m$ is adjacent to two vertices αx and $\alpha \beta x$ but $\alpha \beta m \neq \alpha \beta x$ and $\alpha \beta m \neq \alpha x$, which is a contradiction. Thus, $[x: M]^{2} x=0$.

Step 6: Assume that $n=2$ and $[x: M]^{2} x=0$. We show that $|M| \leq 12$. By hypothesis $\alpha^{2} x=0$ but $\alpha x \neq 0$, hence, $\alpha[x: M] M \neq 0$, thus, $\alpha \beta m \neq 0$ for some $\beta \in[x: M]$ and $m \in M$. We know that $\Gamma(M)$ is complemented and $x \in T(M)^{*}$, so there is $y \in T(M)^{*}$ such that $x \perp y$, but αx is adjacent to two vertices x and y. Hence, either $\alpha x=x$ or $\alpha x=y$. If $\alpha x=x$ then by multiplying in α we have $\alpha x=0$, a contradiction. Therefore $\alpha x=y$, so $\alpha x \perp$ x. Let $z \in \operatorname{Ann}(x) M$ hence, $z \in\{0, x, \alpha x\}$, since $x \perp \alpha x=y$, if $z=x$, then $[x: M] x=0$ which is a contradiction. Therefore $\operatorname{Ann}(x) M=\{0, \alpha x\}$. Also a simple check yields that $R(\alpha x)=\{0, \alpha x\}$. On the other hand $\alpha m \in T(M)^{*}$ and so there exists $w \in T(M)^{*}$ such that $\alpha m \perp w$. But $\alpha \beta m$ is adjacent to two vertices αm and w, therefore $\alpha \beta m=w$ will be the only possibility and so $\alpha \beta m \perp \alpha m$. Also $\alpha \beta m$ is adjacent to two vertices αx and x. Hence, $\alpha \beta m=\alpha x$. Now we show that $\operatorname{Ann}(\alpha x) M=\{0, \alpha m, \alpha x, x, x+\alpha m, x+\alpha x\}$, let $v \in \operatorname{Ann}(\alpha x) M$ so $\alpha v \in \operatorname{Ann}(x) M=\{0, \alpha x\}$. If $\alpha v=0$, then

$$
[v: M][\alpha \beta m: M] M=0=[v: M][\alpha m: M] M
$$

and if $\alpha v=\alpha x$, then

$$
[v-x: M][\alpha \beta m: M] M=0=[v-x: M][\alpha m: M] M .
$$

Consequently,

$$
\operatorname{Ann}(\alpha x) M=\{0, \alpha m, \alpha x, x, x+\alpha m, x+\alpha x\}
$$

and so $|\operatorname{Ann}(\alpha x) M| \leq 6$. For all $m_{0} \in M, \alpha \beta m_{0} \in R(\alpha x)=\{0, \alpha x\}$. So either $m_{0} \in \operatorname{Ann}(\alpha x) M$ or $m_{0}-m \in \operatorname{Ann}(\alpha x) M$, since $\alpha \beta m=\alpha x$. Therefore $|M| \leq 12$. And by a similar argument in Step $4, \operatorname{Ann}(\alpha x) M=\operatorname{Nil}(M)$ is the unique maximal submodule of M and $\Gamma(M)$ is a star graph.

Step 7: Suppose that $n=1$. If $[x: M] x \neq 0$ by the above steps we have $8 \leq|M| \leq 16$. So we can assume that $[x: M] x=0$. We show that either $|M|=9$ or $\operatorname{Nil}(M)=\{0, x\}$ with $2 x=0$ and $|M| \neq 9$. Let $x \in[x: M] M$ so $x=\sum_{i=1}^{n} \alpha_{i} m_{i}$ where $\alpha_{i} \in[x: M]$ and $m_{i} \in M$ for all $1 \leq i \leq n$. Assume that $\alpha_{i} m_{i} \neq 0$. Since $\Gamma(M)$ is complemented, then there is $y \in T(M)^{*}$ such that $x \perp y$, so $R x \subseteq\{0, x, y\}$. If $x \neq \alpha_{i} m_{i}$ for all i, then $\alpha_{i} m_{i} \in R x$ and so $\alpha_{i} m_{i}=y$ for all i. Suppose that $\alpha_{i} m_{i}=\alpha_{1} m_{1}$, thus $x=\sum_{i=1}^{n} \alpha_{1} m_{1}=$ $\left(\sum_{i=1}^{n} \alpha_{1}\right) m_{1}=\beta m_{1}$ where $\beta=\sum_{i=1}^{n} \alpha_{1} \in[x: M]$. Otherwise $x=\alpha_{i} m_{i}$ for some $1 \leq i \leq n$. Hence, we may assume that $x=\alpha m$ for some $\alpha \in[x: M]$ and $m \in M$ such that $\alpha^{2} m=0$ but $0 \neq \alpha m$. We know that $x+x \in R x \subseteq\{0, x, y\}$, if $x+x \neq 0$, then $R x=\{0, x, 2 x\}, x \perp 2 x$ and $\operatorname{Ann}(x) M=\{0, x, 2 x\}$. And for all $m_{0} \in M, \alpha m_{0} \in R x$, therefore

$$
\left[m_{0}: M\right][x: M] M=0=\left[m_{0}: M\right][2 x: M]
$$

or

$$
\left[m_{0}-m: M\right][x: M] M=0=\left[m_{0}-m: M\right][2 x: M]
$$

or

$$
\left[m_{0}-2 m: M\right][x: M] M=0=\left[m_{0}-2 m: M\right][2 x: M] .
$$

Hence, $|M|=9$ and by a similar argument in $\operatorname{Step} 4, \operatorname{Ann}(x) M$ is the unique maximal submodule of M and $\Gamma(M)$ is a star graph. Now let $|M| \neq 9$ so by the above argument we must have $2 x=0$. We claim that $\operatorname{Nil}(M)=\{0, x\}$. Suppose that z is another nonzero element of $\operatorname{Nil}(M)$, hence, $[z: M] z=0$ and $z=\beta m^{\prime}$ for some $\beta \in[z: M]$ and $m^{\prime} \in M$, such that $\beta^{2} m^{\prime}=0$. So that $\Gamma(M)$ is complemented there are $x^{\prime}, z^{\prime} \in T(M)^{*}$ such that $x \perp x^{\prime}$ and $z \perp z^{\prime}$, therefore $R x \subseteq\left\{0, x, x^{\prime}\right\}$ and $R z \subseteq\left\{0, z, z^{\prime}\right\}$. Observe that $\alpha \beta m=0$. Let $0 \neq \alpha \beta m \in R x$ and $\alpha \beta m \in R z$, if $\alpha \beta m=x \in R z$, thus,
$x=z^{\prime}$, so $x \perp z$ and hence, $\alpha \beta m=0$ is a contradiction. And if $\alpha \beta m=x^{\prime}$, then $R x=\{0, x, \alpha \beta m\}=\operatorname{Ann}(x) M$ and similar to the above argument, $|M|=9$ which is a contradiction. So $\alpha \beta m=0$ and similarly $\alpha \beta m^{\prime}=0$. Let w be a complement of $x+z$. Clearly $x+z$ is neither x nor z. Also $\alpha w \in R x \subseteq\left\{0, x, x^{\prime}\right\}$, if $\alpha w=0$, then x is adjacent to two elements w and $x+z$, a contradiction. While if $\alpha w=x^{\prime}$, then $R x=\{0, x, \alpha w\}=\operatorname{Ann}(x) M$ and it implies that $|M|=9$, a contradiction. Hence, we may assume that $\alpha w=x$ and similarly $\beta w=z$. Then

$$
0 \neq x+z=\alpha w+\beta w \in[x: M][w: M] M+[z: M][w: M] M
$$

since $w \perp x+z$,

$$
[w: M] R x+[w: M] R y=0
$$

and so $x+z=0$ which is a contradiction. Consequently $\operatorname{Nil}(M)=\{0, x\}$.
(b) Let $0 \neq x \in \operatorname{Nil}(M)$ and $|M| \geq 17$. By the proof of (a) we have $\operatorname{Nil}(M)=\{0, x\}$ for some $x \in M$ such that $x=-x$ and $[x: M] x=0$. Since $\Gamma(M)$ is complemented, there is $y \in T(M)^{*}$ such that $x \perp y$. We claim that y is an end. We first show that $x+y$ is also a complement for x. Clearly $x+y \in T(M)^{*}$ and $[x+y: M][x: M] M=0$, because $[x: M] x=0$ and $x \perp y$. If $w \in T(M)^{*}$ is adjacent to both x and $x+y$, then

$$
[x+y: M][w: M] M=0=[x: M][w: M] M
$$

Hence, $[w: M] R(x+y)=0$, so $[y: M][w: M] M=0$. Moreover $x \perp y$, thus, either $w=x$ or $w=y$. If $w=y$, then $[y: M] y=0$. Therefore $y \in \operatorname{Nil}(M)=\{0, x\}$, a contradiction. So $x=w$. Thus, $x+y$ is a complement for x. Since $\Gamma(M)$ is uniquely complemented, $x+y \sim y$. Assume that $z \in T(M)^{*} \backslash\{x\}$ such that z is adjacent to y, hence, z is adjacent to $x+y$. So $[z: M][x: M] M=0$. Thus, $z=y$, because $x \perp y$. Consequently y is an end.

Remark 3.8. The proof of Lemma 3.7 (a), shows that if M is a faithful multiplication R-module such that $\Gamma(M)$ is complemented and $|\operatorname{Nil}(M)|>2$, then $8 \leq|M| \leq 16$ and $\Gamma(M)$ is a star graph with at most 5 edges. So it is uniquely complemented. Also it shows that if $\Gamma(M)$ is not uniquely complemented, then $\operatorname{Nil}(M)=\{0, x\}$, which x is an element of M, such that $x[x: M]=0$. Hence, $x=\beta m$ for some $m \in M$ and $\beta \in[x: M]$.

Before stating the following proposition we define:

$$
D(M):=\left\{m \in M:[m: M]\left[m^{\prime}: M\right] M=0 \text { for some nonzero } m^{\prime} \in M\right\}
$$

Proposition 3.9. Let $M=M_{1} \times M_{2}$ be a multiplication R-module, $R=R_{1} \times R_{2}$, in which M_{1} is a reduced module and $\operatorname{Nil}\left(M_{2}\right) \neq 0$. If $\Gamma(M)$ is complemented but not uniquely complemented, then M_{1} is torsion free, $\operatorname{Nil}\left(M_{2}\right)$ is the unique maximal submodule of M_{2} with $\left|\operatorname{Nil}\left(M_{2}\right)\right|=2$ and $\left|M_{2}\right|=4$. Furthermore if $D\left(M_{2}\right) \neq M_{2}$, then the converse is true.

Proof. Suppose that $\operatorname{Nil}\left(M_{2}\right) \neq 0$ and $\Gamma(M)$ is complemented but not uniquely complemented. Let $0 \neq b \in \operatorname{Nil}\left(M_{2}\right)$, by the proof of Lemma 3.7, Step $1, \beta^{n} b=0$ for some $n \in \mathbb{N}$ and all $\beta \in\left[b: M_{2}\right]$. Therefore $b \in \operatorname{Nil}(M)$. Since $\Gamma(M)$ is not uniquely complemented, by Remark 3.8, $|\operatorname{Nil}(M)|=2$ and $b=\beta m$, for some $\beta \in[b: M]$ and $m \in M$ such that $\beta^{2} m=0$. So $\left|\operatorname{Nil}\left(M_{2}\right)\right|=2$. Let $\operatorname{Nil}\left(M_{2}\right)=\{0, b\}$ for some nonzero $b \in M_{2}$. Since $R b \subseteq$ $\operatorname{Nil}\left(M_{2}\right)=\{0, b\}$, hence, $R b=\{0, b\}$. First we show that $\operatorname{Ann}(b) M_{2}=\{0, b\}$. Suppose that $c \in \operatorname{Ann}(b) M_{2}-\{0, b\}$ and $0 \neq m_{1} \in M_{1}$, a simple check yields that $\left(m_{1}, b\right) \in T(M)^{*}$. So there is $(x, y) \in T(M)^{*}$ for some $x \in M_{1}$ and $y \in M_{2}$ such that (x, y) is a complement of $\left(m_{1}, b\right)$. Hence, if $y=b$, then $(0, c)$ is adjacent to both $\left(m_{1}, b\right)$ and (x, y), which is a contradiction. Thus, $y \neq b$, so

$$
[(0, b): M]\left[\left(m_{1}, b\right): M\right] M=0=[(0, b): M][(x, y): M] M
$$

again a contradiction. Therefore $\operatorname{Ann}(b) M_{2}=\{0, b\}$. One can easily show that $\left|M_{2}\right|=4$ (similar to the proof of Lemma 3.7). Also similar to Step 4 of the proof of Lemma 3.7, $\operatorname{Nil}\left(M_{2}\right)=\operatorname{Ann}(b) M_{2}$ will be the unique maximal submodule of M_{2}. Next we show that $D\left(M_{1}\right)=0$. If not, let $0 \neq m_{1} \in$ $D\left(M_{1}\right)$. Since M_{1} is reduced, then there is $0 \neq m_{1}^{\prime} \in D\left(M_{1}\right)$ such that $m_{1} \neq m_{1}^{\prime}$. Therefore $\left[m_{1}: M_{1}\right]\left[m_{1}^{\prime}: M_{1}\right] M_{1}=0$. On the other hand there is $m=(x, y) \in T(M)^{*}$ such that $m \perp\left(m_{1}, b\right)$. If $x \neq 0$, then b is adjacent to both m and $\left(m_{1}, b\right)$, a contradiction. And if $x=0$, then $y \neq 0$, but $y \in \operatorname{Ann}(b) M_{2}=\{0, b\}$, thus,

$$
\left[\left(m_{1}^{\prime}, b\right): M\right]\left[\left(m_{1}, b\right): M\right] M=0=\left[\left(m_{1}^{\prime}, b\right): M\right][(x, y): M] M
$$

a contradiction. Therefore $D\left(M_{1}\right)=0$. Suppose that $m_{1} \in T\left(M_{1}\right)^{*}$, by hypothesis, there is a $\left(x_{1}, y_{1}\right) \in T(M)^{*}$ such that $\left(m_{1}, 0\right) \perp\left(x_{1}, y_{1}\right)$, hence, $\left[\left(m_{1}, 0\right): M\right]\left[\left(x_{1}, y_{1}\right): M\right] M=0$. So $\left[m_{1}: M_{1}\right]\left[x_{1}: M_{1}\right] M_{1}=0$. Hence, $m_{1}=0$. Thus, M_{1} is torsion free.

Conversely, let $M=M_{1} \times M_{2}$ be a multiplication R-module, $R=R_{1} \times R_{2}$, where M_{1} is torsion free and $\operatorname{Nil}\left(M_{2}\right)$ is the unique maximal submodule of M_{2}, also, $D\left(M_{2}\right) \neq M_{2}$ and $\left|M_{2}\right|=4$. So, by [9, Theorem 2.5], $\operatorname{Nil}\left(M_{2}\right)=D\left(M_{2}\right)$.

Let $D\left(M_{2}\right)=\{0, b\}$, therefore

$$
\begin{aligned}
T(M)=\left\{\left(0, m_{2}\right): m_{2} \in M_{2}\right\} & \left.\cup\left\{\left(m_{1}, b\right): m_{1} \in M_{1}\right)\right\} \\
& \cup\left\{\left(m_{1}, 0\right): m_{1} \in M_{1}\right\} .
\end{aligned}
$$

Thus, $\Gamma(M)$ is complemented but not uniquely complemented, because $\left(m_{1}, 0\right) \perp(0, b)$ and $(0, b) \perp\left(m_{1}, b\right)$ but $\left(m_{1}, 0\right) \nsim\left(m_{1}, b\right)$.

Example 3.10. Let $M=\mathbb{Z} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}$ as R-module, $R=\mathbb{Z} \times \mathbb{Z}_{2}[x]$. By Proposition 3.9, $\Gamma(M)$ is complemented but not uniquely complemented.

Theorem 3.11. Let R be a ring and M be a multiplication R-module. If $\Gamma(M)$ is complemented, but not uniquely complemented, then $M=M_{1} \oplus M_{2}$, where M_{1}, M_{2} are submodules of M.

Proof. Let $\Gamma(M)$ be complemented, but not uniquely complemented. There is a vertex a with distinct complements z and y and a vertex w which is adjacent to y, but not z. Thus, $[w: M][z: M] M \neq 0$. So there is $\beta \in[z: M]$ such that $\beta w \neq 0$. Also $\beta w \in T(M)^{*}$, on the other hand, $[\beta w: M][y: M] M=0$ and $[\beta w: M][a: M] M=0$. Since $a \perp y$ and $0 \neq \beta w$, we have either $\beta w=y$ or $\beta w=a$ and hence, $[y: M] y=0$ or $[a: M] a=0$. Thus, $y \in \operatorname{Nil}(M)$ or $a \in \operatorname{Nil}(M)$. Furthermore, by Remark 3.8, $\operatorname{Nil}(M)=\{0, m\}$. Suppose that $a=m$, since $m \perp y$, we have $[w: M][m: M] M \neq 0$ and so there is $\beta_{1} \in[w: M]$ such that $\beta_{1} m \neq 0$, also we know that $\beta_{1} m \in \operatorname{Nil}(M)$, so $\beta_{1} m=m$. Let $v=\beta_{1} w-w$. Clearly $[v: M][y: M] M=0$, let $r \in[m: M], r v=r \beta_{1} w-r w=0$, hence $[m: M] v=0$. Since $m \perp y$, we have $v \in\{0, y, m\}$. If $v=y$, then $y \in \operatorname{Nil}(M)$, a contradiction. If $v=0$, then $\beta_{1} w=w$ and so $\left(\beta_{1}-1\right) \in \operatorname{Ann}(w)$. Thus, $M=R w \oplus \operatorname{Ann}(w) M$. If $v=m$, then $\beta_{1} w-w \in \operatorname{Nil}(M)$. Let $n=\beta_{1}^{2}-\beta_{1}$. Hence, $n \in\left[\beta_{1} w-w: M\right]$ and by the proof of Lemma 3.7, Step $1,(n)^{s}\left(\beta_{1} w-w\right)=0$, for some $s \in \mathbb{N}$. Thus, $n^{s+1} w=0$. Let

$$
r=\frac{1}{2}\left[2 n-\frac{4}{2} n^{2}+\frac{6}{3} n^{3}+\ldots+(-1)^{s} \frac{2 s-2}{s-1} n^{s-1}\right]
$$

and suppose that $x=r w$ and $e=\beta_{1} w+x\left(1-2 \beta_{1}\right)$. Clearly

$$
\left(r^{2}-r\right)(1+4 n) w+n w=0
$$

Suppose that $\alpha=\left[\beta_{1}+r\left(1-2 \beta_{1}\right)\right]$. Therefore $\alpha w=\alpha^{2} w$ and $\alpha \in[w: M]$. As a similar argument we have $M=R \beta_{1} w \oplus \operatorname{Ann}\left(\beta_{1}\right) M$.

Clearly star graphs are uniquely complemented. Next theorem shows that for a multiplication R-module M with $\operatorname{Nil}(M) \neq 0$, if $\Gamma(M)$ is uniquely complemented, then $\Gamma(M)$ is an star graph.

Theorem 3.12. Let R be a ring and M be a multiplication R-module with $\operatorname{Nil}(M) \neq 0$. If $\Gamma(M)$ is a uniquely complemented graph, then either $\Gamma(M)$ is a star graph with at most six edges or $\Gamma(M)$ is an infinite star graph with center x, where $\operatorname{Nil}(M)=\{0, x\}$.

Proof. Suppose that $\Gamma(M)$ is uniquely complemented and $\operatorname{Nil}(M) \neq 0$. By the proof of Lemma 3.7 (a), M has a unique maximal submodule. Let H be the maximal submodule. Since $\Gamma(M)$ is complemented, $R m \neq M$ for all $m \in T(M)$ therefore, by [9, Theorem 2.5], $R m \subseteq H$, so $T(M) \subseteq H$.

Let $|M| \leq 16$, then by Remark $3.8 \Gamma(M)$ is a star graph with at most six edges.

Now let $|M|>16$. Hence by Step 7 of Lemma $3.7(\mathrm{a}), \operatorname{Nil}(M)=\{0, x\}$ for some $0 \neq x \in M$ and $[x: M] x=0$.

We first show that $\Gamma(M)$ is an infinite graph. Let c be a complement of x, so $\operatorname{Ann}(c) M=\{0, x\}=\operatorname{Nil}(M)$, by Lemma 3.7 (b). Let $c=\sum_{i=1}^{n}\left(\alpha_{i} m_{i}\right) \in$ $[c: M] M$, where $\alpha_{i} \in[c: M]$ and $m_{i} \in M$, for $1 \leq i \leq n$ and suppose that $\alpha=\sum_{i=1}^{n} \alpha_{i}$. We claim that αc is also a complement of x. If z is adjacent to both vertices x and αc, then

$$
[\alpha c: M][z: M] M=0=[x: M][z: M] M .
$$

Therefore $\alpha z \in \operatorname{Ann}(c) M=\{0, x\}$. So either $\alpha z=0$ or $\alpha z=x$. If $\alpha z=0$, then $z \in \operatorname{Ann}(c) M$, a contradiction. Thus $\alpha z=x$. Hence $\alpha[z: M] z=$ $x[z: M]=0$. Therefore $z[z: M] \subseteq \operatorname{Ann}(c) M=\operatorname{Nil}(M)$ and hence $z \in$ $\operatorname{Nil}(M)=\{0, x\}$, again a contradiction. Consequently $\alpha c \perp x$ and so, by Lemma $3.7(\mathrm{~b}), \operatorname{Ann}(\alpha c) M=\{0, x\}$. By a similar argument $\alpha^{i} c \perp x$ and $\operatorname{Ann}\left(\alpha^{i} c\right) M=\{0, x\}$ for $1 \leq i \leq n$. Hence each $\alpha^{i} c$ is an end. Next note that $\alpha^{i} c$ are all distinct. If not, suppose that $\alpha^{i} c=\alpha^{j} c$ for some $1 \leq i<j$. Therefore $\alpha^{i}\left(1-\alpha^{j-i}\right) c=0$, so $\left(1-\alpha^{j-i}\right) \in \operatorname{Ann}\left(\alpha^{i} c\right)$. By the proof of Lemma 3.7 (a), Step 7, $x=\beta m$ for some $\beta \in[x: M]$ and $m \in M$ such that $\beta^{2} m=0$ but $\beta m \neq 0$. Hence $\left(1-\alpha^{j-i}\right) m \in \operatorname{Ann}\left(\alpha^{i} c\right) M=\{0, x\}$. So either $m-\alpha^{i-j} m=0$ or $m-\alpha^{i-j} m=x$. If $m=\alpha^{i-j} m$, then

$$
x=\beta m=\beta \alpha^{i-j} m \in \beta \alpha^{i-j-1} R c \subseteq \alpha^{i-j-1}[x: M][c: M] M=0,
$$

a contradiction. Thus $m-\alpha^{i-j} m=x$. So

$$
x-\alpha^{i-j} \beta m=\beta m-\alpha^{i-j} \beta m=\beta x=0
$$

Hence $x \in \alpha^{i-j-1} \beta R c=0$, again a contradiction. Consequently $\Gamma(M)$ is infinite.

We next show that $\Gamma(M)$ is a star graph with center x. By contradiction, suppose that $\Gamma(M)$ is not a star graph. Let $c \in T(M)^{*}$ be a complement of x, so there is a $a \in T(M)^{*} \backslash\{x, c\}$ such that $[a: M][x: M] M=0$ but a is not an end. Hence there is $y \in T(M)^{*} \backslash\{a, x, c\}$ such that $y \perp a$. Let $c=\Sigma_{i=1}^{n}\left(\alpha_{i} m_{i}\right)$, where $\alpha_{i} \in[c: M]$ and $m_{i} \in M$, for $1 \leq i \leq n$ and let $\alpha=\sum_{i=1}^{n} \alpha_{i}$. We can check that $\alpha y \notin\{0, a, x, c, y\}$. If $\alpha y=0$, then $[y: M] c=0$, which is a contradiction with c is an end. If $\alpha y=x$, then $\alpha[y: M][c: M] M=0$, so $y \in \operatorname{Ann}(\alpha c) M=\{0, x\}$, a contradiction. If $\alpha y=y$, then $\alpha y[x: M] \subseteq[x: M] R c=0$, a contradiction. If $\alpha y=c$, then a is adjacent to c, which is a contradiction. At last if $\alpha y=a$, then $\alpha y[y: M]=0$. So $y[y: M] \in \operatorname{Ann}(\alpha c) M=\operatorname{Nil}(M)$ and therefore $y \in \operatorname{Nil}(M)$, which is a contradiction. Thus $\alpha y \in T(M)^{*} \backslash\{a, x, c, y\}$. By the hypothesis, there is $z \in T(M)^{*}$ such that z is a complement of αy. One can also verify that $z \notin\{0, \alpha y, a, x, c, y\}$. (Use $y \notin \operatorname{Nil}(M)$ to show that $z \notin\{c, y\}$ and use $\alpha y \perp z$ to show that $z \notin\{a, x\}$.) Clearly $[x: M][z: M] M \neq 0$. Let $z=\Sigma_{i=1}^{s} r_{i} m_{i}$, where $r_{i} \in[z: M]$ and $m_{i} \in M$, for $1 \leq i \leq s$ and let $\gamma=\sum_{i=1}^{n} r_{i}$. If $\gamma x=0$, then $[x: M][z: M] M=0$, a contradiction. So we must suppose that $\gamma x \neq 0$. Also $[\gamma x: M][c: M] M=0$, hence $\gamma x \in \operatorname{Ann}(c) M$. Thus $\gamma x=x$. On the other hand, $\alpha y \perp z$, so

$$
[\gamma y: M][c: M] M=[y: M] R\left(\Sigma_{i=1}^{n}\left(\gamma \alpha_{i} m_{i}\right)\right) \subseteq[y: M] R \alpha z=0
$$

Therefore $\gamma y \in \operatorname{Ann}(c) M$. Hence either $\gamma y=0$ or $\gamma y=x$. So x is adjacent to both y and a. But this is a contradiction that $a \perp y$. Consequently $\Gamma(M)$ is an infinite star graph with center x.

Corollary 3.13. Let M be a multiplication R module. If $\Gamma(M)$ is uniquely complemented, then either $\Gamma(M)$ is a star graph or $S^{-1} M$ is von Neumann regular, where $S=R \backslash Z(M)$.

Morovere, for faithful cyclic R-module M, the converse is true.
Proof. Let $\Gamma(M)$ be uniquely complemented. If $\operatorname{Nil}(M)=0$, then M is a reduced and by Theorem $3.3, S^{-1} M$ is von Neumann regular. If $\operatorname{Nil}(M) \neq 0$, then by Theorem 3.12. $\Gamma(M)$ is a star graph. Converse is true by Corollary 3.5 .

Corollary 3.14. Let M be a multiplication R module with $T(M) \neq M$. Then $\Gamma(M)$ is uniquely complemented, if and only if either $\Gamma(M)$ is a star graph or $S^{-1} M$ is von Neumann regular, where $S=R \backslash Z(M)$.

References

[1] D.D. Anderson, M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (2) (1993), 500-514.
[2] D.F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (3) (2003), 221-241.
[3] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999), 434-447.
[4] D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, The zero divisor graph of a commutative ring, II, in "Ideal Theoretic Methods in Commutative Algebra", Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001, 61-72.
[5] F.W. Anderson, K.R. Fuller, "Rings and Categories of Modules, Second edition", Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
[6] I. BECK, Coloring of commutative rings, J. Algebra 116 (1) (1988), 208-226.
[7] G.A. Cannon, K.M. Neuerburg, S.P. Redmond, Zero-divisor graphs of nearrings and semigroups, in "Nearrings and Nearfields" (eds: H. Kiechle, A. Kreuzer, M.J. Thomsen), Springer, Dordrecht, 2005, 189-200.
[8] F.R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2) (2002), 206-214.
[9] Z.A. El-Bast, P.F. Smith, Multiplication modules, Comm. Algebra 16 (4) (1988), 755-779.
[10] S.P. REDMOND, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (4) (2002), 203-211.

