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About the solution of the even parity formulation
of the transient radiative heat transfer equations
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Abstract This paper studies the existence and uniqueness questiotiassical spaces, for a certain
system of differential equations. From the physical pointiew, the interest of this system lies in that
it becomes, for particular choices of its coefficients, theneparity formulation of theS, approximation
of the transient radiative heat transfer equations in theedimensional slabA priori lower and upper
bounds of the solution are obtained as well.

Sobre la soluci 6n de la formulaci 6n par de las ecuaciones evolutivas de
transferencia de calor por radiaci 6n

Resumen. Este articulo aborda las cuestiones de existencia y w@ulcien espacios clasicos, para
cierto sistema de ecuaciones diferenciales. Desde el mleniosta fisico, el interés de este sistema
radica en que se convierte, para elecciones particularsesdeoeficientes, en la formulacion par de la
aproximacionS, de las ecuaciones evolutivas de la tranferencia de calalagdacion en una geometria
de laja 6lab) unidimensional. Asimismo, se obtienen cagggriori, tanto inferiores como superiores, de
la solucion.

(A, B) C R%:

Introduction
Let us consider the following nonlinear system of equationghe nonvoid bounded domafty, t ;) x
or - 4 .
5= ft,x) — e T + o F (temperature equation), Q)
0*F 4 - .
o2 + c3F = c4T (radiative heat flux equation), (2)
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which is closed with the initial condition
T'(to, x) = To(x) 3

forz € (A, B), and the boundary conditions

F(t,A4) 5 90 (1, 4) = La(1), @
F(t,B) + es'g (1, B) = In(0) ©

fort e (to,ty).

Eachc;, fori € {1,2,3,4,5}, is a given positive real number (positive means strictlgifpee), and
f(t,x), To(x), La(t), andi(t) are given real functions. The unknowns are the temperat(tre:) and the
net radiative heat flu¥'(¢, z). Timet belongs to the intervdky, ¢ ;) (or [to, ¢s]) and space: belongs to the
interval (A, B) (or [A, B]).

For particular values of the constamts the system1)—(2) is known as theven parity formulation of
the S, approximationof the transient radiative transfer equations in the omeedisional slab (see Equa-
tions (2.9) and (2.14) in referenc@]][ where one can find as well the description of two algoritHors
solving that system, together with numerical results).

Equation () is a heat equation, with a heat sourtewhere conduction and convection have been
neglected, but that brings the effect of the radiation in&y,pwvhich obliges to include Equatio@)(* For
situations where th&, approximation is not accurate enough, more complete mattiemhmodels can be
consulted in references,[7, 8].

The system models a situation where radiative heat transfarrs within a participating medium. In
this context, the adjectivparticipating indicates that the medium absorbs, emits, and scatterséther
radiation. We note that radiation heat transfer can alse pdéce through non participating media such as
the vacuum.

We give in this paper sufficient conditions for existence andjueness in classical spaces. Whether
the solution is global or local in time depends on the sigrefdritical parametey = cocypiy — 1, where
u1 > 0 is the first eigenvalue of certain self-adjoint operafothat we shall define later on. Singe
depends omrg andcs, it is throughy, that the influence of the parametegsandc; plays its role. The
most relevant conclusion is that when< 0, which includes the physically relevant case, a uniqueajlob
solution exists.

An a priori lower bound of the solution, valid for any valuegfis given, and am priori upper bound
valid whenvy < 0 is obtained as well.

We notice that in ] it is studied the multidimensional physical case considgboth conduction and
radiation. Since we study the situation of radiative eguilim, we do not include heat conduction and,
consequently, the results of this paper cannot be derived fnose in §].

Henceforth, the spaces([to,t¢] x [A, B]) and C%([to,ts]; C°([A, B])) will be identified without
further explanation, and thus(t) will be a function ofC%([A, B]) in casey € C°([to,ts] x [A, B]).

1Excerpted from#, Ch. 8]: “Much attention [...] will be given to the situation which radiation is the dominant mode of heat
transfer, meaning that when conduction and convection egégible. This situation is referred to aadiative equilibriuml[...] Ra-
diative equilibrium is often a good assumption in applizas with extremely high temperatures, such as plasmasaruekplosions,
and such.”
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2 Tools

2.1 The second order ODE. Reformulation
It is known ([2]) that, foro given inL'(A, B) andl 4, [ given inRR, the problem

—u' 4+ cgu=o0c on (A, B),
u(A) — csu'(A) =14, (6)
u(B) 4 ¢5u/(B) =1,

has a unique solution € W%1(A, B), satisfying the ODE at almost every point, which can be regméed
by the formula

B
u(z) = K(o)(x) = /A G(z,s)o(s)ds + h(z), 7

whereG € CY([A, B] x [A, B]) is the associated Green function alds a C> function carrying the
information of the boundary conditions in such a way that 0 if [, = I = 0. Note thatcs andcs; are
the constants appearing in Equatiofy (4) and 6), and hence they are positive.

Among the properties af, we single out thaf7 is nonnegative and symmetri€(z, s) = G(s, z) for
all (z,s) € [A, B] x [A, B]).

FunctionsZ andh are explicitly described idppendix A

Moreover,,C(o) > 0 wheneverwr > 0,14 > 0, andlp > 0 hold simultaneously {]). Sinceh does
not depend o, we also have, simply by taking = 0, thath > 0 wheneveri, > 0 andig > 0 hold
simultaneously.

Wheno € CY([A, B]), itturns out thatC(o) € C?([A, B]) and that the ODE is satisfied at every point.
It will also become of particular interest the bound

[K(e1) = K(o2)llcoqa,py < (B = A) IGllco(a,B)x(a,8)) llor — o2llco(a, ) (8)
which is easily derived from Equatiofd)(

Whenl4 andip are functions of time, one can apply the previous results at every tiraad obtain

B
u(t,z) = K(t,o)(x) = /A G(z,s)o(s)ds + h(t,z), 9)

being the time regularity of (and hence ofi) the minimum of the regularities of functiordig and!/p.
In particular, time continuity is ensurediif andlz are continuous. Note that the differencét, o) —
K(t,o2) does not depend onanymore, and the same bour) kolds for||C(t, o1) — K(t, 02)|lco(a,8))
in case thatr, o2 € C°([4, B]):

I1K(t, 01) — K(t,02)|coqa,B)) < (B — A) |Gllcoqa,B1x(4,8)) o1 — o2llco(a,B))- (10)

The initial interest in introducing operatéf lies in that Problem)—(5) can be rewritten as follows:

dar - _ 4 4
T = f(t) aT* + ek (t, caT ) on [to, tf], (11)
T(to) = To.

2From now on, due to the functional framework that will be duluced later on, we change the open intenvals ty) and
(A, B) for the closed onesto,ts] and [A, B]. Notice that in casel(l) holds in the open intervaito,ty) for someT €

CO([to, t£]; CO([A, B])), then (1) will also hold in the closed intervato, f;] provided thatf € CO([to,t]; C°([A, B])) and
la, g € CO%([to,ts]). This can be proved by observing that € C((to,t5); C°([A, B])) N C°([to, t¢]; C°([4, B])) and

9T CO([to, t4]; CO([A, B))).
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The reader can find ir], for the L' setting, theorems of comparison between usual derivalikes
0T /0t an vector derivatives likdT'/ dt. We will employ in this paper the fact that

%(t)(:v) = %—I;(t,gc) V(t,x) € [to,tf] x [A, B]

whenT € C!([to, t]; C°([A, B])), by application of the following Lemma.
Lemmal Consider a function
v (t,x) € [to, ty] x [A, B] — ¢(t, ) € R,
which is continuous with respect foon [A, B], and define
W [to, tg] — C°([A, B])

by means of R
P(t)(x) =v(t,x)  V(t,x) € [to, ts] x [A, B].

Suppose that is strongly differentiable at somg € [to, tr]. Theny is differentiable with respect toat
t1, and

_ 4y
Todt

a_w(tlax)

5 (t1)(x) YV € [A, B].

ProoE The result follows from

_ay Dt +h) = (1) B
fm | () = h =0
CO([A,B])
de Y(ty + h,x) —p(ty, ) de D(ts +h) —)(t)
E(tl)(ff)— h < E(tl)_ W )
Co([A,B])

and the uniqueness of limit. &

2.2 The self-adjoint operator L
Let us define a linear operatgr. L2(A, B) — L2?(A, B) by means of the following equality:

B
L(o)(z) = /A Glz,s)o(s)ds,  fora € [A, Bl. (12)

By comparison with Equatiordy, it is clear that
K(t,o)(x) = L(o)(z) + h(t,x) if 0 € L?(A, B).

L is a Hilbert-Schmidt integral operator with symmetric reatnelG € C°([4, B] x [A, B]); conse-
quently,L is compact and self-adjointq]).
Moreover, the following theorem holds:

Theorem 1 Let{u1, p1} € RxC>([A4, B]) be the first eigenpair of operatd. Thenu; > 0, ¢1(z) > 0
Vo € [A,B], andH£||L2*,L2 = U1

PROOFE SeeAppendixB N
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3 Existence and uniqueness for a truncated version of the
problem

Let us consider, fon/ > 0 ands > 0, both arbitrarily fixed, the real functiom, € C°(R) whose graphic
is the one depicted in Figufe That is to say, fos € R:

ot (1 : D s e M1+ 5),—M),

1 if s € [—M,M],
ms)=93" 5 (146 MM (e

T if s € (M, M(1+4)],

0 otherwise.

The reader can immediately check that

1
Inar(s1) — nar(s2)] < m|31 — s Vs1,52 € R.

M

I 1 . I !

—M1+3) —M 0 M M(1+96)

Figure 1. Graphic of the function 7,,.

To begin, one can give rapid response to the existence agdemess question for the following trun-
cated problem:

d7T
{E = f(t) — e me (IT@)lcoqa,5))) T* + c2 K (t, ca mar (1T ()l copa,zy) T  onlto, tl, (13)
T(to) = To.

Itis clear that a solutio € C*([to,t¢]; C°([A, B])) of Problem (3) is also a solution of Probleni{)
in case that
”T(t)HCO([A,B]) <M forallt € [to, tf]. (14)

This solution, defined for everty would be global. In case there existse (¢, ¢ ] such that
1T ()l cora,B)y <M forall ¢ € [to, t1] (15)
we would still have a local solution of Problerhl)).
Theorem 2 (Existence and uniqueness for Problem (13)) Let us suppose that

1. Ty € CO([A,B]).
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2.la,lp € CO([to,tf]), and
3. f € C%[to, ts] x [A, B)).
Then there exists a uniq@@c C'([to, t7]; C°([A, B])) solution of Problen{13).

Corollary 1 (Uniqueness for Problem  (11)) Assume that the hypotheses of Theo&hold. Then
there exists at most a uniqee C*([to, t¢]; C°([A, B])) solution of Problen{11).

PROOFE The solution of Probleml®) depends on/, and in this proof it is convenient to indicate that
dependence with a subscript. Moreover| o will stand for|| - [|co((e,,¢,1x [, B])-

LetT € C'([to, tf]; C°([A, B])) be a solution of Probleni() and apply Theorer@with M > ||T||co
to infer that7’,; = T for any of those values af/. Thus, T, does not depend ol for M large enough
when Problem1) has some solution.

Now, if T andT" € C'([to, ts]; C°([A, B])) are two solutions of Problemi), we havel' = T' = Ty,
forany M > max{||T||co,||T||co}. M

3.1 Proof of Theorem 2

The following Theoren8 is a generalized version, performed in order to include ieraforH the depen-
dence on, of the Cauchy-Lipschitz-Picard Theorem as it appears,ich. VII].

Theorem 3 Let us consider a Banach spagg, || - || z), and let
H: [to,ty] x E— E
be a continuous operator such that
|H(t,u) — H(t,v)||g < Llju—v| g Vit € [to,tr], Yu,v € E, (16)

whereL € R is independent of
Then, for alluy € E, there exists a unique € C'([to, t¢]; E) such that

{% = H(t,u) onl[to,t/],
u(to) = Ug-

PROOFE We only sketch the proof because it is analogous to thatesrin [1, Ch. VII]. Furthermore, this
sketch is of interest for an eventual numerical resolutipabplication of the fixed point method.
For givenk > 0, the Bielecki norm orC°([ty, ¢¢]; F) defined by

Jully = sup  {e ™ [u(t)|s}
to<t<t;

is equivalent to the usual one
lull = sup [lu(t)] e,
to<t<ty
and consequentl§C®([to, t7]; E), || - ||») is a Banach space.
The proof is finished by noting that the mapping

@: (COfto, ts]; B, Il - k) — (CO(fto, ts]s B, |1 - Ik
defined by

(Pu)(t) =up+ | H(s,u(s))ds

to
is contractive wheit > L. N

Theorem2 holds in virtue of Theorer and the following Lemma.
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Lemma 2 Assume that the hypotheses of Theo2dmold. Then the operatal : [to,tf] x C°([4, B]) —
C°([A, B)), defined by

H(t,u) = f(t) — v mar ([ullooga,py) u* + 2K (¢ cannr ([ullcoga,zy) u*),
is continuous and satisfi€%6).

PROOFE Since the continuity off under the hypotheses of Theoréhis easily derived from the con-
tinuity of functionn,; and the definition of operatd€, we center our attention in proving the Lipschitz
property (L6). We shall omit the subindeX’([A, B]) in the norm. First note that, due tba), it suffices to
check Lipschitz property fofl *u = na(||ul|) u*.

Obviously,H*uy — H*ug = 0 if |Juy| > M (1 + 0) and|luz|| > M (1 + ¢).

For general;; andus we have

H*uy — H*up = nar([Jua) (uf = u3) + [nae(lus ) = mar(luz|)]us,

and  uf —uj = (ud + uduy + ugul + ud) (uy — ug).

Consequently,

* * 1
| H*uy — H*us|| < {4 ([ ||) max(f|uq||?, fJuzll®) + m||u2||4} flur — ual|. (7)

One now derives froml(7) that, in case thdtu, || > M (1 +0) and|luz|| < M (1 +0) (or vice versa, as
the roles ofu; andus in (17) can be interchanged),

M3(1+46)*

[ H*uy — Hug| < 3

lur — uz],

and that, if|jui || < M(1+ 6) and||us| < M (1 +9),

149
7 sl < {a+ LA+ 58— . a8

which ends the proof, since, according to the previous disions, the bound obtained in Equatids)(is
actually valid for alluy, us € C°([A, B]). N

Remark 1 (Optimum value of §) When demonstrating Lemr2awe showed that

L* = {4+ @}M?’(H(S)S

is a Lipschitz constant fofr{/*. Elemental calculus shows that, faZ given, the minimum value of
L* = (432/25)M? is attained wher = 1/5. The reader can easily check that

L={c1 +(B—A)|Glcoa,B)x(a,B)c2c4] L*

is a Lipschitz constant faff. In Appendix At is explained how to compute the valug|6f||co (14, 5[4, B))-

4 Existence, uniqueness, bounds
Assume that the hypotheses of Theor2are satisfied.

Suppose that
To(x) >0 Yz € [A, B] (19)
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and takeM > ||Ty||co(4,)) in order to have
0<To(x) <M Vo € [A, B].

Let
T € C'([to, t]; C°([A, B])) (20)

be the unique solution of Problerh3).

Naturally, we must look for conditions on the data ensuringt " satisfies {4), to have a global
solution, or (L5), to have a local one. Sincg stands for temperature in the problem of origin, and thus it
must be positive, we will actually look for hypotheses guéeaing the stronger condition

0<T(t,x) <M  V(tx) € [to,ts] x [4, B] (21)
for global solution or

0<T(t,z) <M V(t,x) € [to,t1] x [A, B] (22)
for somet, € (to,ty], for alocal one.

Define

t1 = inf {t € [to, tf] = tf or HT(t)”C“([A,B]) =M or minB T(t, I) = O} . (23)

<z<

By employing arguments of continuity one proves thaexists in(to, t;] and thatd < T'(t,z) < M
Y(t,x) € [to, t1] X [4, B]. Hence R2) is guaranteed, and we have the following theorem.

Theorem 4 (Local existence and uniqueness for Problem (12)) Assume that the hypotheses of
Theorem2, and hypothesi$19) hold. Then there exists a uniqde € C!([to,t1]; C°([A, B])) solution
of Problem(11) on [ty, 1], for certaint, € (to,ty].

On the other hand, conditio2Y) holds ift; = ¢y.
Set now the additional hypotheses

ZA(t) >0, ZB(t) >0 Vit € [to,tl], (24)

flt,z) >0 V(t,z) € [to,t1] x [4, B]. (25)
Notice that, since, 7% > 0 is guaranteed, hypothes4) implies
K (t,eaT*) > 0.
Then one can prove the following theorem.

Theorem 5 (Lower bound for the local solution of Problem (12)) Assume that the hypotheses of
Theoren®2, and hypothesed 9), (24), and (25) hold. LetT be the unique local solution of Problefhl)
derived from Theorer. Then

T(t,z) > To(=)
{’/3 it —to) T3 (x) + 1

PrROOF Take into account that

V(t,d?) S [to,tl] X [A,B] (26)

ot

8—T(t,:c) = f(t,z) — . T*(t, x) + 2K (t,caT?) () = —aT*(t, ) V(@) € [to, t1] x [A, B],
T(tg,x) = To(x) YV € [A, B,

and apply the following Lemma. N
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Remark 2 In particular, 7' > 0 under the hypotheses of Theorbm

Lemma3 Lety: [to,t1] — R be an absolutely continuous function such thét)) = yo > 0. Let
N C [to, t1] be the set of points at whichis not differentiable (thereford’ has zero measure). Assume
that, for certain constant’ > 0,

y'(t) > —Cy*(t) Vt € [to, 1] \ N.

Then
y(t) > L vt € [to, ).
\3/3C(t—to)y3 +1
PROOF Set
t* =sup{t € (to,t1] : y(t) > 0 Vt € [to,1] }.
Integrating
d, _ _ *
S 07 M) =3y )y () <3C VEe[to,t")\ N
we infer . .
— = <3C{t—-t Vt € [to, t*
PEORET R -t
or, equivalently,
3
y3 (1) Yo Vt € [to, t¥). (27)

>
T 3C(t—ty)ys +1
By continuity, inequality 27) also holds fot = ¢*, and consequently(t*) > 0 andt* =¢;. W
Lemma 4 Assume that the hypotheses of Thedsdmold. Then time;, defined by Equatio(23), is also
defined by the following equality:
t, = inf {t S [to,tf] t=typor ”T(t)HCO([A,B]) =M } .
PrROOF.  From inequality 26) we deduce thahin,c4 ) T'(x,t1) > 0, which ends the proof. B
Previous Lemma shows that; = ¢ is ensured if
1T (t1)llco(a,m)) < M,
which in turn holds in case that (recall tHatdepends o)

1T (t1)llcoa,B)) < K, being K a constant independent f. (28)

Indeed, if 8) holds we could tak@/ > max { K, ||To||co((4,5)) } from the beginning in order to reach
this point of the reasoning with the certainty thdt(t, )|/ co(ja,5)) < M.
Now the study bifurcates depending upon the sign of

Y =cCocy g — C1. (29)

Wheny > 0, we will show that 28) cannot be guaranteed; whern< 0, which includes the interesting
case from the physical point of view, we will provg), which as we know implies global solution.

Given two real and measurable functiansandi), defined almost everywhere 0A, B], we will use
the notation

B
(¢17¢2)=/A 1 () (x) da

whenever the integral exists R Itis clear thaf -, - ) stands for the inner product ¥ (A, B) in case that
11 andip, belong tol.?(A, B).
Recall that{ i1, v1} € R x C*([A4, B]) is the first eigenpair of operatadrdefined in Subsectio?.2
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41 Case~vy >0
Assume that the hypotheses of Theorghold, and recall who i§" from (20) and adjacent lines.
Lemma5 Foranyy € L'(4, B),

d oT
S 0.0 = (G0,

PrROOFE The proof is easy by employing dominated convergence @ nrore elementary way, by using
the chain rule to derive the compositiér T, beingL: C°([4, B]) — R the linear and continuous mapping
defined byL(T) = (T, ¢) for T € C°([A,B]). W

Previous Lemm& justifies the following equality:

dilt (T'(t), 1) = (f(t),sol) —c1 (T(t), 1) + caca (L(TH1)), 1) + 2 (B(t),01) Vit € [to, t1].

(30)
Since/ is self-adjoint, we have
(L(TH(t)), 1) = (TH(t), L(p1)) = pa (T (1), 1)
and consequently EquatioBQd) can be rewritten as follows:
d 3 4
= (T, 1) = (FO) + chlt),01) +7 (T (W) 01) VL€ lto, ), (31)
with ~ defined by Equatiorn29).
Lemma 6 Letu* be a positive measure qol, B). Then
B 4 . [P
( / udu*> < (1*{(A.B)}) / utdpt Vue LY(AB) ).
A A
PrROOFE By Holder’s inequality,
B B 1/4 B 3/4
/ udp*| < (/ u4d,u*> (/ 1d,u*> ,
A A A
which ends the proof. B
Application of Lemmeb with 1* = @1 dz shows that
B —3
(T*(t), 1) > </A <P1(17)d17> (T(t), 1)",
and then Equatior3Q) implies
d B - A
GT0e) 2 ( [ e@ds) @@ Ve n (32)
A

if v> 0.

138



Existence and uniqueness questions in transient radiag@etransfer

Lemma7 Lety: [to,t1] — R be an absolutely continuous function such thét)) = yo > 0. Let
N C [to, t1] be the set of points at whichis not differentiable (thereford’ has zero measure). Assume
that, for certain constant’ > 0,

y'(t) > Cy*(t)  Vt € [to,t1] \ N.

Then
Yo

2
{’/1—30(t—t0)yg

y(t) YVt € [to,tl]

and, consequently,

1
o <tf=t —.
1 0+3Cy8

PROOF ltis clear thaty(t) > 0 forall ¢ € [to, t1], sincey, > 0 andy’ > 0. Then

d

7 (v 0) =3y )y () 230 Vi€ [ho,0)

Integrating betweety, andt¢ one obtains

3
3(£) > v(t) = Yo Vi € [to, t
Yy ()—U() 1—3C(t—t0)y8 6[05 1]7

which ends the proof, dém, - v(t) = +co. W
Theorem 6 (Barrier and second lower bound for the local solut ion of Problem (11)) Assume

that the hypotheses of Theoré&rhold, and letI” be the unique local solution of Problefhl) derived from
Theorend. Assume also that > 0, with v defined by Equatio(29). Then

(To, ¢1)

) ) > b(t) = YVt € [to,tl] (33)
Y1-37 (L) (¢ 10) (To.1)”

(T'@®),

and, consequently,

) 1 [ (1,¢1) ]3
th <t =ty + — .
' 0 [(To,sm

37
PROOFE Apply Lemma?7 taking into account inequality3@). MW

Remark 3 As a consequence of Theorénwe have for sure that the solution cannot be global when
t* < ty.
42 Case <0
Assume that the hypotheses of Theorghold, and recall who i§" from (20) and adjacent lines.
If v <0, Equation 81) imply

S @wm.en < (7 +ohte) Ve lton] (34

Notice the contrast with the situation for> 0, analyzed in Theorei, because integration of inequal-
ity (34) provides us with the following upper bound fGF (), 1 ):

(T(e) o) < Tovgn) + [ (F@) +eah(s)or)ds W fort]

to
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Going beyond, in this case one can actually prove condi2@h (
In virtue of Theorend, we have, for any value of € R,

%%a@:f@xyHymﬂﬂ+@@cuﬂwM@_cJ%a@
F x c x CoCy 4 xr) — ClTSl(x)
< f(t, @) 4 cah(t, @) + cacq L (TH(t)) (x) Gorlt — )T @) 3 )

(39)

forall (¢, ) € [to, t1] x [A, B].
Consequently, one can obtain apriori upper bound 0% in case one gets an upper bound of

B
L(T(t)) (z) = /A G(x,s)T(t,s)ds

which in turn is done if one gets an upper bounddft) in anyL? (A, B) norm,p > 1.
As demonstrated in Subsectidri, one cannot expect to find that bound wher 0. On the contrary,

in the casey < 0 we shall obtain an upper bound (51" ()| 5/4 (4, 5)-

Note that
1T4(t)| L5/4(A,B) = ||T(t)|‘iS(A,B)- (36)

SinceT is positive one has, by dominated convergence,

d 5 oT 4

3 (70l m) =5 (G 0.70).

and then
d
1T sy (T era ) = 5 (10,5
(37)

Vit € [to, tl],

N . O‘l|’—‘

= (F&) +coh(e), T
(). 7

+ coca (L(TH(1)), TH(t)) — clHT4(t)”%2(A,B)
< (&) + eante (t)

)
) I2204,5:

t)) + AT

where it has been taken into account that
(L(TH(1), T* (1)) < LT () IL2a,m) 1T (B)l|L2(a,5)
<Ll —re (1T OF2 a5

= mlT* )24 5)-
When~y < 0, inequality @7) implies

7(t) llLsca,m)

AB)dt(

( (t) + cah(t), (»
<[ () + cah(t)|s

= || (t) + 02h(t)||Ls<A,B>IIT(t)His(A,B) Vit € [to, 1],

O3 45

from where, sincd” > 0,

(T 5 Ve fto,t].

s(4,8)) < I F(8) + e2h(t)
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Therefore, for alk € [to, t1],

t
1T Lscan) < [Tollsam + / 17(5) + o)l ds. (38)
0

Now we can obtain an upper bound [of (7% (t))||co (4, 51), Which in turn allows one to give succes-
sively upper bounds o and7', and finally state the main result.

4.2.1 Bound of ||£(T4(t))||00([,473]).
From Equations?2), (36) and 38) it is easy to check that

H‘C(T4(t))HCU([A,B]) < K*HT4(t)”L5/4(A,B)
t 4 (39)
< K* (||TO|L5(A-,B) +/ Hf(S) + C2h(S)HL5(A,B) ds) Vit € [to,tl],
to
being
B 1/5
K* = zg[lifé] </A [G(x,s)]5ds> . (40)
4.2.2 Bounds of 9T/0t, T, and main result.
Let us define
t 4
U(t) = (”TO'LE’(A,B) +/ ||f(8) + Cgh(S)HLS(A_’B) ds) Vit € [to,tl]
to
and T
) V(t,) € lfo,1] % [4, B (41)

(t.z) = -
6/301(15 — tQ)TO3($) +1
Now Equations35) and 39) imply
oT x * 4
E(t, x) < f(t,x) + cah(t, @) + cocs K*U (t) — cyw® (¢, x)
forall (t,z) € [to, t1] x [A, B], from where we derive, by integration,

T(t,x) < Tox) + / {f(s,x) + cah(s,x) + caca KU (s) — clw4(s,x)} ds
o (42)
=w(t,z) + / {f(s, x) + cah(s,z) + CQC4K*U(S)} ds

to

forall (¢, z) € [to, t1] x [A, B].
To compact writing, let us define, fét, ) € [to,tf] % [A, B,

o(t,x) = /t {f(s, x) + cah(s,x) + 0204K*U(s)} ds, (43)

to

U(t,x) =w(t,z) + o, x).

Thus we have prove@8) with
K = ||Y|[co(to,t5]x[A,B)) (44)
and the following theorem holds.
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Theorem 7 (Existence, uniqueness and bounds for Problem (1)) Assume that the hypotheses
of Theoren® hold, consider som@d/ > K, with K defined by Equatio(44)), and letT be the unique
solution of Problen{13) derived from Theorer®. Assume also that < 0, with v defined by Equatio(29).
ThenT is also the unique global solution of Probl€til) and, moreover,

w(t,z) <T(t,z) <w(t,z)+ ot x) V(t,x) € [to, tf] x [A, B], (45)
wherew and¢ are defined by Equatior(d1) and (43)), respectively.
PrROOF.  Note that¥(tg, z) = To(z), which implies that|T(t)||co(a,8)) < M (and hencé; = t;) is

ensured wheff” is the solution of Probleml@) for any M > K (see Equation28) and lines below).
The inequalityw < T'comes from Theorer, andT’ < w + ¢ is exactly the inequality42). N

Remark 4 In order to give a simpler (but coarser) upper bound Tgrtake into account that

5aB) < (B — A)Y?|lullcoa,n))

[l

if w is continuous oA, B] to deduce fron¢45) that, under the hypotheses of Theorgm
ITles < WTallesqam + s = )] 1Fken + caliot
* 4 ~ 4
+ caeaK* (B = A) (| Tollos ga,m + (¢ — o) (| fllco + callbllco) }

where|| - [|co stands for|| - [|co((so,¢,x[4,8)) @nd K * is the constant defined in Equati¢40).

5 Refining the upper bound when ~+ <0

Assume that the hypotheses of Theorghold, and let us suppose thak 0.

We have seen in Subsectidr? how to have an upper bound f4i'(¢) |15 (4,5 like that obtained in
Equation 88) allows one to obtain an upper bound fBiike the one stated in Theorerm We are going to
refine the upper bound far by refining the bound3g).

Equation 87) implies

4 d

ITOles a5 g (IT@)]

) < (F0) +eh®),T40) = hIT O am) V€ lforty)

(46)
Since in virtue of Holder’s inequality

(F@) + eah(0), @) < 1F@) + e2h(®)loca, s I T s a

L‘)(A,B) L2(A,B) ?

we deduce from inequalityg) that

IT(#)]

d ~ _
T (1T )5 a,m)) < Nf(E) + c2h(@)Ls(a,m) — V(B — A) 3/5||T(t)|‘i5(A,B) (47)
forall ¢t € [to,ty].
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Lemma8 Lety: [ty,t;] — R be anabsolutely continuous function. DétC [¢y, t¢] be the set of points at
whichy is not differentiable (therefor& has zero measure). Assume that, for certain real constantso,

p > 0, and certain nonnegative continuous functi@ansto,t;] — [0,00) andg: [to,ts] — [0,0), the
following two inequalities are satisfied:

y(t) = B(t) vt e [to,tf]

and
y'(t) + CyP(t) < 6(t) Vt € [to,tf] \ N. (48)

Then, for allt € [to,t/],

. 1/p
y(t) < min {y(to) +/t [0(s) — CBP(s)] ds, max {y(to), (%) }} ;

wheredmax (t) = max, <s<t 4(s).
PROOF The inequality
t
) < olto) + [ 6(5) = CB7(5)) ds
to

is easily inferred from
y'(t) < 6(t) — Cy"(t) < 4(t) — CB7(1).
Now we will show that

It suffices to prove that

y(t) < max {y(to), (%) p} Vit € [to, tr] (49)

whend is nondecreasing.

To this end, we note that, &is nondecreasing and there exists [to, ¢ ) such thay(¢) < (5(0)/C)"?,
theny(t) < (6(1&)/0)1”’ forallt € [t,ts]. This can be seen through a proof by contradiction: suppse t
y(r) > (5(7)/0)1/” for somer € (¢, t¢s] and define

1/p
t; = sup {t elt,7]: ylt) < <?> }

Continuity of involved functions makes true the relatioipstt; < 7 andy(t1) = (6(t1)/C)"/*. Moreover,
it is clear from the definition of; thaty(¢) > (5(t)/0)1/p forall t € (¢4, 7], which impliesy’(t) < 0 on
(t1,7] \ N owing to hypothesis48). Previous steps justify the chain
5 1/p 5 t 1/p
(%) <vm <ue = (22

which cannot happen, sinéds nondecreasing.
The proof is completed by considering the following two case

o If y(to) < (5(t0)/C)"", theny(t) < (5(t)/C)"? forall t € [to, t] and hence49) is satisfied.
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o If y(to) > (6(t0)/C)"'?, let us define
1/p
t; = sup {t € [to.ty] : y(s) > (?) Vs € [to,t]} .

Note that hypothesigl@) implies thaty(¢) is decreasing ofty, t1]. Thus, @9) is obviously satisfied
if t1=1t7. 1ft1 <t;, thenwe have(t) < y(to) forallt € (to, 1] andy(t;) = (§(t1)/C)1/”, which

as we proved before obliges #4t) < (6(t)/C)1/” forall ¢ € [t1,t], and consequentlyt@) holds

again. H

According to Equation4b), T'(x,t) > w(z,t). Thus,
IT@) s,y = [wt)llLsa,s) Yt E [to, ty] (50)
and we can state the following lemma, which improves the uppend obtained in Equatiol).

Lemma 9 (Fine upper bound for  ||7°(¢)||15(4,5)) Assume that the hypotheses of Theordmld, and
let T be the unique global solution of Problefhl) derived from that theorem. Assume also that 0,
with v defined by Equatio(9). Then

1T (t)]|sca,By < OF(t) vt € [to,ty],

being

t 1/4
o0*(t) = min{||T0|L5(A_,B) —i—/t [6(s) — CBY(s)] ds, max{||T0|L5(A_,B), (&nde(f)) } }, (51)

where in turn

5(t) = | F(t) + c2h(t)||Ls(a, 5),
Smax(t) = t[f%%ét (s),

B(t) = |lw(t)|lLs(a,z), Withw defined by Equatio#1),

and
C =l (B-A4)%5.

PROOFE The result is a direct application of Lemr@aaking into account EquationdT) and 60)). B

Now the same arguments employed in Subsecti@show that the following theorem holds.

Theorem 8 (Fine upper bound for the solution of Problem (11)) Assume that the hypotheses of
Theoren¥ hold, and letl” be the unique global solution of Problgiiil) derived from that theorem. Assume
also thaty < 0, with v defined by Equatio(29). Then

w(t,z) <T(t,x) <w(t,z)+ ¢*(t, ) V(t, ) € [to, ts] x [4, B], (52)

wherew is defined by Equatio(1) and

¢ (t,x) = /tt {f(s, x) + cah(s, ) + coca K™ (6*(3))4} ds,

with K* and©* defined by Equation@0) and(51), respectively.
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Appendix A The Green function G and the function &

Following the reference?], one can compute the Green functi@rand the functiork associated with the
boundary value problengy.
Define

k* =2{(csct + 1)sinh [(B — A)/c3] + 2\/cses cosh [(B — A)\/c3]} .
The Green function is given by the following expressionsu@&tpns b63) and 64)):
IfA<s<zxz<B,

G(z,s) =

e L (0 Ve [(1 = Vases)e VP A

— (1+ Veges)eV(Bra=a=s)]

+(1 4 y/c3cs) [(1 + /Cacs)eV @B Azwts) e
— (1 — Jeses)e Vo (BA—a— s)”
fA<z<s<B,
G(z,s) = 2\/2_3]{* {(1 + \/¢3c5) [(1 + \/565)6\/5(37,4”75)
—(1- \/565)67\/5(]3*‘4*”*5)} 54
+(1 = V/Gses) [(1 = V/eges)e VB ATe=)
—(1+ \/—Cr)e\/_(B-ﬁ-A z— s)”
Notice thatG is symmetric, in the sense th@{(z, s) = G(s, ) for all (z, s) [A, B] x [A, B]. This
property evinces thaf is continuous on the diagonal segmént= { (x,x) : « € [A, B] }, and hence on

[A, B] x [A, B].

The reader can check that, forfixed in (A, B], the functionw(s) = G(z, s) satisfiesw’(s) > 0 for
all s € [A,z]. Hence, due to the symmetry Gf, one has, on one hand, th@tis nonnegative because
G(z,A) > 0 and, on the other hand, that the maximuntbbn the diagonal segmei? is equal to the
maximum ofG on[A, B] x [A, B] (that is to say, t§G||co(14,B]x[4,5]))- Moreover, it is easy to check that
G(A,A) = G(B, B).

By differentiating the functiog(x) = G(x, ), x € [A, B], we obtain

g/(x) = (1_7030%) {e\/a(BJrAsz) _ ef\/a(BJrA,QI)}
k* )

and, consequently, the following assertions hold:
o If c3c2 = 1, the maximum of7 on [A, B] x [A, B] is equal toG (z, z) for anyz € [A, B].

o If ¢3¢ < 1, the maximum ofG on [A, B] x [4, B] is equal toG(c, ¢), beinge = (A + B)/2 the
center of( A, BJ.

o If c3¢2 > 1, the maximum of7 on [A, B] x [A, B] is equal toG (A, A) or, equivalently, ta7 (B, B).

In Figures2 and3 we can observe the graphic of the Green function correspgridiparticular choices
of A, B, c3, andcs.
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Figure 2. Graphic of the Green function G when A = 0, B = 10, ¢3 = 0.1, and ¢; = 1. Note
that c3c? < 1.

We finish this section with the expression of the function
2
h(z) = P [sinh(y/e3(z — A)) + /cges cosh(y/es(x — A))] s
+ [sinh(y/c3(B — x)) + y/czcs cosh(y/c3(B — x))] la }.
Thus, for(¢, ) € [to, ] x [A, B], we have

h(t,z) = ki [sinh(v/G3(x — A)) + /G3es cosh(y/e3(x — A))] 5 (¢)

+ [sinh(y/c3(B — z)) + \/czcs cosh(y/c3(B — )] La(t) }.

w

Appendix B The first eigenpair {1, 1}

Operatorl: L2(A, B) — L2(A, B) defined by Equationi2) can also be defined, equivalently, as follows:
u = L(o) (we will use equivalently the notatiofio) is the unique solution of the boundary value problem

—u"+cgu=o on (A, B),
u(A) — esu’'(A) =0,
u(B) + esu/(B) = 0.
Since L is self-adjoint, all its eigenvalues are real. Also, for aegi eigenvalue, real eigenfunctions
exist inC*([A, B]) and the following definition is valid.

Definition 1 {u, ¢} € R x C([A, B]) is said to be an eigenpair df in case thatp #Z 0 and Ly = pe.
The scalarn. is called an eigenvalue af and the functiorp is called an eigenfunction af associated with
the eigenvalug.

We notice that) is not an eigenvalue of, becauseCy = 0 only wheny = 0. Thus,{u, ¢} €
R x C*([A, B]) is an eigenpair of if, and only if, u # 0, ¢ # 0 and

—" + e300 = A on (A, B),
@(A) —cs50'(A) =0, (55)
©(B) 4+ cs5¢'(B) = 0,
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Figure 3. Graphic of the Green function G when A = 0, B = 10, ¢3 = 0.1, and ¢; = 100. Note
that c3c? > 1.

with A = 1/p.
Since Problem§5) has only the trivial solutionp = 0 whencs — A > 0 (recall Equation ) and
adjacent lines), the eigenvaluges= 1/ must satisfyes — A < 0. That is to say,

L . 1
if 1 is an eigenvalue of, then0 < p < —. (56)
C3

On the other hand, ., ; } and{u;, ¢;} are eigenpairs of, then
i, 05) = (Lpisp;) = (i, Loj) = w3, 05),

which proves thaty;, ¢;) = 0 wheny; # p;; that is to say, self-adjointness implies that two eigenfun
tions associated with two distinct eigenvalues are orthagjo

Appendix B.1 Changingto [0, 7]

Letus take\ > c3. Looking for the simplest calculus, we perform a change afbde in order to transform
Problem B5) into the following one:

—" 4 Esh = N on(0,7),
¥(0) — &' (0) = 0, (57)
() + &9’ (m) =0,

where ) )
B—-A ~ B-A
%7 )\:/\%’ T

63 = C3

™ 7T

Given a solution) of (57), the following functiony is a solution of §5):

™

olx) = {m(x - A)} forz € [A, B,

and all the solutions o)) can be obtained in this way.

147



O. Lépez-Pouso and R. Mufioz-Sola

The solutions of the ODE-¢)” + &1 = ¢ are of the form
Y(x) = Ky sin(pz) + Ka cos(px),

with K, and K real constants and = +/ A — ¢s > 0. One can easily check that the boundary conditions
are satisfied if, and only if, constank§ and K> obey the following equations:

K2 =Cs pKla

(1 —ép ) (58)
Ko——=sin(pm) + 2K cos(pm) = 0.
Csp

If Ko =0,thenk; = 0andy = 0. If K3 # 0, the second equation iB§) is equivalent to

1— ~2.2
w sin(pm) + 2 cos(pmr) = 0. (59)
C5p

Thus, Problem%7) with A = & + p2, beingp > 0, has nonzero solutions if, and only if, Equati®)
holds.
Now note that:

e p € (0,00) such thatos(pr) = 0 solves Equation59) if, and only if, ésp = 1. In this circumstance

Yi(x) =K (sin <~i:1:> + cos (ix)) , ze|0,7], K € R,
Cs Cs

are all the solutions of Problers ) for A = é; + 1/é2. We can encounter this situation only when
¢s = 2/(1 + 2k*) for somek* € NU {0}.

e p € (0,00) such thatos(pr) # 0 solves Equation59) if, and only if,

tan(pm) = ~22§5p p € (0,00)\ {i} , (60)

)
cip® — 1 Cs

which has an unbounded denumerable set of solutions. Weauertesahis situation for any value
Cs € (0, OO)

Appendix B.2 Eigenpairs of L

According to the previous analysis, the eigenvalues of atpei’, in decreasing order, are exhaustively
described by:
1 (B — A)?

W — ieN, (61)

pi =

where); = &, + p?, and the sequend®; };cn C (0, 0) is as follows:

o If ¢5 € (0,00) \ {2/(1+2k): ke NU{0}}, {p:}ien is the set of solutions of Equatio®@) in
increasing order.

o If 5 = 2/(1 + 2k*) for somek* € N U {0}, then{p; };cn (x++1} is the set of solutions of Equa-
tion (60) in increasing order, angk« 1 = 1/2 + k*.

Since{p; }ien IS an increasing sequence that tends to infinity, the segueheigenvalues; }icn is
decreasing and converges to zero. Moreover, propg@ycan be obtained from Equatio6X).
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The eigenfunctions associated with the eigenvaluare given by

™

ik (z) = sz[(B y

(x A)], x € [A,B], K e R\ {0},
where
Vi k (z) = K[sin(p;iz) + ép; cos(piz)], z € [0,7].
The first or greatest eigenvalue can be computed by computipg as follows:
e If é&5 > 2, thenp, is the unique solution of Equatiof@ in (1/é5,1/2).
e If ¢5 = 2, thenp; = 1/2. Consequently,

4(B — A)?
deg(B — A)2 + 2’

M1 =

e If ¢5 € (0,2), thenp; is the unique solution of Equatiof@) in (1/2, min (1/é5,1)).

Whengés € (0,00) \ {2}, itis easy to implement a Newton-Raphson algorithm enguranvergence to
the solutionp;.

The first eigenfunctiorp; used in the paper, and mentioned in Theofeis any of the eigenfunctions
1,5 With K € (0, 00), as the results do not depend on the consfatiut o, must be positive. Clearly,
the positivity ofp; on[A, B] is equivalent to the positivity af, ; on [0, 7]

1,1(x) = sin(p1x) + ésp1 cos(prx), x € [0, 7).
The next proposition ends the proof of Theorgém
Proposition 1  The following assertions hold:
1. p1(z) >0 forall x € [A, B].
2. |1 Lllsre = .
PrROOF

1. We will show that); 1 (z) > 0 for all € [0, «]. This is immediate if5 > 2, since therp; < 1/2.
Let us suppose that, € (0,2), which impliesp; € (1/2,min(1/és,1)). Then it is clear that
Y1a(x) > 0forall z € [0,7/(2p1)]. To analyze the sign ofr/(2p1), 7], notice thaty , is
negative on that interval and that ;(7) > 0. Indeed, taking into account thabs(pi7) < 0
andtan(pim) = (2¢5p1)/(¢2pf — 1), one can see that; 1(7) > 0 is satisfied if, and only if,
(&2p? +1)/(E2p? — 1) < 0, which holds because< ép; < 1.

2. Recall that
H‘CHLzﬂLz = sup |‘EU||L2(A73).
c€L?(A,B)
llolliz a5 <1

One can easily check thijto; i (724 5y = (B — A)K?|[Yiallf2 /7 For giveni € N, let

us define the normalized eigenfunctigl’ = ¢, x-, being K* the unique in(0, co) such that
@i, x+ |L2a,5) = 1. Since{e] }ien is a Hilbert basis of.?(A, B) and the sequence of eigenvalues
is decreasing, we have, for anye L%(4, B),

o0 o0
”‘CUH%ﬂ(A,B) = Zﬂﬂ(@ <Pz ?< %Z| (o, <Pz = :U’%”U”%?(A,B)’
= i=1
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which in turn implies| £||12 12 < p.
On the other hand,

LN 120am) = DO 12l M) = 13,
=1

from where||£||p2 12 > 1. W

Appendix C  Why ~ < 0in the physically relevant case

First, we establish the relationship between the notatafrikis paper and those of referenc®, [which
contains the physically relevant system. See EquatioB3,(2.14), (3.27), and (3.28) of referencg {o
conclude that; = (4an?c)/(pcy), c2 = (2ma)/(pcy), cs = (aa)/(pZ), ca = (2aan?c)/(uZ ), and
cs = pg/aif we choosd 4 (t) = 214 4(t) andip(t) = 21_p(t).

Herea = a + o, andug = 1//3.

Take into account thabc, = c¢1c3 to write

v = cacapr — 1 = c1(cgpur — 1). (62)
Since Equationg1) implies

—*pi
72p? + 3aa(B — A)?’

c3pup — 1=

one derives from Equatio®®) thaty < 0.
By the way, one obtains at the same cost the bound

dano
|’Y| <c = )
pc

v

evincing that, in the range of applications, the order of nitagle ofy is small due to the presence in the
expression of; of the Stefan-Boltzmann constant= 5.6696 x 10~ (Sl unitsW/(m? K%)).
On the other hand, from the analysis developefippendix B one can see that

lim =0,
(B-A)too |

which provides us with the asymptotic behaviondior large space intervals.

Appendix D Conclusions

This scholarly article is closely associated to, and in fabas been motivated by, referencd, [where
system 1)—(5) was solved numerically without having a proof of existeacaniqueness of solution. 3]
the values of the constants i € {1,2, 3,4, 5}, were such that the critical parameteis negative, which
in virtue of Theoren ensures existence and uniqueness of global soldtian C* ([to, ¢s]; C°([4, B]))
under the following hypotheses:

1. Ty € C°([A, B]) and positive,
2. la,lp € C%([to, ts]), both nonnegative,

3. f € C%[to, tf] x [A, B]) and nonnegative.
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Continuity of data is quite reasonable in many contexthpalfjh it is easy to think of lacking continuity
models; an example is Test 3 of referenék [

Leaving apart the discussion about continuity, and cemgesur attention on the sign of the data func-
tions, we notice that the first two hypotheses are naturai fite physics, sincg; is the initial temperature
andl4 andlp are, up to a positive multiplicative constant, values ofttital intensity of radiation. The
third one, regarding, is somewhat more restrictive, since it allows for intefimaét sources (or no internal
heat supply at all), but it does not for internal heat sinka ttould be present, due for instance to some
inflow of cold gas or to endothermic chemical reactions tgkiface inside the domain.

Moreover, the solutiofi” is bounded from below and from above according to Equag@h (

When~ = 0 the problem has still a unique global solution under the saypetheses, and it is bounded
from below and from above according to EquatidB)(

In case thaty > 0, and under the same hypotheses, the problem has a uniglisdbgion bounded
from below according to Equatio26).

In all three cases)(< 0,y = 0 andy > 0) the lower bound is the same, and consequently the pogitivit
of the solution is guaranteed.

The reason why we cannot assure that the solution is globahwh- 0 is as follows: we have seen in
Equation 83) that the scalar product @f with the eigenfunctiorp; is bounded from below by a function
which blows up at certain finite tim& > ¢y, which in turn prevents a continuoiisfrom being defined up
to and beyond that barrier. Moreover, we have the additioiatmation thatt* tends toty as~ goes to
infinity.

We should also mention that the adjectigdsbal andlocal are always referred to the time domain
[t0,t7]. With respect to the spatial domdia, B], all the solutions which we have written about are global.
Although not explicitly said till now, it is evident that orean obtain, from the bounds fat, bounds
for the radiative heat flu¥’ by making use of the fact thdt = K (t, C4T4). Regarding its regularity, we
notice that, under the hypotheses of existence of this papiscontinuous in time and of clag¥ in space:

F € C([to, t7]; C([A, B]).

With the aim that the critical parametgiand the bounds of the solution can be computed in a practical
case with the minimum effort, we have included in the appegsgiihe relevant information abawt i, 11,
andy; .
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