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1. University of Saint-Etienne, CREUSET, CNRS, 6, Rue Basse des Rives, 42023

Saint-Etienne cedex 02 (France)

2. Dpto. de Estadı́stica e I.O. III. Escuela Universitaria de Estadı́stica. Universidad

Complutense de Madrid. Av. Puerta de Hierro s/n. 28040, Madrid (Spain). email:

{egaran, conrado}@estad.ucm.es

Abstract

In this article, we generalize the position value, defined by Meessen (1988) for the class

of deterministic communication situations, to the class of generalized probabilistic com-

munication situations (Gómez et al. (2008)). We provide two characterizations of this new

allocation rule. Following in Slikker’s (2005a) footsteps, we characterize the probabilistic

position value using probabilistic versions of component efficiency and balanced link con-

tributions. Then we generalize the notion of link potential, defined by Slikker (2005b) for

the class of deterministic communication situations, to the class of generalized probabilistic

communication situations, and use it to characterize our allocation rule. Finally, we show

that these two characterizations are logically equivalent.
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1 Introduction

Various economic or social situations in which a group of agents cooperate to

achieve a common goal can be appropriately formalized via cooperative games

with transferable utility, or TU games. In such games, agents are referred as play-

ers. A TU game summarizes all the necessary information concerning the worth

produced by each coalition of players when they agree to cooperate. It is assumed

that any coalition can form. On the other hand, in many situations the collection of

possible coalitions is restricted by some social, hierarchical, economical, commu-

nicational or technical structures. In this article, we restrict ourselves to the special

case of communication situations, introduced by Myerson (1977), in which the

cooperation among players is limited because only some undirected and bilateral

relations are possible. Then, a communication situation consists of a TU game and

a network of possible relations modelled via a graph. The vertices in the graph cor-

respond to the players and the edges correspond to bilateral communication links.

In order to measure the impact of restrictions on communication on the gains from

cooperation, Myerson (1977) associates to each communication situation a new TU

game, the so-called graph-restricted game. The Myerson value of a communication

situation is the Shapley value of its graph-restricted game. Myerson (1977, 1980),

Borm et al. (1992) and Slikker and van den Nouweland (2001) provide various

characterizations of the Myerson value.
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ish Government, under the project MTM2008-06778-C02-02/MTM. Authors would like
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Meessen (1988) suggests to associate to each communication situation an alterna-

tive TU game that focuses on the role of links: the so-called link game, in which

the set of players is the set of links. This link game associates to every set of links

the worth produced by the grand coalition of players when the links in this set are

the only ones available. The position value, defined by Meessen (1988), shares the

Shapley value of each link in the link game equally between its two incident play-

ers. The position value of a player is the sum of the gains he collects in this way.

Borm et al. (1992) provide a characterizations of the position value that is valid

on the class of communication situations in which the graph is cycle-free, whereas

Slikker (2005a,b) obtains two new characterizations without the restrictions on the

graph existing in the previous one.

In this article, we are interested in situations where the network structure is not

given and fixed, i.e. several alternative networks can form and thus players are able

to form occasional alliances as well as long term relationships. In this setting, the

Myerson approach can be think of as a particular case in which only one network

is possible. There are two different ways to model such communication networks.

The first one (Calvo et al. (1999)) consists of considering the communication be-

tween two players as a Bernoulli trial. A probabilistic graph maps to each link

a probability of realization. These probabilities are considered as independent. A

probabilistic communication situation is made up of a TU game and a probabilistic

graph on the same set of players. Because of the independence assumption, this

approach fails to take into account those situations in which the probability of real-

ization of a set of links is correlated with the realization of another one. For exam-

ple consider the Airbus’ sub-contracting network. Airbus has a stable relationship

with firms that produce critical and complex sub-systems, as Thalès Avionics or

Latécoère. By way of contrast, for the production of non critical systems, Airbus
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frequently benchmark its suppliers according to a cost criterion. For instance, Air-

bus will sub-contract the production of joysticks to SKF with probability p and to

Ratier Figeac with probability 1 − p. These (simplified) relationships can be repre-

sented by Figure 1.

Ratier SKF

Airbus

Thalès

Latécoère

Ratier SKF

Airbus

Thalès

Latécoère

Fig. 1. Airbus’ sub-contracting network

As the realization of the link between Airbus and Ratier Figeac is correlated to the

realization of the link between Airbus and SKF, this situation cannot be appropri-

ately described using the independence hypothesis.

In the second approach (Gómez et al. (2008)), we dropped the independence as-

sumption and considered the so-called generalized probabilistic graphs, that assign

a probability, measuring the likelihood of each one of the potential networks. Re-

stricting the cooperation in a TU game with a generalized probabilistic graph we

obtained a generalized probabilistic communication situation. This approach is a

generalization of the previous one and extends the range of situations to which can

be applied.

The aim of this article is to carry on the work of extension of allocation rules

to (generalized) probabilistic communication situations initiated by Calvo et al.

(1999) and Gómez et al. (2008). Calvo et al. (1999) define and characterize a natural

extension of the Myerson value in terms of component efficiency, fairness and bal-

anced contributions on the class of probabilistic communication situations. Gómez

et al. (2008) extend these results to the class of generalized probabilistic communi-

cation situations, and describe some properties of the graph-restricted game.
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In this article, we extend the definition of the position value to the class of gener-

alized probabilistic communication situations and provide two characterizations of

this new allocation rule. Following in Slikker’s (2005a) footsteps, we characterize

the probabilistic position value using probabilistic versions of component efficiency

and balanced link contributions.

Slikker (2005b) also characterizes the position value using a link potential for com-

munication situations that extends the potential for TU games of Hart and Mas-

Colell (1989) in a natural way. This link potential focuses on the marginal contri-

butions of a player’s link. We will extend too this characterization to the class of

generalized probabilistic communication situations.

As Thomson (2001) argues, analysing the logical relations between the axioms

permits to highlight their relative power. We show that the probabilistic link poten-

tial is equivalent to the probabilistic balanced link contributions property. Ortmann

(1998) obtains a similar result for TU games.

This article is organized as follows. In Section 2, we introduce notations and pre-

liminaries. Section 3 is devoted to the study of the generalized probabilistic graphs

and its subgraphs. The definition of the probabilistic position value can be found in

Section 4. In section 5, we present two characterizations of the defined value ex-

tending the ones existing for the deterministic case. And finally, the logical relation

between these two characterizations is given in Section 6.

2 Preliminaries

A game in characteristic function form (a TU game or a coalitional game) is a pair

(N, v), where N = {1, 2, . . . , n} is a finite set of players and v (the characteristic
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function) is a real map defined on 2N , the set of all subsets (coalitions) of N, satis-

fying v(∅) = 0. For each S ⊂ N, v(S ) represents the value produced by S when its

players agree to cooperate. When there is no ambiguity with respect to the set of

players N, we identify the game (N, v) with its characteristic function v. For each

S ⊂ N, the cardinal of S is denoted by s. The 2n − 1 dimensional vector space of

all games with players set N is denoted by GN . A game v in GN is zero-normalized

if v({i}) = 0 for all i ∈ N. Let GN
0 denote the subclass of GN of zero-normalized

games.

Shapley (1953) introduces a point solution for the class of cooperative games,

widely used in the literature. For each v ∈ GN , the Shapley value of player i ∈ N is

a convex linear combination of his marginal contributions:

S hi(N, v) =
∑

S⊂N, i<S

s!(n − 1 − s)!
n!

[v(S ∪ {i}) − v(S )] .

This solution is a linear map from GN on Rn, and thus it can be computed using the

so-called unanimity games. Given a coalition S ⊂ N, S , ∅, the unanimity game

uS is defined by uS (T ) = 1 if S ⊂ T and uS (T ) = 0 otherwise. The collection of

games {uS }∅,S⊂N is a basis of GN , and then, for v ∈ GN , it holds that:

v =
∑
∅,S⊂N

∆v(S )uS .

For each ∅ , S ⊂ N, ∆v(S ) is known as the Harsanyi dividend (Harsanyi (1959))

of the coalition S and can be obtained from:

∆v(S ) =
∑
T⊂S

(−1)s−tv(T ).

It is easy to see that S hi(uS ) = 1/s, if i ∈ S and 0 otherwise. As a consequence, for

all v ∈ GN ,

S hi(N, v) =
∑

S⊂N, i∈S

∆v(S )
s

.
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To formalize social or economic network, we use a graph (N, γ), where N =

{1, 2, . . . , n} is the finite set of nodes (actors) and γ a collection of links (edges

or ties). A link is an unordered pair {i, j}, such that i , j and i, j ∈ N. A graph

(N, δ) is a subgraph of (N, γ) if δ ⊂ γ. When there is no ambiguity with respect

to N, we refer to (N, γ) as γ. The complete graph with nodes set N is given by

KN = {{i, j} | i , j and i, j ∈ N}. Denote by 2KN the class of all networks with

nodes set N. Each graph (N, γ) is both an element of 2KN and a subgraph of KN .

Two nodes i and j are directly connected in (N, γ) if {i, j} ∈ γ. If i and j are not

directly connected in (N, γ) but there exists a sequence (i1 = i, i2, . . . , ik = j) such

that {ih, ih+1} ∈ γ for h = 1, . . . , k− 1, then i and j are connected in (N, γ). A graph

(N, γ) is connected if any two nodes i, j ∈ N are connected. A subset S of N is

connected in (N, γ) if the partial graph (S , γ|S ) is connected, where γ|S is the set of

links of γ of which both incident nodes are in S .

Given a graph (N, γ), the notion of connectivity induces a partition of N in con-

nected components. A connected component is a maximal connected subset. Two

distinct nodes i and j are in the same connected component if and only if they are

connected. Let N/γ denote the set of all connected components of N in γ and, more

generally, for each S ⊂ N, S/γ is the set of all connected components in the partial

graph (S , γ|S ). If the connected component to which node i belongs is a singleton,

we say that i is an isolated node. Obviously, γ is connected if and only if |N/γ| = 1.

Finally, Li(N, γ) = {l ∈ γ|i ∈ l} denotes the set of links in γ incident on i and

γ−i = γ\Li(N, γ) is the subgraph of γ obtained by removing links in Li(N, γ). When

there is no ambiguity with respect to N we write Li(γ) instead of Li(N, γ).

A communication situation is a triplet (N, v, γ), where v is a game in GN and γ a

graph in 2KN . In a communication situation, the nodes of the graph are the players
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of N. The only feasible coalitions are formed by players connected in the graph,

i.e. the graph introduces the available channels of communication among players.

An allocation rule for communication situations is a function Ψ : C N → Rn, where

C N is the set of communication situations with players set N. The real number

Ψi(N, v, γ) is the payoff of player i in the game v when the communication possibil-

ities are restricted by the graph γ. Two well known allocation rules for communica-

tion situations are the Myerson value and the position value. Given (N, v, γ) ∈ C N ,

Myerson (1977) introduces the graph-restricted game (N, vγ), of which character-

istic function vγ is defined by:

vγ(S ) =
∑

T∈S/γ

v(T ), S ∈ 2N ,

vγ(S ) representing the value produced by S when the communication is restricted

by γ. The Myerson value, µ, is the Shapley value of this graph-restricted game.

Myerson (1977) characterizes this allocation rule in terms of two appealing proper-

ties: component efficiency and fairness. Component efficiency states that the pay-

offs of the players of a component add up to the worth of this component. The

fairness property establishes that the deletion of the link {i, j} changes the payoffs

of i and j by the same amount. Then Myerson (1980) provides an alternative char-

acterization using component efficiency and the balanced contributions property.

This property states that the payoff difference player i experiences if all the links

incident to player j are deleted is equal to the payoff difference player j experiences

if all the links incident to player i are deleted.

Meessen (1988) and Borm et al. (1992) introduce an alternative associated game

for communication situations. Given a communication situation (N, v, γ) ∈ C N
0 ,

where C N
0 is the subset of C N of the communication situations in which the game
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is zero-normalized, the link game (γ, rv
γ) is defined by:

rv
γ(ξ) =

∑
T∈N/ξ

v(T ), ξ ⊂ γ.

Then, they define the position value, π, as the allocation rule on C N
0 that equally al-

locates the Shapley value of each link in the previous game between its two incident

nodes, i.e.:

πi(N, v, γ) =
1
2

∑
l∈Li(N, γ)

S hl(γ, rv
γ).

Borm et al. (1992) provide a characterization of the position value that is valid

on the class of communication situations such that the game is zero-normalized

and the graph is cycle-free. Slikker (2005a) characterizes this allocation rule using

component efficiency and the balanced link contributions property. In the same

spirit as Myerson’s balanced contributions, the balanced link contributions property

states that the payoff difference player i experiences when player j sequentially

delete all his links is equal to the payoff difference player j experiences when player

i sequentially delete all his links. Slikker (2005b) provides characterizations of the

Myeron value and the position value on the class of reward games using potentials.

These characterizations are in the same spirit as the corresponding one of Hart and

Mas-Colell (1989) for the Shapley value.

Hamiache (1999) introduces another allocation rule that satisfies five specific prop-

erties. This allocation rule is not related with our one.

Calvo et al. (1999) extend the model of Myerson by restricting the cooperation in

a probabilistic way. They define a probabilistic graph as a pair (N, p̂), where p̂ is

a function that assigns to each link {i, j} ∈ KN its probability of realization. They

assumed the independence of these probabilities and characterized the Myerson

value for probabilistic communication situations (N, v, p̂) using the extension of
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component efficiency, fairness and balanced contributions properties to this new

setting.

Gómez et al. (2008) give another step in this direction considering a probability

distribution defined on the set of all possible communication graphs 2KN . For each

γ ∈ 2KN , p(γ) is the probability of realization of γ. The pair (N, p) is referred as a

generalized probabilistic graph. A generalized probabilistic communication situa-

tion is a triplet (N, v, p) where v is a cooperative game and (N, p) is a generalized

probabilistic graph. The class of probabilistic communication situations with player

set N is denoted by G N . Given (N, v, p) ∈ G N , Gómez et al. (2008) define and study

the properties of the induced or restricted game (N, vp), where, for each S ⊂ N,

vp(S ) =
∑
γ∈2KN

p(γ)vγ(S )

is the expected value of coalition S in this probabilistic framework. They define

the generalized probabilistic Myerson value, µ(N, v, p), as the Shapley value of

the game vp, and they characterize it using probabilistic extensions of component

efficiency, fairness and balanced contributions.

3 Generalized probabilistic graphs

As previously said, a generalized probabilistic graph is a pair (N, p) where p is an

arbitrary probability function defined over 2KN . Obviously, p must satisfy p(γ) ≥ 0

for all γ ∈ 2KN and
∑
γ∈2KN p(γ) = 1. Denote by Sp the support of graph (N, p), that

is, the set of graphs γ ∈ 2KN such that p(γ) > 0, and let γp = ∪γ∈Spγ. The set of all

generalized probabilistic graphs with nodes set N is denoted by PN . When there

is no ambiguity with respect to the set N, we sometimes identify (N, p) with the

probability function p.
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The notion of connectivity can be extended to generalized probabilistic graphs in

the following way: two nodes i and j in N are directly connected in (N, p) when

there exists γ ∈ Sp such that {i, j} ∈ γ. Two nodes i and j are connected in (N, p) if

there is a sequence of nodes (i1 = i, i2, . . . , ik = j) such that ih and ih+1 are directly

connected in (N, p) for all h = 1, 2, . . . , k−1. This notion of connectivity in (N, p)

induces a partition of N in probabilistic connected components. A probabilistic

connected component is a maximal connected set. Denote by N/p the set of all

connected components in (N, p). Note that N/p = N/γp. Let us observe that two

nodes i and j can be in the same connected component of N/p even if there is no

γ ∈ Sp such that i and j are connected in γ.

Each generalized probabilistic graph (N, p) induces 2(n
2) generalized probabilistic

subgraphs (N, pξ) ∈PN , one for each ξ ∈ 2KN , where:

pξ(γ) =



∑
δ⊂KN\ξ

p(γ ∪ δ) =
∑
δ⊂γp\ξ

p(γ ∪ δ) if γ ⊂ ξ

0 otherwise.

If (N, pξ) is a generalized probabilistic subgraph of (N, p), we note (N, pξ)⊂̃(N, p).

The interpretation of (N, pξ) is the following: only deterministic subgraphs γ of ξ

have a strictly positive probability of realization. The probability pξ(γ) is the sum

of the probabilities that p gives to those graphs in 2KN having in common with ξ the

links in γ, i.e.:

pξ(γ) =



∑
η∈2KN , η∩ξ=γ

p(η) if γ ⊂ ξ

0, otherwise.

The following proposition provides the condition under which two generalized

probabilistic subgraphs of (N, p) ∈ PN coincide. This allows to identify the sub-
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graphs that are different.

Proposition 3.1 For each (N, p) ∈ PN and each pair (N, pξ), (N, pξ′)⊂̃(N, p), it

holds that pξ = pξ′ if and only if ξ ∩ γp = ξ′ ∩ γp.

Proof : Suppose that pξ = pξ′ and ξ∩γp , ξ
′∩γp. Then there exists l ∈ ξ∩γp such

that l < ξ′, or l ∈ ξ′ ∩ γp such that l < ξ. Without loss of generality, let us consider

the former possibility. We have

0 =
∑
γ⊂ξ\{l}

pξ′(γ ∪ {l}) =
∑
γ⊂ξ\{l}

pξ(γ ∪ {l}),

where the first equality follows since, for any γ ⊂ ξ \ {l}, ξ′ 2 γ∪ {l} and the second

one since pξ = pξ′ . As

∑
γ⊂ξ\{l}

pξ(γ ∪ {l}) =
∑
γ⊂ξ\{l}

∑
δ⊂γp\ξ

p(γ ∪ {l} ∪ δ) =
∑

η⊂γp\{l}

p(η ∪ {l}),

we can conclude that p(η ∪ {l}) = 0 for all η ⊂ γp \ {l}. Then l < γp, which is a

contradiction.

Reciprocally, to prove that ξ ∩ γp = ξ′ ∩ γp implies pξ = pξ′ , let us show that for

each ξ ⊂ KN , pξ = pξ∩γp . For any γ ⊂ ξ ∩ γp,

pξ∩γp(γ) =
∑

δ⊂KN\(ξ∩γp)

p(γ ∪ δ) =
∑

δ⊂(KN\ξ)∪(KN\γp)

p(γ ∪ δ) =
∑

δ⊂KN\ξ

p(γ ∪ δ) = pξ(γ)

where the third equality follows since, for each δ such that δ ∩ (KN \ γp) , ∅,

p(γ ∪ δ) = 0. Moreover, if γ 1 ξ ∩ γp, then pξ∩γp(γ) = pξ(γ) = 0, which completes

the proof. �

As a direct consequence of previous proposition, we can restrict the family of gen-

eralized probabilistic subgraphs of (N, p) ∈PN to the set {(N, pξ)}ξ⊂γp , that we de-

note by 2(N, p). In particular, note that (N, pKN ) coincides with (N, p) and (N, pγp).

Let us extend the standard notation for the deterministic case and denote by (N, p−ξ)
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(or p−ξ when there is no ambiguity on the nodes set N) the probabilistic subgraph

(N, pγp\ξ), ξ ⊆ γp. In the special case ξ = {l}, we will simplify the notation using

p−l instead of p−{l}. Moreover, for all C ⊂ N, we will note pC = pγp |C
.

Proposition 3.2 For each (N, p) ∈ PN and ξ, ξ′ ⊂ γp such that ξ ⊂ ξ′, it holds

that (N, pξ)⊂̃(N, pξ′).

Proof : If γ ⊂ ξ,

pξ(γ) =
∑
δ⊂γp\ξ

p(γ ∪ δ) =
∑
α⊂ξ′\ξ

∑
η⊂γp\ξ′

p(γ ∪ α ∪ η)

=
∑
α⊂ξ′\ξ

pξ′(γ ∪ α) = (pξ′)ξ(γ) (1)

where the fourth equality in (1) follows since γpξ′ = ξ′. �

Thus we can define an inclusion relation, noted ⊂̃, in 2(N, p), in the following way:

for ξ, ξ′ ⊂ γp, (N, pξ)⊂̃(N, pξ′) if and only if ξ ⊂ ξ′.

From this inclusion relation, for each (N, p) ∈ PN , the set 2(N, p) can be equipped

with a Boolean algebra, (2(N, p), ∪̃, ∩̃). The union of two generalized probabilistic

subgraphs (N, pξ) and (N, pξ′) of a given (N, p), denoted by (N, pξ)∪̃(N, pξ′), is

the minimal probabilistic subgraph of (N, p) containing (in the sense of ⊂̃) the

probabilistic subgraphs (N, pξ) and (N, pξ′), and thus it is equal to (N, pξ∪ξ′).

In the same way, for all (N, pξ), (N, pξ′)⊂̃(N, p), let us define (N, pξ)∩̃(N, pξ′) =

(N, pξ∩ξ′).

As a consequence of the previous definitions, each (N, pξ) ∈ 2(N, p) can be written

as (N, pξ) = ∪̃l∈ξ(N, p{l}) and thus, every probabilistic subgraph is the union of its

probabilistic links. In particular, (N, p) = ∪̃l∈γp(N, p{l}).
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The following result is straightforward.

Proposition 3.3 For each (N, p) ∈ PN , (2(N, p), ∪̃, ∩̃) and (2γp ,∪, ∩) are isomor-

phic algebras.

4 The probabilistic position value

In order to extend the deterministic position value to this new probabilistic setting,

we first need to define the corresponding (probabilistic) link game. To this aim, the

first question that comes to mind is: who are the players, or the coalitions, in this

case? Given (N, v, p) ∈ G N
0 , the set of probabilistic communication situations with

a zero-normalized game, the most natural approach is, in our opinion, to consider

as individual players the probabilistic links pl, l ∈ γp and thus, as coalitions, the

probabilistic subgraphs pξ ∈ 2(N, p). Obviously, another possible approach is to still

consider the links of a particular deterministic graph (the obvious candidate being

γp) as the players in the probabilistic link game. Fortunately, Proposition 3.3 allows

to establish that these two approaches converge if we define properly such games.

Recall that in the deterministic case, given a communication situation (N, v, γ) ∈

C N
0 , the associated link game (γ, rv

γ) is defined by:

rv
γ(ξ) =

∑
T∈N/ξ

v(T ) = vξ(N), ξ ∈ 2γ,

where (N, vξ) is the graph-restricted game (Myerson game) associated to the com-

munication situation (N, v, ξ).

Therefore, using an obvious parallelism, for each (N, v, p) ∈ G N
0 , we can define the

probabilistic link game (p, rv
p) as follows:

rv
p(pξ) = vpξ(N), pξ ∈ 2(N, p),
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where (N, vpξ) is the probabilistic Myerson game associated to the probabilistic

communication situation (N, v, pξ). Moreover,

vpξ(N) =
∑
γ⊂ξ

pξ(γ)vγ(N) =
∑
γ⊂ξ

pξ(γ)rv
ξ(γ),

and thus, the defined probabilistic link game (p, rv
p) can be identified with a (deter-

ministic) “link game” (γp, r̂v
p) of which characteristic function is given by:

r̂v
p(ξ) =

∑
γ⊂ξ

pξ(γ)rv
ξ(γ), ξ ⊂ γp.

This is the sense in which we said that this two approaches converge. Nevertheless,

we will frequently avoid this identification in order to eliminate misleading effects

and thus the probabilistic link game associated to the (probabilistic) communication

situation (N, v, p) will be (p, rv
p).

The following proposition states that the probabilistic link game is component ad-

ditive.

Proposition 4.1 Given (N, v, p) ∈ G N
0 and pξ⊂̃p, we have

rv
p(pξ) =

∑
C∈N/ξ

rv
p(pξ|C ).

Proof : For each pξ⊂̃p, we have:

rv
p(pξ) =

∑
γ⊂ξ

pξ(γ)rv
ξ(γ) =

∑
γ⊂ξ

pξ(γ)vγ(N) =
∑
γ⊂ξ

pξ(γ)
∑

C∈N/ξ

vγ|C (C)

=
∑

C∈N/ξ

∑
γ⊂ξ

pξ(γ)vγ|C (C) =
∑

C∈N/ξ

∑
η⊂ξ|C

∑
δ⊂(ξ\ξ|C )

pξ(η ∪ δ)

 vη(C)

=
∑

C∈N/ξ

∑
η⊂ξ|C

pξ|C (η)vη(C) =
∑

C∈N/ξ

rv
pξ|C

(pξ|C ) =
∑

C∈N/ξ

rv
p(pξ|C ).

�

The next result states that the defined probabilistic link game can be identified
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with a convex linear combination of the associated link games to certain particular

(deterministic) communication situations: the corresponding ones to the graphs in

the support of the probabilistic graph (N, p). This identification is based on the fact

that, for each (N, p) ∈ PN , the linear maps 1 gp : GN
0 → Gp and ĝp : GN

0 → Gγp ,

respectively defined by gp(v) = rv
p and ĝp(v) = r̂v

p, induce, in a natural manner, a

linear isomorphism between the respective image sets.

Proposition 4.2 For all (N, v, p) ∈ G N
0 , it holds that:

r̂v
p =

∑
γ∈Sp

p(γ) rv
γp
|γ.

Proof : For each ξ ⊂ γp, we have:

∑
γ∈Sp

p(γ) rv
γp
|γ(ξ) =

∑
γ⊂γp

p(γ)rv
γp

(ξ ∩ γ) =
∑
δ⊂ξ

 ∑
γ⊂γp, ξ∩γ=δ

p(γ)

 rv
γp

(δ)

=
∑
δ⊂ξ

pξ(δ)rv
γp

(δ) =
∑
δ⊂ξ

pξ(δ)rv
ξ(δ) = r̂v

p(ξ)

which completes the proof. �

Next, using the introduced probabilistic link game, we can define, in a parallel way

to the deterministic case, an alternative allocation rule for generalized probabilistic

communication situations, that we will call the probabilistic position value.

Definition 4.1 Given (N, v, p) ∈ G N
0 , the probabilistic position value for player i

is defined by:

πi(N, v, p) =
∑

pl∈Li(p)

1
2

S hpl(p, rv
p)

Li(p) being the set of probabilistic links {pl⊂̃p | l ∈ Li(γp)}.

1 In a natural way, we denote by Gp and Gγp the vector linear spaces of games with players

sets p and γp respectively.
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The following proposition states that the probabilistic position value can be ob-

tained as a convex linear combination of the (deterministic) position values of the

appropriated (deterministic) communication situations.

Proposition 4.3 For each (N, v, p) ∈ G N
0 , it holds that

π(N, v, p) =
∑
γ∈Sp

p(γ)π(N, v, γ).

Proof : As the aforementioned isomorphism permits to identify games rv
p and r̂v

p,

we have, for each l ∈ γp:

S hpl(p, rv
p) = S hl(γp, r̂v

p)

and thus, for each i ∈ N:

πi(N, v, p) =
∑

pl∈Li(p)

1
2

S hpl(p, rv
p) =

∑
l∈Li(γp)

1
2

S hl(γp, r̂v
p)

=
∑

l∈Li(γp)

1
2

∑
γ∈Sp

p(γ) S hl (γp, rv
γp
|γ) =

∑
l∈Li(γ)

1
2

∑
γ∈Sp

p(γ) S hl (γ, rv
γ)

=
∑
γ∈Sp

p(γ)
∑

l∈Li(γ)

1
2

S hl(γ, rv
γ) =

∑
γ∈Sp

p(γ)πi(N, v, γ),

where the third equality follows by the linearity of the Shapley value and Proposi-

tion 4.2, and the fourth since, for all l ∈ γp \ γ, l is a dummy player in the game

(γp, rv
γp
|γ), and, for each l ∈ γ, S hl(γp, rv

γp
|γ) = S hl(γ, rv

γ). �

5 Characterizations of the probabilistic position value

In this section we present two characterizations of the probabilistic position value

which extend the ones existing for the deterministic case. The deterministic position

value π : C N
0 → Rn is characterized by Slikker (2005a) as the unique allocation
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rule on C N
0 satisfying:

i) component efficiency, i.e: for each C ∈ N/γ,
∑

i∈C πi(N v, γ) = v(C), and

ii) balanced link contributions, i.e.: for i, j ∈ N,

∑
l∈L j(γ)

[πi(N, v, γ) − πi(N, v, γ \ {l})] =
∑

l∈Li(γ)

[π j(N, v, γ) − π j(N, v, γ \ {l})].

The following definitions extend these two properties to the probabilistic case.

Definition 5.1 An allocation rule Ψ : G N
0 → Rn satisfies component efficiency if,

for each (N, v, p) ∈ G N
0 and each C ∈ N/p,

∑
i∈C Ψi(N, v, p) = vp(C) holds.

Definition 5.2 An allocation rule Ψ : G N
0 → Rn satisfies the balanced probabilistic

link contributions property if, for each (N, v, p) ∈ G N
0 and each i, j ∈ N,

∑
pl∈Li(p)

[
π j(N, v, p) − π j(N, v, p−l)

]
=

∑
pl∈L j(p)

[
πi(N, v, p) − πi(N, v, p−l)

]
.

In the next three propositions, it is proved that the defined probabilistic position

value is characterized by these two properties.

Proposition 5.1 The probabilistic position value satisfies component efficiency.

Proof : Let (N, v, p) ∈ G N
0 and C ∈ N/p. Then:

∑
i∈C

πi(N, v, p) =
∑
i∈C

∑
pl∈Li(p)

1
2

S hpl(p, rv
p) =

∑
i∈C

∑
l∈Li(γp)

1
2

S hl(γp, r̂v
p). (2)

The last term in (2) coincides with:

∑
l∈γp |C

S hl(γp |C
, r̂v

pC
) = r̂v

pC
(γp |C

) = vpC (C) = vp(C).

�

Proposition 5.2 The probabilistic position value satisfies the balanced probabilis-
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tic link contributions property.

Proof : Given (N, v, p) ∈ G N
0 and i, j ∈ N,

∑
pl∈Li(p)

[
π j(N, v, p) − π j(N, v, p−l)

]
=

∑
l∈Li(γp)

∑
γ∈Sp

p(γ)π j(N, v, γ) −
∑
γ∈Sp−l

p−l(γ)π j(N, v, γ)


=

∑
l∈Li(γp)

∑
γ⊂γp

p(γ)π j(N, v, γ) −
∑

γ⊂γp\{l}

[p(γ ∪ {l}) + p(γ)]π j(N, v, γ)


=

∑
l∈Li(γp)

 ∑
δ⊂γp\{l}

p(δ ∪ {l})π j(N, v, δ ∪ {l}) −
∑

δ⊂γp\{l}

p(δ ∪ {l})π j(N, v, δ)


=

∑
l∈Li(γp)

∑
γ⊂γp

p(γ)
[
π j(N, v, γ) − π j(N, v, γ \ {l})

]
=

∑
γ⊂γp

p(γ)
∑

l∈Li(γp)

[
π j(N, v, γ) − π j(N, v, γ \ {l})

]
=

∑
γ⊂γp

p(γ)
∑

l∈L j(γp)

[
πi(N, v, γ) − πi(N, v, γ \ {l})

]

where the last equality follows since the deterministic position value satisfies bal-

anced link contributions. This last term coincides with

∑
pl∈L j(p)

[
πi(N, v, p) − πi(N, v, p−l)

]
by the same arguments as for the previous equalities. �

The proof of the following theorem mimics the corresponding one in Slikker

(2005a) and then it is omitted.

Theorem 5.1 The probabilistic position value is the unique allocation rule on G N
0

that satisfies component efficiency and balanced probabilistic link contributions.

Slikker (2005b) provides another characterization of the deterministic position
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value using a natural extension of the potential function defined by Hart and Mas-

Colell (1989) to characterize the Shapley value.

Let P be a real function defined on C0 =
⋃
n∈N

C N
0 . The marginal contribution of

player i to a communication situation can be defined as the sum of the marginal

contributions of each of his incident links:

DiP(N, v, γ) =
∑

l∈Li(γ)

[P(N, v, γ) − P(N, v, γ \ {l})]

for each (N, v, γ) ∈ C N
0 ⊂ C0 and each i ∈ N.

A function P : C0 → R is a link potential function if P(N, v, ∅) = 0 for each

(N, v, ∅) ∈ C0 and the sum of the marginal contributions of players with respect to

D equals the value produced by the connected components, i.e.

∑
i∈N

DiP(N, v, γ) = vγ(N)

for each (N, v, γ) ∈ C0 such that γ , ∅.

Slikker (2005b) obtains the following result.

Theorem 5.2 There exists a unique link potential function P : C0 → R. Moreover,

for each (N, v, γ) ∈ C0 and each i ∈ N, DiP(N, v, γ) = πi(N, v, γ) holds.

Let us extend this result to the class of generalized probabilistic communication

situations. Let G0 =
⋃
n∈N

G N
0 and Q a real function defined on G0. The expected

marginal contribution of a player to a generalized probabilistic communication sit-

uation can be defined as the sum of the expected marginal contributions of each of

his incident probabilistic links:

MiQ(N, v, p) =
∑

pl∈Li(p)

[Q(N, v, p) − Q(N, v, p−l)] (3)
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for each (N, v, p) ∈ G0 such that γp , ∅ (p , p∅) and each i ∈ N.

A function Q : G0 → R is a probabilistic link potential function if Q(N, v, p∅) = 0

for each (N, v, p∅) ∈ G0, and the sum of the marginal contributions of players with

respect to M equals the expected value produced by the grand coalition, i.e.

∑
i∈N

MiQ(N, v, p) = vp(N) (4)

for each (N, v, p) ∈ G0 such that p , p∅.

In the following theorem, we show that the probabilistic link potential function is

uniquely defined. Moreover, the expected marginal contributions that correspond

to this potential coincide with the probabilistic position value.

Theorem 5.3 There exists a unique probabilistic link potential function Q : G0 →

R. Moreover, for each (N, v, p) ∈ G0 and each i ∈ N, MiQ(N, v, p) = πi(N, v, p)

holds.

Proof : Firstly, we show that a probabilistic link potential function exists. Consider

(N, v, p) ∈ G0, and define:

Q(N, v, p) =
∑
ξ⊂γp

∆rv
p(pξ)

2|ξ|
(5)

Obviously, for each (N, v, p∅) ∈ G0 we have Q(N, v, p∅) = 0. Let us prove that

Q, as defined in (5), satisfies (4) for each (N, v, p) ∈ G0 such that p , p∅. It is

easy to see that, in this case, for pξ⊂̃p−l, it holds that rv
p−l

(pξ) = rv
p(pξ). Thus, for

each pξ⊂̃p−l, ∆rv
p−l

(pξ) = ∆rv
p(pξ). Then, from (3) and (5), and using the component

efficiency property of the probabilistic position value, we obtain:
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∑
i∈N

MiQ(N, v, p) =
∑
i∈N

∑
pl∈Li(p)

∑
ξ⊂γp

∆rv
p(pξ)

2|ξ|
−

∑
ξ⊂γp\{l}

∆rv
p−l

(pξ)

2|ξ|


=

∑
i∈N

∑
pl∈Li(p)

∑
ξ⊂γp,l∈ξ

∆rv
p(pξ)

2|ξ|
=

∑
i∈N

1
2

∑
pl∈Li(p)

S hl(p, rv
p)

=
∑
i∈N

πi(N, v, p) =
∑

C∈N/γp

vp(C) = vp(N).

Therefore, Q(N, v, p), as defined in (5), is a probabilistic link potential function.

Moreover, by the same arguments used to obtain the first four equalities, it holds

that MiQ(N, v, p) = πi(N, v, p) for each (N, v, p) ∈ G0 and each i ∈ N.

Secondly, we show that the probabilistic link potential is unique. The combination

of (3) and (4) gives:

Q(N, v, p) =
1

2|γp|

vp(N) + 2
∑
l∈γp

Q(N, v, p−l)

 .

Starting with Q(N, v, p∅) = 0 for each (N, v, p∅) ∈ G0, one can recursively define

Q(N, v, p) for each (N, v, p) ∈ G0 in a unique way. �

In next proposition we prove that the probabilistic link potential function admits an

expression in terms of the deterministic link potential function.

Proposition 5.3 The unique probabilistic link potential function Q : G0 → R sat-

isfies Q(N, v, p) =
∑
γ∈Sp

P(N, v, γ)p(γ), where P : C0 → R is the unique link

potential function.

Proof : To prove this, let us show that Q′(N, v, p) =
∑
γ∈Sp

P(N, v, γ)p(γ) is a

probabilistic link potential function. By the uniqueness of Q, the result holds. Note

that Q′(N, v, p∅) = 0 trivially holds for each (N, v, p∅) ∈ G0. If (N, v, p) is such
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that p , p∅, we have:

∑
i∈N

MiQ′(N, v, p) =
∑
i∈N

∑
pl∈Li(p)

[
Q′(N, v, p) − Q′(N, v, p−l)

]
=

∑
i∈N

∑
pl∈Li(p)

∑
γ∈Sp

P(N, v, γ)p(γ) −
∑
γ∈Sp−l

P(N, v, γ)p−l(γ)


=

∑
i∈N

∑
pl∈Li(p)

∑
γ⊂γp

p(γ)P(N, v, γ) −
∑

γ⊂γp\{l}

[p(γ ∪ {l}) + p(γ)]P(N, v, γ)


=

∑
i∈N

∑
pl∈Li(p)

 ∑
δ⊂γp\{l}

p(δ ∪ {l})P(N, v, δ ∪ {l}) −
∑

δ⊂γp\{l}

p(δ ∪ {l})P(N, v, δ)


=

∑
i∈N

∑
pl∈Li(p)

∑
γ⊂γp

p(γ)
[
P(N, v, γ) − P(N, v, γ \ {l})

]
=

∑
γ⊂γp

p(γ)
∑
i∈N

∑
l∈Li(γp)

[
P(N, v, γ) − P(N, v, γ \ {l})

]
=

∑
γ⊂γp

p(γ)vγ(N) = vP(N),

where the seventh equality follows since P is the unique potential link function for

the deterministic case. �

6 On the relation between the potential and the balanced probabilistic link

contributions property

In this section, we prove the equivalence between the two previous characteriza-

tions. Before providing the main result of this section, we introduce two more def-

initions and highlight a property of the probabilistic link potential function.

In a communication situation, players who are not in the same connected compo-

nent are not able to coordinate their actions. Then, the connected components oper-
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ate independently: there is no externalities between them. A function Q : G0 → R

satisfies component additivity if it captures this idea.

Definition 6.1 A function Q : G0 → R is component additive if for each (N, v, p) ∈

G0,

Q(N, v, p) =
∑

T∈N/γp

Q(T, v|T , pT ).

In the next proposition, we state that the probabilistic link potential satisfies this

property.

Proposition 6.1 The probabilistic link potential is component additive.

Proof : Let us recall that, for a deterministic communication situation (N, v, γ) ∈

C0, the dividends ∆rv
γ
(ξ) are equal to zero if ξ is not connected (see, for example,

Gómez et al. (2004)). Given a graph (N, γ) and S ⊆ N, let us note S (γ) = {i ∈

S such that ∃ l ∈ γ with i ∈ l} the set of not isolated players of S in the graph

(N, γ). Thus, if P : C0 → R is the deterministic link potential function, we have:

P(N, v, γ) =
∑
ξ⊂γ

∆rv
γ
(ξ)

2|ξ|
=

∑
T∈N/γ

∑
ξ⊂γ|T
|N(ξ)/ξ|=1

∆rv
γ
(ξ)

2|ξ|
=

∑
T∈N/γ

∑
ξ⊂γ|T
|N(ξ)/ξ|=1

∆r
v|T
γ|T

(ξ)

2|ξ|
=

∑
T∈N/γ

P(T, v|T , γ|T ).

Then P is component additive. For the probabilistic link potential function Q, we
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have,

Q(N, v, p) =
∑
γ∈Sp

p(γ)P(N, v, γ) =
∑
γ∈Sp

p(γ)
∑

T∈N/γ

P(T, v|T , γ|T )

=
∑

C∈N/γp

∑
γ∈Sp

p(γ)
∑

T∈N/γ|C

P(T, v|T , γ|T )

=
∑

C∈N/γp

∑
γ⊂γp

p(γ)P(C, v|C , γ|C )

=
∑

C∈N/γp

∑
γ=δ∪ξ
δ⊂γ|C

ξ⊂γp\γ|C

p(γ)P(C, v|C , γ|C )

=
∑

C∈N/γp

∑
δ⊂γ|C

pC(δ)P(C, v|C , γ|C )

=
∑

C∈N/γp

Q(C, v|C , γ|C ).

�

An allocation rule is component decomposable if the payoff of a player is not af-

fected by the values created by players who do not belong to his component.

Definition 6.2 An allocation rule Ψ : G0 → R is component decomposable if, for

each (N, v, p) ∈ G0 and each i ∈ N,

Ψi(N, v, p) = Ψi(Ti, v|Ti , pTi),

where Ti is the connected component of N/p to which i belongs.

In the following theorem we prove that the balanced link contributions property

and the variations used to define the probabilistic link potential are equivalent.

Theorem 6.1 Let Ψ be a component decomposable allocation rule on G0 verifying

Ψi(N, v, p∅) = 0 for each (N, v, p∅) ∈ G0 and each i ∈ N. This allocation rule

satisfies balanced probabilistic link contributions on G0 if and only if there exists

a component additive function Q : G0 → R such that Q(N, v, p∅) = 0 for each
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(N, v, p∅) ∈ G0 and MiQ(N, v, p) = Ψi(N, v, p) for each (N, v, p) ∈ G0 with

p , p∅ and each i ∈ N, MiQ(N, v, p) being defined as in (3).

Proof : Suppose that a component additive function Q : G0 → R satisfying

Q(N, v, p∅) = 0 for each (N, v, p∅) ∈ G0 and MiQ(N, v, p) = Ψi(N, v, p) for

each (N, v, p) ∈ G0 with p , p∅ and each i ∈ N exists. Let us prove that Ψ verifies

balanced probabilistic link contributions. We have:

∑
pl∈L j(p)

[Ψi(N, v, p) − Ψi(N, v, p−l)] =
∑

pl∈L j(p)

[MiQ(N, v, p) − MiQ(N, v, p−l)]

=
∑

pl∈L j(p)

 ∑
pk∈Li(p)

[Q(N, v, p) − Q(N, v, p−k)]

−
∑

pk∈Li(p)

[Q(N, v, p−l) − Q(N, v, p−{k, l})]


=

∑
pl∈L j(p)

∑
pk∈Li(p)

[Q(N, v, p) − Q(N, v, p−k)]

−
∑

pl∈L j(p)

∑
pk∈Li(p)

[Q(N, v, p−l) − Q(N, v, p−{k, l})]

=
∑

pk∈Li(p)

[Ψ j(N, v, p) − Ψ j(N, v, p−k)].

Note that the expression after the third equality sign is symmetric in i and j. The

last equality follows by the same arguments as for the first three ones.

Conversely, let Ψ be a component decomposable allocation rule on G0 verifying

balanced probabilistic link contributions and such that Ψi(N, v, p∅) = 0 for each

(N, v, p∅) ∈ G0 and each i ∈ N. We have to show that we can define a component

additive function Q : G0 → R, such that Q(N, v, p∅) = 0 for each (N, v, p∅) ∈ G0

and Mi(N, v, p) = Ψi(N, v, p) for each (N, v, p) ∈ G0 with p , p∅ and each i ∈ N.

We proceed by induction on |γp|.

Firstly, note that this assertion is trivially verified for |γp| = 0. Then, by induction

hypothesis, let us assume that there exists a component additive function Q such

that Q(N, v, p∅) = 0 for each (N, v, p∅) ∈ G0 and MiQ(N, v, p) = Ψi(N, v, p) for
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each (N, v, p) ∈ G0 with p , p∅, |γp| < k and each i ∈ N. Consider (N, v, p) ∈ G0

such that |γp| = k. Remark that if T ∈ N/γp, T = {i}, Q({i}, v|{i}, p{i}) = 0. Consider

now T ∈ N/γp such that |T | > 1. Note that, for each i ∈ T , |Li(p)| , 0 and

Li(pT ) = Li(p). Let us define:

Q(T, v|T , pT ) =

Ψi(T, v|T , pT ) +
∑

pli∈Li(p)

Q(T, v|T , (pT )−li)

|Li(p)|

where i is whatever element in T . We relegate to the Appendix the proof that

Q(T, v|T , pT ) is well defined in the sense that it does not depends on i ∈ T . Then,

we define

Q(N, v, p) =
∑

T∈N/p

Q(T, v|T , pT ).

Consider i ∈ N. By the induction hypothesis, we have:

MiQ(N, v, p) =
∑

pli∈Li(p)

[
Q(N, v, p) − Q(N, v, p−li)

]
=

∑
pli∈Li(p)

 ∑
T∈N/p

Q(T, v|T , pT ) −
∑

T∈N/p−li

Q(T, v|T , (pT )−li)

 .

For each T ∈ N/p such that i < T , Q(T, v|T , pT ) = Q(T, v|T , (pT )−li). Denote by Ti

the connected component of N/p containing i. It holds that:

MiQ(N, v, p) =
∑

pli∈Li(p)

[Q(Ti, v|Ti , pTi) −
∑

S∈Ti/(pTi )−li

Q(S , v|S , (pS )−li)]

=
∑

pli∈Li(p)

[
Q(Ti, v|Ti , pTi) − Q(Ti, v|Ti , (pTi)−li)

]
.

By (6) and by component decomposability of Ψ, we obtain:

MiQ(N, v, p) = Ψi(Ti, v|Ti , pTi) = Ψi(N, v, p).

�
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Remark 6.1 Note that the definition of Slikker’s (2005b) deterministic player po-

tential can be generalized to the probabilistic case in the following way. Denote

by Q : G → R the function that assigns to every generalized probabilistic com-

munication situation in G a real number. The expected marginal contribution of a

player to a generalized probabilistic communication situation can be defined as the

expected marginal contribution of all his links:

MiP(N, v, p) = Q(N, v, p) − Q(N, v, p−i) (6)

for each (N, v, p) ∈ G and each i ∈ N, p−i being the generalized probabilistic

subgraph p−Li(γp).

A function Q : G → R is a probabilistic player potential function if the sum of the

marginal contributions of players with respect toM is equal to the expected value

produced by the grand coalition, i.e. Q(N, v, p∅) = 0 for each (N, v, p∅) ∈ G and

∑
i∈N

MiQ(N, v, p) = vp(N) (7)

for each (N, v, p) ∈ G such that p , p∅. Results in Theorems 5.3 and 6.1 can

be provided for the probabilistic Myerson value of Gómez et al. (2008) and the

probabilistic player potential.

Appendix

Suppose Ψ is a component decomposable allocation rule defined on G0 satisfying

balanced probabilistic link contributions and such that Ψi(N, v, p∅) = 0 for each

(N, v, p∅) ∈ G0 and each i ∈ N. Let us prove that, under these hypothesis, given

(N, v, p) ∈ G0, T ∈ N/p with |T | > 1 and i ∈ T , Q(T, v|T , pT ), as given in (6) is well

defined, i.e., it does not depend on i ∈ T .
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Proof : Consider i, j ∈ T . By balanced probabilistic link contributions and compo-

nent decomposability of Ψ,

Ψi(T, v|T , pT ) =

∑
pl j∈L j(p)

Ψi(T, v|T , (pT )−l j)

|L j(p)|
+
|Li(p)|Ψ j(T, v|T , pT )

|L j(p)|
−

∑
pli∈Li(p)

Ψ j(T, v|T , (pT )−li)

|L j(p)|
.

Substituting this previous expression in the right-hand term of (6) we obtain:

1
|Li(p)|


∑

pl j∈L j(p)

Ψi(T, v|T , (pT )−l j)

|L j(p)|
+
|Li(p)|Ψ j(T, v|T , pT )

|L j(p)|

−

∑
pli∈Li(p)

Ψ j(T, v|T , (pT )−li)

|L j(p)|
+

∑
pli∈Li(p)

Q(T, v|T , (pT )−li)

 . (8)

Moreover, by the induction hypothesis in the proof of Theorem 6.1., we know that:

Ψi(T, v|T , (pT )−l j) = |Li(p)\{pl j}|Q(T, v|T , (pT )−l j)−
∑

pli∈Li(p)\{pl j }

Q(T, v|T , (pT )−{li, l j}).

(9)

Suppose that i and j have no probabilistic link in common. In this case, (9) can be

written as:

Ψi(T, v|T , (pT )−l j) = |Li(p)|Q(T, v|T , (pT )−l j) −
∑

pli∈Li(p)

Q(T, v|T , (pT )−{li, l j}). (10)

Using (10) we have that (8) is equal to:
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Ψ j(T, v|T , pT )
|L j(p)|

+
1

|Li(p)|


∑

pl j∈L j(p)

|Li(p)|Q(T, v|T , (pT )−l j)

|L j(p)|

−

∑
pl j∈L j(p)

∑
pli∈Li(p)

Q(T, v|T , (pT )−{li, l j})

|L j(p)|
−

∑
pli∈Li(p)

|L j(p)|Q(T, v|T , (pT )−li)

|L j(p)|

+

∑
pli∈Li(p)

∑
pl j∈L j(p)

Q(T, v|T , (pT )−{li, l j})

|L j(p)|
+

∑
pli∈Li(p)

Q(T, v|T , (pT )−li)


=

Ψ j(T, v|T , pT ) +
∑

pl j∈L j(p)

Q(T, v|T , (pT )−l j)

|L j(p)|
.

Finally, as the right-hand side in (6) coincides with (8) and thus with the second

term in previous equality, we have:

Ψi(T, v|T , pT ) +
∑

pli∈Li(p)

Q(T, v|T , (pT )−li)

|Li(p)|
=

Ψ j(T, v|T , pT ) +
∑

pl j∈L j(p)

Q(T, v|T , (pT )−l j
)

|L j(p)|

and so the result is proved for the case in which i, j ∈ T have no probabilistic link

in common.

Now, suppose that i and j have a probabilistic link in common. Thus, if l j , {i, j},

(9) can be written as:

Ψi(T, v|T , (pT )−l j) = |Li(p)|Q(T, v|T , (pT )−l j) −
∑

pli∈Li(p)

Q(T, v|T , (pT )−{li, l j}). (11)

and if l j = {i, j},

Ψi(T, v|T , (pT )−{i, j}) = (|Li(p)|−1)Q(T, v|T , (pT )−{i. j})−
∑

pli∈Li(p)\{p{i, j}}

Q(T, v|T , (pT )−{li, {i, j}}).

(12)

Then, substituting (11) and (12) in (8) we have that (8) is equal to:
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Ψ j(T, v|T , pT )
|L j(p)|

+
1

|Li(p)|



∑
pl j
∈L j(p)

l j,{i, j}

|Li(p)|Q(T, v|T , (pT )−l j)

|L j(p)|

−

∑
pl j
∈L j(p)

l j,{i, j}

∑
pli∈Li(p)

Q(T, v|T , (pT )−{li, l j})

|L j(p)|
+

(|Li(p)| − 1)Q(T, v|T , (pT )−{i, j})
|L j(p)|

−

∑
pli
∈Li(p)

li,{i, j}

Q(T, v|T , (pT )−{{i, j}, li})

|L j(p)|
−

∑
pli
∈Li(p)

li,{i, j}

|L j(p)|Q(T, v|T , (pT )−li)

|L j(p)|

+

∑
pli
∈Li(p)

li,{i, j}

∑
pl j∈L j(p)

Q(T, v|T , (pT )−{li, l j})

|L j(p)|
−

(|L j(p)| − 1)Q(T, v|T , (pT )−{i, j})
|L j(p)|

+

∑
pl j
∈L j(p)

l j,{i, j}

Q(T, v|T , (pT )−{l j, {i, j}})

|L j(p)|
+

∑
pli∈Li(p)

Q(T, v|T , (pT )−{li})


.

And after some straightforward calculations we obtain that previous expression,

and then (8), equals to:
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Ψ j(T, v|T , pT )
|L j(p)|

+
1

|Li(p)|


∑

pl j∈L j(p)

|Li(p)|Q(T, v|T , (pT )−l j)

|L j(p)|

−

∑
pl j
∈L j(p)

l j,{i, j}

∑
pli∈Li(p)

Q(T, v|T , (pT )−{li, l j})

|L j(p)|
−

∑
pli
∈Li(p)

li,{i, j}

Q(T, v|T , (pT )−{li, {i, j}})

|L j(p)|

−

∑
pli∈Li(p)

|L j(p)|Q(T, v|T , (pT )−li)

|L j(p)|
+

∑
pli
∈Li(p)

li,{i, j}

∑
pl j∈L j(p)

Q(T, v|T , (pT )−{li, l j})

|L j(p)|

+

∑
pl j
∈L j(p)

l j,{i, j}

Q(T, v|T , (pT )−{l j, {i, j}})

|L j(p)|
+

∑
pli∈Li(p)

Q(T, v|T , (pT )−li)


.

Note that in previous expression the sum of the second to sixth terms inside the

brackets vanishes and so, the result is proved. �
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