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On a general type of p-adic parabolic
equations

Un tipo general de ecuaciones parabdlicas p-adicas
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ABsTrRACT. In this paper we study the existence and uniqueness of the Cauchy
problem for a general type of p-adic parabolic pseudo-differential operators
constructed using the Taibleson operator. The results presented here consti-
tute an extension of some results obtained by Zuniga-Galindo and the author
[13].

Key words and phrases. Parabolic equations, Markov processes, p-adic numbers,
ultrametric diffusion.

2000 Mathematics Subject Classification. 35599, 47510, 35R60, 60J25.

REsUMEN. En este articulo se estudia la existencia y unicidad de soluciones del
problema de Cauchy asociado a un tipo general de ecuacion parabolica p-adica,
construida usando el operador de Taibleson. Los resultados presentados aqui
constituyen una extension de algunos de los resultados obtenidos por Zuniga-
Galindo y el autor en [13].

Palabras y frases clave. Ecuaciones parabolicas, procesos de Markov, nimeros
p-adicos, difusién ultramétrica.

1. Introduction

In recent years p-adic analysis has received a lot of attention due to its appli-
cations in mathematical physics, see e.g. [1], [2], [3], [4], [6], [7], [10], [12], [15]
and the references therein. In particular, stochastic models involving Markov
processes have appeared in several physical models describing complex systems
such as proteins and macromolecules.
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102 JOHN JAIME RODRIGUEZ-VEGA

In [13] Zuniga-Galindo and the author studied the following Cauchy prob-
lem:

ou(z,t) o n
o ta (D) @) = f@D.,  weQp te@T, )
u(z,0) = ¢(z),
where a > 0, a > 0 and D7 is the Taibleson operator of order o defined as
(DFu) (2) = Fe, (€]l Fooen) (2)
where [[¢]|, = max{[$1p, - - [€nlp}-

The existence and uniqueness of a solution for (1) was established when the
initial datum ¢ belongs to a class of increasing functions (see [13, Thm 1]).
Also, there it is shown that the fundamental solution is the transition density
of a Markov process with space state Q) (see [13, Thm. 2|). These results
continue Kochubei’s work on p-adic parabolic equations [9], [10, Sec. 4].

In this paper we considers the following initial value problem:

Ou(z,t)

o +ao(@,1) (Dfu) (2,) + Y ax(z, (D7 u) (@, )+

o . (3)
f(z,t), zeQy, te(0,T],
(

o(x).

here a > 1, 0 < a1 < ... < a, < «, the coefficients ag(z,t), ai(x,t),...,
an(z,t), b(x,t), are real functions and D:’i is the Taibleson operator of order .

+b(x, t)u(x,t)
u(z,0)

Denote by 9t (A > 0) the class of complex-valued locally constant functions
¢(x) on Qp, satisfying
(@) < € (1+]jall3)
We solve (3) in the class 01y for a suitable A (see Thm. 2 ahead) following
the ideas introduced by Kochubei in [9](see also [10, Sec. 4], [8]).

In the case n = 1, our main result, (see Thm. 2), agrees with Kochubei’s
results (see [9, Thm. 1], [10]).

A different generalization of the p-adic parabolic equations and its Markov
processes was given recently by Zuniga-Galindo in [16].

2. Preliminary results

Let @, be the field of the p-adic numbers. For z € Q,, let v(x) denote the
valuation of 2 normalized by the condition v(p) = 1, and |z|, = p~*(*) the
normalized absolute value. We extend the p-adic norm to Q) as follows:

[|z]lp = max{|x1|p, ..., |Talp}, forz=(z1,...,2,) € Qp.
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Let S (Q;}) denote the C-vector space of Schwartz-Bruhat functions over
Q- Its dual space S’ (Q;}) is the space of distribution over Q.

If p(x) € S (Qg), we define its exponent of local constancy as the smallest
integer [ > 0 with the property that for any z € Q)

pla+a’)=p), ifll2ll, <p™

For x, y in Q) we put z -y =" zy;.
Let ¥ denote an additive character of Q,, trivial on Z;, but no on p_lZp.
For p e § (@Z), we define its Fourier transform by

(Fe)(€) = / Y(—z - E)p(€) dz,
Qp

where d"x denotes the Haar measure of Q) normalized in such a way that Zj
has measure 1.

2.1. The taibleson operator

We set )
N - _ pa—n
F;(D )(Oé) = W, a;éO
This function is called the p-adic Gamma function. The function
=iz n
ko(z) = OIRS a e R\ A{0,n}, z€Qy,
Iy (@)

is called the multi-dimensional Riesz kernel. It determines a distribution on

S (Qp) as follows. If a # 0, n, and ¢ € S (Qp),

I—p™ 1—p@ _
(tala), @) = oo + 1= [ allg (o) d
L—pon T [

1-p _
_— i a—n X)) — O dn.’I]
+ /“qu 127" () — (0))

1 . pO{*ﬂ

Thus k, € S’ (QZ), for R\ {0,n}. In the case a = 0, by passing to the limit,
we obtain

(ko(@). ()} = lim (ko @), 0(a)) = 2(0),
i.e., ko(r) = & (), the Dirac delta function, and therefore k, € S'(Q}), for

It follows that, for a > 0,
1—p .
tha(@) o)) = T— o / ]l " ((x) = 9(0)) d"z. (4)
Qn
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Lemma 1. [14, Chap. III, Theorem 4.5] As elements of S'(Q}), (Fka) (2)
equals ||z, %, a # n.

Definition 1. The Taibleson pseudo-differential operator D, o > 0, is defined
as

(D7) () = F, (gl Fomew) - for o € S(Q).

As a consequence of the previous Lemma and (4), we get
(D7) (z) = (k—a * )

an/MM|a” @y el dy.  (5)

Let us remark that the right-hand side of (5) makes sense for a wider class of
functions, for example, for locally constant functions () satisfying

[lz[l, " (@) d"2 < oo
llellp>1

Definition 2. Denote by 9ty (A > 0) the class of complex-valued locally
constant functions ¢(x) on Qy, such that

o) < C (1+]z]lp) -

If a function ¢ depends also on a parameter t, we shall say that ¢ € 9Ty
uniformly with respect to ¢, if C' and the corresponding exponent of local cons-
tancy do not depend on t.

2.2. The parametrized equation

As in the Euclidean case, the first step is the study of the parametrized funda-
mental solution Z(x,t,y,6) of the Cauchy problem

ou(z,t) ta

o +ao(y,0) (Df) (1,0) =0, weQ, te O],

u(z,0) = p(z),

where y € Q) and ¢ > 0 are parameters. This equation was studied in the
recent paper (13| by Zaniga-Galindo and the author.

(6)

In this article we consider the following fundamental solution:

Z(x,t,y,0) = / (- e oMl gre,

n
Q@
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Lemma 2. The fundamental solution of (6) Z(x,t,y,0), has the following
properties

Z(x,t,y,0) < Ct (tl/””w”P)_a_n, (7)
07 —a—n
oz < ¢ (#1/a+ 1zl
G o) < € (p/eslet) ®)
(D7Z)(z,t,y,0)] < C (tl/aﬂlrllp)”‘", (9)

where the constants do not depend on y, 6.
Proof. These results where established in Lemmas 3 and 8 of [13]. o4

As an [13], we get the identities

Lemma 3.

[ 2ty oyae =1, (10)

Q

0z g —ao (Ol g

E(%f,yﬁ) = _GO(yue) ¢($ . €)||€||pe ot rd 57 (11)
Q
(D}2) (2.t.9.6) = [ (o Olle I dne, (12)
Q’n
/(D%Z)(a:, t,y,0)d"z = 0. (13)
Q@
3. Uniqueness of the solution

In this section we assume that the coefficients ay(z,t), & = 0,1,...,n are
non-negative bounded continuous functions, and that b(x,t) is a continuous
bounded function. Let 0 < v < aq (if a1(x,t) = -+ = an(z,t) = 0, we shall

assume that 0 < v < «a). The proof of the following Theorem is a simple
variation of the one given by Kochubei in [10, Thm 4.5] for the case n = 1.

Theorem 1. [10, Thm. 4.5] If u(z,t) is a solution of (3) with f(x,t) =0, and

such that w € M., uniformly with respect to t, and u(x,0) = 0, then u(x,t) =0
for any x € Q) and t € (0,T].
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4. Heat potentials

We now consider the heat potential

t
’UJ({E,t,T) = //Z(x—y,t—@,y,@)f(y,@)d"yd@,

TQ;‘

where 7 < t, f(z,t) is uniformly locally constant in x € Qp, continuous in
(z,t) € Qp x (0,T], and

(@, t)] < Ct=° (14 [[2]]}) ,

forsome 0 <p<l,and 0 < A< a.

Next we calculate the derivative with respect to ¢t and the action of the
Taibleson operator on this potentials. This can be achieved using the techniques
presented in [10, Sec. 4.5]. We formally summarize these facts for future
reference as follows

Lemma 4. With the above notations,

) S (e t,m) = (21) //at = 0,.0)(f(.6) — S, 0) d"y db
TQ"

t
+ [ 10 [ SZw—pi-0.p.0) g
T Q;L
i) If A\ < v < «, then

t

(D’}u)(ajath)://Z’Y(I_yat_ovyae)f(y59>dnyd97 A<FY<O"
T Q;L

iii) (Dgw)(z,t,7) = //Za(:c —y,t—0,y,0)(f(y.0) — f(z,0))d"ydo
T (Q)g

t
4 /f(x,f)) /(Za(a: = 0,9.0) — Za(z — y.t — 6,2,60)) d"y db.
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5. The Cauchy problem

In this section we construct a fundamental solution for the following Cauchy
problem

ou(z,t) - o
—5— *ao(z,t) (DFu) (,1) + Zak Y(DSFu) (z, )+
k=1 (14)
+b(x, thu(z,t) = f(z,t), x€Qy, te (0,7,
u(z,0) = ¢(z).
We shall assume that o > 1 and that 0 < a; < ... < a, < «, and
that the coefficients ag(x,t), ai(x,t), ..., an(x,t), b(x,t) belong (with respect

to z € Q) to the class Mo uniformly with respect to ¢ € [0, 77, and satisfy the
Holder condition in ¢, with an exponent v € (0, 1], uniformly with respect to
r € Q. We also assume the uniform parabolicity condition ag(z,t) > u > 0,
and that ap11 = a(l —v) > ay,.

As in [10, Sec. 4.5] we look for a fundamental solution of (14) of the form

t

Nt &r) = 2 -6t =n&n)+ [ [ 2o =nt—60.0)0.0,67) " .
T Q;}

Thus we formally require that

T
O (.1,€.7) + aola,  (DFT) (1,6, 7)+

+ 3 an(e ) (DFT) (2,1, 7) + b, O (2,1, €, 7) = 0.
k=1

By using formally the formulas given in the Lemma (4), we can see that
®(x,t,&,7) is a solution of the integral equation

O(x,t,&,7) = R(x,t,&,7) // (x,t,1,0)®(n,0,¢,7)d" ndb, (15)
T Q"

where

R(z,t,&,7) = (ap(&,7) —ao(z,t)) Zo(x — &t — 7,&,7)

n

> an(@,t) Zay (x — Et =7, €,7) = b(@, ) Z(x — &1 — 7,6, 7).

k=1

In order to solve the integral equation (15) we use the method of successive
approximations (see e.g. [5], [11]). We set

R1($,t,§,T) L= R(l’,t,g,T),
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108 JOHN JAIME RODRIGUEZ-VEGA

and

t

Royg1(z,t,8,7) 1 = //R(a:,t,n,@)Rm(n,H,{,T) d"ndf, m e N~ {0}.

TQ;‘

We claim that

= iRm(x t

m=1

is a solution of (15). In order to prove the convergence of the series we need
the followings two Lemmas, whose proof is a simple variation of those given by
Kochubei in [10, Sec. 4.5] for the case n = 1.

Lemma 5. [10, Eq 4.64] With the above notation,

n+1

|R(x,t,&,7 I<CZ Ytz =€),

where C' is a positive constant.

Lemma 6. [10, Lemma 4.6] Let

57 ta T - p/a - T)ig/a

T

( [ (= le—al,) "
(-

l/a n=ba n
+ln—gll,)  d ) du,

where 0 < 7 <t, 2,§ € Qp, b1,ba >0, p+b1 <, 0 +by <a. Then

J(z, & t,7) < C ((t -7)"B (1 - §, 1— ﬂ) ((t — Y 4o — 5Hp)*"*bl)

[e%

0 (e=np (1= D) (=0 e —ell) ).

where Kk = M , 0= M C is a positive constant depends

only on by, by and B(zl, 22) is the Archzmedean Beta function.
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Lemma 7. With the above notation,
Run(,1,€,7)] < CM™ (t — 7)m-Dv/a L/ nf((t — )M ||l =) "
AT S = T'(mv/a) P ’

k=1

where C' is a positive constant.

Proof. We use induction on m. The case m = 1 is clear. We assume the case
m as induction hypothesis, then by Lemmas (5), (6) and (7) we have

Ry, 1,67 |<//|Rx - | R, 0,6,7)| d" 6
T (Q)n
m n+1
—opm S \YY)) (P / (m-1)v/a
mv/a
k= l

[@=0r sz = all)
@
(O =)+l = &llp) ™" d"n do.

Thus it is sufficient to bound the integral

(¢ =)+l =nlly) ™"

t
I (z, &, t,7) :/(9 _ T)(m71)v/a><

Qp
(0 — )Y+ |In =€) """ d"nds.

By using Lemma (6),

Ik;l($7§7t7 T) S CB (a _ ak, mo + @ U) (t — T)_(U—W’U-‘rak—a)/a

« «

(=Y +llz—¢llp) "

OB (17 mu+a—uv— al> (t — 7)~(w-mvta-a)/a

«

(=Y +llz —¢llp) ™"
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We now recall that if €,0 > 0, then B(x + ¢,y + d) < B(x,y), thus

B(a—ak,m)\—i—a—)\) <B(A,m—)\>,

84 e} a o«
B<17m)\+a—)\—al) SB(A,m—)\>,
Q@ o o«
and
(t— 7)*(“*m“+ak*a)a <C'(t— T)(erl*l)va.
Therefore,

m muvu/a (P(U/a))m+l
R, &,7)| S CM (0 =)™/ s

n+1

D (=Y e —glly)

k=1

By using Stirling’s formula we verify the absolute convergence of
o0
I, t7§5 Z Rm I, t7§5
m=1

and also that

n+1

(2, t,6,7) < CY ((t=n)M +llz —&l,) """ (16)
k=1

We now come to the main result. This result is an n-dimensional version
of Theorem 4.6, p. 156 in [10]. Here we assume that 0 < A < «; if all
the coefficients aq(z,t),...,a,(x,t) vanish identically, then we may assume
0<\A<a.

Theorem 2. The Cauchy problem

w + ao(x,t) (DFu) (x,t) + Z ar(z,t) (D%ku) (2,1)
k=1
+b(x, t)u(x, t) = f(x,t), x€ QZ, te(0,7], (17)
U(I’ O) = @(I)a
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has a solution

t
’U,(:E,t) = F(:E,t,g,T)f(g,T) d"§dr + F(xvta€70)</)(§) d"¢&, (18)
/] /

which is continuous on Qp x [0, T, continuously differentiable in t, and belong-
ing to My uniformly with respect to t. The fundamental solution T'(x,t,&,7),
xz,€ € Q;}, 0<7<t<T, is then of the form

P(.’L’,t,g,T):Z(l’—g,t—T,g,T)‘i‘W(fIi,t,g,T), (19)
and finally

—a—n

Wiatgnl < c{(e-nm [e- 0+l - el

n+1 orn
sa-n X [e-nreri-an) " e

k=1

Proof. Denote by wui(x,t) and us(x,t) the first and the second summands in
the right hand side of (18). We find that

ul(x,t)z//Z(:E—§,t—T,§,T)f(§,T)d"§dT

0 Qn

¢
+//Z(;E—n,t—6‘,77,9)F(n,6‘)d"nd6‘,

0 Qn
and
uﬂ@ﬂz/Z@—&m&WMﬁff
Q3
t
+//Z(z —n,t—0,1,0)G(n,0)d"nde,
0 (Q);L
where

0
F(n.6) = / / B(1.0,¢,7)f (€. 7) d"¢ dr,

0 Qn

G(n.6) = / B(1,0,€,0)0(E) d".

mn
Q@
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Now by (16) and Proposition 2 in [13],

|F(77a9)| < (C, and |G(77,9)| < C’@*Ofn+1/0¢7

for all n € Q) and 0 € (0,7]. In addition the functions F' and G are uniformly
locally constant. Indeed, by the recursive definition of the function ® we see
that if IV is a local constancy exponent for all the functions a;, b, Z,, and Z,
and if || < ¢~, then

(b((E + 57t7§+ 67 T) = (b(‘rutaguT)u

whence
F(n+6,0)=F(n,0), G(n+9,0)=G(n,0).

Thus the potentials in the expressions for uy(z,t) and us(x,t) satisfy the
conditions under which the differentiation formulas of the Lemmas (4) were ob-
tained. By using these formulas one verifies after some simple transformations
that u(x,t) is a solution of the equation (17).

Let us show that u(x,t) — ¢(x) as t — 0. Due to (19) and (20), it is
sufficient to verify that us(z,t) — ¢(x) as t — 0. By virtue of (10) we have

(1) = / Z(x — £,,6.0) — Z(x — £.t,2,0)|pl€) "¢

&
+ [ 20 - 642,000 - o@)] € + 4(0)
@

Since as functions of their third argument Z and ¢ are locally constant, both
integrals in the previous expression are performed over the set

{1 llz—¢ll, >p N}
By applying (7) we see that both integrals tend to zero as t — 0. of

6. Markov processes
By using Theorems (1) and (2), we obtain a probabilistic interpretation for the
function I'(x,t, &, 7).

Theorem 3. The fundamental solution T'(x,t,&,T) is the transition density of
a bounded right-continuous strict Markov process without second kind disconti-
nuities. If b(x,t) = 0, then the process does not explode.

The proof uses the same argument given in [10, pg. 162].

Acknowledgments. The author wishes to thank to Professor Anatoly S.
Kochubei for a illuminating discussion about [9]. This work contains some of

Volumen 43, Numero 2, Ano 2009



P-ADIC PARABOLIC EQUATIONS 113

the results of the PhD dissertation of the author written under the guidance
of Professors Victor Albis (Universidad Nacional de Colombia, Bogota) and
W. A. Zuniga-Galindo (CINVESTAV-1.P.N., México). The author also wishes
to thank to Professor Zuniga-Galindo for suggesting the topic for the present
article.

References

[1] S. Albeverio and W. Karwoski, Diffusion in p-adic numbers, Gaussian
Random Fields (K. Ito and H. Hida, eds.), World Scientific, Singapore,
1991, pp. 86-99.

2] . A random walk on p-adics: the generator and its spectrum,

Stochastic Process. Appl. 53 (1994), 1-22.

[3] A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, and V. A. Osipov, p-adic
models of ultrametric diffusion constrained by hierarchical energy land-

scapes, J. Phys. A: Math. Gen. 35 (2002), 177-189.

[4] A. V. Avetisov, A. H. Bikulov, and V. A. Osipov, p—adic description of
characteristic relaxation in complex systems, J. Phys. A: Math. Gen. 36
(2003), 4239-4246.

[5] A. Friedman, Partial Differential Equations of the Parabolic Type,
Prentice-Hall, New Jersey, 1964.

[6] A. Yu. Khrennikov, p-adic Valued Distributions in Mathematical Physics,
Kluwer, Dordrecht, 1994.

7]

, Non-archimedean Analysis: Quantum Paradoxes, Dynamical Sys-
tems and Biological Models, Kluwer, Dordrecht, 1997.

[8] A. N. Kochubei, Parabolic pseudodifferential equations, hypersingular in-
tegrals, and Markov processes, Math. USSR Izvestiya 33 (1989), 233-259.

19]

, Parabolic equations over the field of p-adic numbers, Math. USSR
Izvestiya 39 (1992), 1263-1280.

[10] ,  Pseudodifferential Equations and Stochastics over mnon-

Archimedean Fields, Marcel Dekker, New York, 2001.

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and
Quasilinear Equations of Parabolic Type, American Mathematical Society,
Providence, 1968.

[12] R. Rammal and G. Toulouse, Ultrametricity for physicists, Rev. Modern
Physics 58 (1986), 765-778.

Revista Colombiana de Matematicas



114 JOHN JAIME RODRIGUEZ-VEGA

[13] J. J. Rodriguez-Vega and W. A. Zuniga-Galindo, Taibleson operators, p-
adic parabolic equations and ultrametric diffusion, Pac. Jour. Math. 237
(2008), 327-347.

[14] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University
Press, Princeton, 1975.

[15] V. S. Vladimirov, I. V. Volovich, and E. 1. Zelenov, p-adic Analysis and
Mathematical Physics, World Scientific Publishing, River Edge, NJ, 1994.

[16] W. A. Zuaniga-Galindo, Parabolic equations and Markov processes over
p—adic fields, Potential Analysis 28 (2008), 185-200.

(Recibido en mayo de 2008. Aceptado en abril de 2009)

DEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD NACIONAL DE COLOMBIA

APARTADO PostaL 360354, BOGOTA
e-mail: jjrodriguezv@unal.edu.co

Volumen 43, Numero 2, Ano 2009



