Available on line at www.rac.es/racsam Mathematical Analysis

RACSAM 104 (1), 2010, 1-3. DOI:10.5052/RACSAM.2010.01

A remark on a theorem of Howard

Ignacio Monterde, Vicente Montesinos and Manuel Valdivia

Abstract We prove that Eberlein's theorem holds for the Mackey^{*} topology in the dual X^* of a Banach space. This improves a result of Howard. We prove, too, that in general the space X^* endowed with the Mackey^{*} topology is not angelic.

Una extensión de un teorema de Howard

Resumen. Probamos que el Teorema de Eberlein se verifica para la topología de Mackey en el dual X^* de un espacio de Banach X. Se extiende así un resultado de Howard. Probamos, también, que, en general, el espacio X^* con la topología de Mackey no es angélico.

A subset A of a topological space is called *(relatively) countably compact* if every sequence in A has a cluster point in A (a cluster point). It is called (relatively) sequentially compact if every sequence in A has a subsequence that converges to a point of A (that converges). The following result gives a kind of "Šmulyan type" theorem for the dual of a Banach space X endowed with the dual Mackey topology $\mu(X^*, X)$, i.e., the topology on X^* of the uniform convergence on the family of all absolutely convex and weakly compact subsets of X.

Theorem 1 (Howard [3]) Let X be a Banach space. If $A \subset X^*$ is $\mu(X^*, X)$ -relatively sequentially compact, then A is $\mu(X^*, X)$ -relatively compact. The converse does not hold true.

In this note we prove an strengthening of the previous result, an "Eberlein type" theorem for the same dual Mackey topology in X^* .

The notation used is standard, and we refer to [1] for all non-defined concepts. Let $\langle E, F \rangle$ be a dual pair. The topology on E of the pointwise convergence on all points in F is denoted w(E, F). If E is a locally convex space, E^* denotes its topological dual. As it is usual, the weak topology $w(X, X^*)$ of a Banach space X is denoted by w, and the weak* topology of the dual X^* by w^* . The *absolutely convex hull* (i.e., the convex and balanced hull) of a set A of a normed space is denoted $\Gamma(A)$. Given a disk B (i.e.,

Submitted by José Bonet

Received: October 29, 2009 Accepted: November 6, 2009

Keywords: Weak compactness, Eberlein-Šmulyan theorem, angelic spaces, Mackey topology

Mathematics Subject Classifications: Primary 46B50, Secondary: 46A04

^{© 2010} Real Academia de Ciencias, España

a bounded absolutely convex set) in a locally convex space E, the space E_B generated by B is the linear hull of B endowed with the Minkowski functional $\|\cdot\|_B$ of B. It is a normed space. If E_B is a Banach space, we say that B is a *Banach disk*.

The following is the proposed improvement of Howard's result.

Theorem 2 Let X be a Banach space. Then, every $\mu(X^*, X)$ -relatively countably compact subset of X^* is $\mu(X^*, X)$ -relatively compact.

PROOF. The space $(X^*, \mu(X^*, X))$ is complete. Hence, in order to see that a $\mu(X^*, X)$ -relatively countably compact subset M of X^* is $\mu(X^*, X)$ -relatively compact it is enough to show that M is $\mu(X^*, X)$ -precompact. Assume not. Then we can find a weakly compact absolutely convex subset K of X and a sequence (x_n^*) in M with no subsequence Cauchy for the topology of the uniform convergence on K. By the Davis-Figiel-Johnson-Pełczyński factorization theorem (see, e.g., [1, Theorem 11.17]) we may assume, without loss of generality, that K generates a reflexive Banach space X_K . The set M can be seen naturally as a subset of $(X_K)^*$. Let $T: X_K \to X$ be the canonical injection. The transposed mapping $T^*: X^* \to (X_K)^*$ is $\mu(X^*, X)$ - $\mu((X_K)^*, X_K)$ -continuous. Since X_K is reflexive, $T^*(M)$ is a relatively compact subset of the Banach space $(X_K)^*$. However, $\{T^*x_n^*\}$ has no Cauchy subsequence, a contradiction.

Let E be a Fréchet locally convex space, and let K be a weakly compact absolutely convex subset of E. Let $\{U_n\}_{n=1}^{\infty}$ be a fundamental sequence of closed absolutely convex neighborhoods of 0 in E. Put $C_n := 2^n K + U_n$ for $n \in \mathbb{N}$. Then each C_n is a closed absolutely convex subset of E; as C_n is absorbing, its Minkowski functional on E is a seminorm $\|\cdot\|_n$. Put $L := \ell_2((E, \|\cdot\|_1), (E, \|\cdot\|_2), ...)$ and equip Lwith the seminorm

$$||(x_n)|| := \left(\sum_{n=1}^{\infty} ||x_n||_n^2\right)^{1/2}, \quad \text{for } (x_n) \in L.$$

Put

$$C:=\{\,x\in E;\; \sum_{n=1}^\infty \|x\|_n^2\leq 1\,\}.$$

Then, obviously, $C \subset C_n$ for all $n \in \mathbb{N}$. Since, for each $n \in \mathbb{N}$ we have that $2^n K$ is a *w*-compact subset of E, it is clear that C is itself *w*-compact (and absolutely convex) in E. It is simple to prove that $K \subset C$.

Let $T: E_C \to L$ be defined by T(x) := (x, x, ...) for $x \in E$. Then T is an isometry into, when E_C is endowed with the norm defined by the Minkowski functional of C. Since T(C) is bounded, it follows that on T(C) the topologies $w(E_C, (E_C)^*)$ and $w(E, E^*)$ coincide. In particular, E_C is a reflexive Banach space and K is a w-compact subset of E_C .

Hence, with the same proof of Theorem 2, we have the following extension.

Theorem 3 Let *E* be a Fréchet locally convex space. Then, every $\mu(E^*, E)$ -relatively countably compact subset of E^* is $\mu(E^*, E)$ -relatively compact.

Let *E* be a locally convex space. We define a family \mathcal{K} of subsets of *E* in the following way: $K \in \mathcal{K}$ if and only if *K* is a weakly compact absolutely convex subset of *E* such that there exists a Banach disk *B* in *E* with $K \subset B$ and *K* is weakly compact in E_B . Let $\nu(E^*, E)$ be the topology on E^* of the uniform convergence on all elements of \mathcal{K} . Then, by using similar arguments to those in the proof of Theorems 2 and 3 we get the following result.

Theorem 4 Let E be a locally convex. If $(E^*, \nu(E^*, E))$ is locally complete and M is a $\nu(E^*, E)$ -relatively countably compact subset of E^* , then M is $\mu(E^*, E)$ -relatively compact.

Recall that a topological space (T, T) is called *angelic* if every relatively countably compact subset S is relatively compact and, moreover, every point in \overline{S} is the limit of a sequence in S. In angelic spaces, the classes of (relatively) countably compact, (relatively) sequentially compact and (relatively) compact sets all coincide (see, e.g., [2]).

In view of Theorem 2, it is natural to ask whether, for a Banach space X, the space $(X^*, \mu(X^*, X))$ is always angelic. This is not the case, as the following example shows:

Example 1 Let $X := \ell_1(\Gamma)$, where Γ is an uncountable set. Set

$$E := \bigcup_{N \in \mathcal{N}} \overline{N}^{w^*} \quad (\subset \ell_{\infty}(\Gamma)),$$

where \mathcal{N} is the family of all countable subsets of $c_0(\Gamma)$. E is a vector subspace of $X^* (= \ell_{\infty}(\Gamma))$. Let $S := E \cap B_{\ell_{\infty}(\Gamma)}$. We shall prove that, in $(X^*, \mu(X^*, X))$, the set S is sequentially compact but not compact (although it is, by Theorem 2, relatively compact), hence the space $(X^*, \mu(X^*, X))$ is not angelic (and, according to Remark 1, the topological space $(B_{X^*}, w(X^*, X))$ is not angelic either). Indeed, $\ell_1(\Gamma)$ has the Schur property, hence the class of w-compact and the class of $\|\cdot\|$ -compact subsets of $\ell_1(\Gamma)$ coincide. A simple consequence is that, on bounded subsets of $\ell_{\infty}(\Gamma)$, the $\mu(X^*, X)$ -topology coincides with the topology of the coordinatewise convergence (and hence with the w^* -topology). Now, every element in E, being in the w^* -closure of a countable subset of $c_0(\Gamma)$, has countable support, and so all elements in a sequence (x_n^*) in S have a common countable support. A diagonal argument gives a coordinate-wise convergent (hence $\mu(X^*, X)$ -convergent) subsequence, and its limit is still in S. It follows that S is $\mu(X^*, X)$ -sequentially compact. It is not $\mu(X^*, X)$ -closed, since its $\mu(X^*, X)$ -closure (i.e., its closure in the w^* -topology) is B_{X^*} .

Remark 1 A consequence of the so called "angelic lemma" (see, e.g., [2, 3.1]), is that, if X is a Banach space and $(B_{X^*}, w(X^*, X))$ is angelic, then $(B_{X^*}, \mu(X^*, X))$ is angelic, too, so the classes of $\mu(X^*, X)$ -(relatively) countably compact, $\mu(X^*, X)$ -(relatively) sequentially compact, and $\mu(X^*, X)$ -(relatively) compact subsets of X^* all coincide.

Acknowledgement. Supported in part by Proyecto MTM2008-03211 (V. Montesinos and M. Valdivia). Ayuda Movilidad GR001/2009/00165130 de la Generalitat Valenciana (España) (V. Montesinos). Ayuda Movilidad PR2009-0267 del Ministerio de Educación y Ciencia (España) (V. Montesinos).

References

- [1] FABIAN, M.; HABALA, P.; HÁJEK, P.; MONTESINOS, V.; PELANT, J. AND ZIZLER, V., (2002). Functional Analysis and Infinite Dimensional Geometry, CMS, 8, Springer-Verlag.
- [2] FLORET, K., (1980). Weakly compact sets, Lecture Notes in Math., Springer-Verlag, 801.
- [3] HOWARD, J., (1973). Mackey Compactness in Banach Spaces, Proc. Amer. Math. Soc., 37, 1, 108–110.
 DOI: 10.2307/2038717
- [4] KÖTHE, G., (1969). Topological Vector Spaces I, Springer-Verlag.

Ignacio Monterde	Vicente Montesinos	Manuel Valdivia
	Inst. de Matemática Pura y Aplicada,	Dep. de Análisis Matemático
	Universidad Politécnica de Valencia,	Universidad de Valencia,
	Camino de Vera, s/n	Avda. Doctor Moliner, 50
	46022 Valencia,	46100 Burjassot (Valencia),
Spain	Spain	Spain
nachomonterde@gmail.com	vmontesinos@mat.upv.es	