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Abstract : After a brief presentation of Banach-Stone’s and Kahane-Zelazko’s results on
weighted composition operators, the attention is concentrated on the iteration of surjec-
tive and non-surjective linear isometries acting on complex Banach algebras. Appealing to
results by Grothendieck, Bourgain and Lotz, the set of iterates is replaced by a strongly
continuous semigroup of linear isometries.

Key words: Character, composition operator, Gelfand spectrum, strongly continuous semi-
group.

AMS Subject Class. (2000): 46G20.

Introduction

Weighted composition operators appear in two different contexts in the
study of complex Banach algebras or, more in general, of locally multiplica-
tively convex, sequentially complete, associative algebras.

In the first one, originating in the ground-breaking research work carried
out by Stefan Banach and Marshall H. Stone in the Thirties, they are related
to linear isometries between uniform algebras. More than thirty years later,
some results obtained by A. M. Gleason and by J.-P. Kahane and W. Zelazko
characterized a class of weighted composition operators between unital com-
mutative Banach algebras mapping invertible elements to invertible elements.

The beginning of these lecture-notes is devoted to illustrating the inter-
play between the two approaches, before concentrating on linear isometries
of uniform algebras, extending to a class of non-surjective isometries classi-
cal results established by N. Nagasawa and by K. de Leeuw - W. Rudin - J.
Wermer for surjective ones.

The iteration of linear isometries will be investigated in some relevant ex-
amples: the uniform algebra of all continuous functions on a compact Haus-

†This article is an extended version of three lectures given at the 4th Advanced Course
in Operator Theory and Complex Analysis, in Sevilla, 18–20 June 2007.
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dorff space, the disc algebra A0 and the algebra H∞ of all bounded holo-
morphic functions on the open unit disc ∆ of C. In the latter two cases, the
Wolf-Denjoy theorem on the iteration of holomorphic self-maps of ∆ plays a
dual role, both as a research tool and as a model of what the outcome of the
iteration should be.

Stepping from discrete to continuum replaces the iteration process by a
strongly continuous semigroup T of linear isometries, which in the cases of A0

and of H∞ is associated to a continuous flow of holomorphic self-maps of ∆,
the conformal flow of T .

Since, according to a result by J. Bourgain, H∞ is a Grothendieck space
with the Dunford-Pettis property, T , as any strongly continuous semigroup
of linear isometries acting on H∞, is the restriction to R+ of a uniformly
continuous group of surjective isometries of H∞, whose conformal flow is a
group of Moebius transformations of ∆. As a consequence, it turns out that
the group T is almost periodic if, and only if, its conformal flow fixes a point
of ∆. This result may be extended to the semigroup T acting on the disc
algebra A0 by a direct inspection of the spectral structure of T .

1. Composition operators and weighted composition operators

Let X be a compact Hausdorff space, and let C(X) denote the algebra of
all continuous functions f : X → C with the uniform norm

‖f‖ = sup{|f(x)| : x ∈ X}

and pointwise composition.
A uniform algebra on X is a closed subalgebra of C(X) which contains

the constants and separate points of X.
Let A and B be uniform algebras on two compact Hausdorff spaces X and

Y .
A composition operator C ∈ L(A,B) is a continuous linear map repre-

sented by
C : f 7→ f ◦ φ

for all f ∈ A, where φ is a continuous map of Y into X.
A weighted composition operator A ∈ L(A,B) is a multiplicative pertur-

bation of C expressed by
A : f 7→ u.f ◦ φ,

where u is a fixed element of B.
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Weighted composition operators appear in different contexts of research.
One of these concerns linear operators acting on commutative unital Ba-

nach algebras, mapping invertible elements to invertible elements, and is an
application of the following result due to A. Gleason, [14] and J.-P. Kahane
and W. Zelazko ([20], but see also [11], [30] and [37]).

Let A be a unital algebra (which as all algebras considered in these notes,
will be assumed to be associative), and let λ : x 7→ 〈x, λ〉 be a homomorphism
of the vector space A into C such that

〈1A, λ〉 = 1. (1.1)

The proof of the following lemma can be found, e.g., in [30] (or in [37]).

Lemma 1.1. If (1.1) holds, and if

x ∈ kerλ =⇒ x2 ∈ kerλ,

then
〈xy, λ〉 = 〈x, λ〉 〈y, λ〉 (1.2)

for all x, y ∈ A.

Let the algebra A considered above be now endowed with a topology: let
A be a unital Banach algebra, or, more in general, a complex, unital, locally
mutiplicatively convex, sequentially complete algebra, [24].

The topology of A is defined by a basis {Uα} for the neighbourhoods of 0
consisting of open, convex, symmetric sets containing 0 such that Uα Uα ⊂ Uα

for any index α. Setting, for x ∈ Uα,

pα(x) = inf{t > 0 : x ∈ tUα},

pα is a continuous seminorm on A which defines the topology of A and is such
that

pα(xn) ≤ (pα(x))n ∀x ∈ A, n = 1, 2, . . . .

If the linear form λ considered above is continuous - i.e., if λ ∈ A′, the
topological dual of the topological vector space A, - for any index α there is
a real constant cα ≥ 0 such that

|〈x, λ〉| ≤ cα pα(x) ∀x ∈ A.

Under the hypotheses of Lemma 1.1, kerλ is a closed right ideal of A.
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Denoting by A−1 the set of all invertible elements of A, then

exp(zx) =
+∞∑

n=0

1
n!

znxn ∈ A−1 ∀ z ∈ C, x ∈ A. (1.3)

The entire function f : C 3 z 7→ 〈exp(zx), λ〉 is such that, for any α,

|f(z)| ≤
+∞∑

n=0

|z|n
n!

|〈xn, λ〉| ≤ 1 + cα

+∞∑

n=1

|z|n
n!

pα(xn)

≤ 1 + cα

+∞∑

n=1

(|z|pα(x))n

n!
≤ max{1, cα}e|z| pα(x).

(1.4)

By (1.3), if
A−1 ∩ kerλ = ∅, (1.5)

then f(z) 6= 0 for all z ∈ C.
The proof of the following result from complex function theory, can be

found, e.g., in [30] (or in [37]),

Lemma 1.2. Let h be an entire function. If h(0) = 1, if h′(0) = 0 and if
there are two real numbers a and b ≥ 1 such that

0 < |h(z)| < b ea|z| ∀ z ∈ C,

then h ≡ 1.

If 〈x, λ〉 = 0, and therefore f ′(0) = 0, Lemma 1.2 implies that f(z) = 1 for
all z ∈ C. As a consequence,

〈x2, λ〉 = f ′′(0) = 0,

and therefore, by Lemma 1.1, (1.1) and (1.2) hold.
In conclusion the following theorem holds:

Theorem 1.1. Let A be a unital, locally multiplicatively convex and se-
quentially complete complex algebra and let λ be a continuous linear form on
A. If kerλ contains no invertible element of A, there is a continuous character
χ of A1 such that

〈x, λ〉 = 〈1A, λ〉 〈x, χ〉 ∀x ∈ A.

In particular, if (1.1) holds, λ is a character of A.

1i.e. a continuous homomorphism of the algebra A into C.
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Let σ(x) ⊂ C be the spectrum of x ∈ A. Theorem 1.1 yields:

Corollary. If the continuous linear form λ on A is such that

〈x, λ〉 ∈ σ(x) ∀x ∈ A,

and satisfies (1.1), then λ is a character.

Let now A, B be unital, abelian Banach algebras, let Σ(A), Σ(B) be the
Gelfand spectra of A, B, and let L(A,B) be the Banach space of all continuous
linear maps of the Banach space A into the Banach space B.

If A ∈ L(A,B) is such that

A
(A−1

) ⊂ B−1, (1.6)

then, for any character χ ∈ Σ(B),

f ∈ A−1 =⇒ 〈Af, χ〉 6= 0.

Since, by Theorem 1.1

A 3 f 7→ 〈Af, χ〉
〈A1, χ〉

is a character, φ(χ), of A, the following theorem holds.

Theorem 1.2. For any A ∈ L(A,B) satisfying (1.6) there is a continuous
map φ : Σ(B) → Σ(A) such that

〈Af, χ〉 = 〈A1A, χ〉.〈f, φ(χ)〉 ∀ f ∈ A, χ ∈ Σ(B).

For an extension of this theorem to non-unital algebras, see [38].

2. Weighted composition operators and isometries

Much earlier than the Gleason-Kahane-Zelazko papers, weighted compo-
sition operators made their appearance in the context of linear isometries
between the uniform algebras C(X) and C(Y ) of all continuous scalar valued
functions on two compact Hausdorff spaces X and Y .

If X and Y are homeomorphic, C(X) and C(Y ) are isometricaly isomor-
phic. An answer to the opposite question is provided by the classical Banach-
Stone theorem, [2], [33], [11]:
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Theorem 2.1. If A ∈ L(C(X), C(Y )) is a surjective isometry, then A is
represented by the weighted composition operator

Af = u . f ◦ φ ∀ f ∈ C(X),

where φ is a homeomorphism of Y onto X, and u ∈ C(Y ) is a unimodular
function.

As a consequence, A maps unimodular functions to unimodular functions.
A link between Banach-Stone’s and Gleason-Kahane-Zelazko’s approaches

is offered by the following lemma.

Lemma 2.1. If A ∈ L(C(X), C(Y )) is an isometry of C(X) into C(Y )
mapping unimodular functions in C(X) to unimodular functions in C(Y ),
then

A
(
C(X)−1

) ⊂ C(Y )−1.

Proof. Let f ∈ C(X)−1 and let u = f/|f |. Then
∣∣∣∣u−

f

‖f‖

∣∣∣∣ < 1 ⇒ |u ‖f‖ − f | < ‖f‖ ⇒ ‖u ‖f‖ − f‖ < ‖f‖.

Let y ∈ Y be such that (Af)(y) = 0. Then

‖f‖ (Au)(y) = (A(‖f‖u− f)) (y),

and therefore

‖f‖ =
∣∣(A(‖f‖u− f)

)
(y)

∣∣ ≤ ∥∥A(‖f‖u− f)
∥∥ =

∥∥ ‖f‖u− f
∥∥ < ‖f‖.

Contradiction.

Surjective linear isometries between two uniform algebras A and B are
described by the following theorem, [1], [8], [26], [17].

Theorem 2.2. If A ∈ L(A,B) is a surjective isometry, there exist an
algebra homomorphism C of A onto B and a unimodular function u ∈ B−1

such that

Af = u . Cf ∀ f ∈ A.

One of the main purposes of these Notes is that of describing C under
suitable hypotheses on the uniform algebras A and B.
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3. A theorem by A. Bernard, and some examples

Let: A be a uniform algebra on a compact Hausdorff space X; B = B(A),
be the open unit ball of A; U(A) be the set of all unimodular functions in A:

U(A) = {u ∈ A : |u(x)| = 1 ∀x ∈ X}.

Theorem 3.1. (A. Bernard) If U(A) generates A, the closure B of B is
the closed convex hull of U(A).

Proof. [13] The set of all finite linear combinations of elements of U(A)
is dense in A. Let n be a positive integer, f =

∑N
n=1 cnun, with cn ∈ C,

un ∈ U(A) and ‖f‖A < 1. Then u = u1 · · ·uN ∈ U(A), and
∣∣∣∣∣

f(x) + eiθu(x)
1 + eiθu(x)f(x)

∣∣∣∣∣ = 1 ∀x ∈ X, θ ∈ R,

f(x) + eiθu(x)
1 + eiθu(x)f(x)

= f(x) +
(
u(x)− |f(x)|2 )

eiθ

− u(x)2f(x)
(
u(x)− |f(x)|2 )

e2iθ + · · ·

uniformly with respect to θ. Hence

1
2π

∫ 2π

0

f(x) + eiθu(x)
1 + eiθu(x)f(x)

dθ = f(x)

and there exists a sequence of Riemann sums converging uniformly to f , i.e.
a sequence of finite convex combinations of elements of U(A) converging uni-
formly to f .

We will be concerned with uniform algebras generated by their unimodular
functions. Here are some relevant examples.

3.1. The algebra C(X)

Theorem 3.2. (R. Phelps) The closed unit ball B(C(X)) of C(X) is the
closed convex hull of U(C(X)).
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Proof. (R.B. Burckel) Let f ∈ C(X), with ‖f‖ < 1, and let fθ be defined
by

fθ(x) =
f(x)− w

1− wf(x)
,

where x ∈ X, θ ∈ R and w = e2πiθ. Then fθ ∈ U(C(X)), and

fθ(x) = f(x) +
(|f(x)|2 − 1

) +∞∑

n=1

wnf(x)
n−1

.

Choose now θ = k/m with k and m positive integers and k ≤ m. Then

1
m

m∑

k=1

fk/m(x) = f(x) +
(|f(x)|2 − 1

) +∞∑

n=1

(
1
m

m∑

k=1

e
2πki

m

)n

f(x)
n−1

= f(x) +
(|f(x)|2 − 1

) +∞∑
n=m

(
1
m

m∑

k=1

e
2πki

m

)n

f(x)
n−1

,

because
m∑

k=1

(
1
n

e
2πki

m

)n

=
m∑

k=1

(
1
n

e
2πni

m

)k

,

and
m∑

k=1

(
1
n

e
2πni

m

)k

= 1 or 0

according as m divides n or not. Then,
∣∣∣∣∣
1
m

m∑

k=1

fk/m(x)− f(x)

∣∣∣∣∣ ≤
(
1− |f(x)|2

) +∞∑
n=m

|f(x)|n−1

=
(
1− |f(x)|2

)
|f(x)|m−1

+∞∑

n=0

|f(x)|n

=
1− |f(x)|2
1− |f(x)| |f(x)|m−1 =

(
1 + |f(x)| ) |f(x)|m−1

≤ 2 |f(x)|m−1 ≤ 2‖f‖m−1 ∀x ∈ X.

Since ‖f‖ < 1, f is the uniform limit of the convex combinations

1
m

m∑

k=1

fk/m(x)
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as m → +∞.

The above proof, given by R. Burckel in [6], is an adaptation of an elegant
proof, due to L. A. Harris [15], of a theorem by B. Russo and H. Dye [31] -
which may be seen as a non-commutative counterpart of Phelps’ theorem -
whereby the closure of the unit ball B of any unital C∗-algebra A is the closed
convex hull of the set U of all unitary elements in the algebra.

Here is an outline of Harris’ proof:
Any x ∈ B defines the Möbius transformation Tx mapping y ∈ B to

Tx(y) = (1− xx∗)−1/2(y + x)(1 + x∗y)−1(1− x∗ x)1/2.

Tx is a bi-holomorphic map of B onto B, such that

Tx(0) = x, (3.1)

which has a holomorphic extension to a neighbourhood of the closure B of B,
[16].

The function f defined by

f : z 7→ f(z) = Tx(z1)

is holomorphic in a neighbourhood of ∆, maps the unit circle ∂∆ into the
connected component U1 of the identity 1A in U.

By the Cauchy formula (for the theory of operator-valued holomorphic
functions, see, e.g., [12]) and by (3.1),

x = f(0) =
1
2π

∫ 2π

0
f

(
eiθ

)
dθ.

Thus, x is the uniform limit of Riemann sums, which turn out to be convex
combinations of elements of the identity component of 1A in U.

A different proof of the Russo-Dye theorem, which does not use function
theory, can also be found in [15].

3.2. The disc algebra The disc algebra A0 is defined by

A0 =
{

f ∈ C(∂∆) :
∫ 2π

0
einθ f

(
eiθ

)
dθ = 0 for n = 1, 2, . . .

}
. (3.2)

Any f ∈ A0 can be continuously extended as a holomorphic function on
the unit disc ∆ via Poisson integral

f(z) =
∫ π

−π
f

(
eit

)
dmz(t)
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where z = reiθ, 0 < r < 1, and

dmz(t) =
1
2π

Re
eit + z

eit − z
dt =

1
2π

1− r2

1− 2r cos(t− θ) + r2
dt. (3.3)

The Poisson integral yields an alternate definition of the disc algebra:

A0 =
{
f ∈ C(∆) : f|∆holomorphic

}
,

and shows that the disc algebra is a Dirichlet algebra 2.
Let ι ∈ A0 be the coordinate function: ι : z 7→ ι(z) = z.
Let Σ(A0) be the Gelfand spectrum of A0 endowed with the Gelfand topol-

ogy.
If χ ∈ Σ(A0), then 〈ι, χ〉 ∈ ∆.
If p is an analytic polynomial of degree N ,

p =
N∑

n=0

cnιn, with cn ∈ C,

and if χ ∈ Σ(A0), then

〈p, χ〉 =
N∑

n=0

cn〈ιn, χ〉 =
N∑

n=0

cn〈ι, χ〉n = p(〈ι, χ〉).

Since analytic polynomials are dense in Σ(A0), then

〈f, χ〉 = f(〈ι, χ〉) ∀χ ∈ Σ(A0)

and for any f ∈ A0.

Proposition 3.1. Σ(A0) = ∆. The Gelfand topology is the relative
topology in C 3. The Shilov boundary ∂A0 of A0 is the unit circle ∂∆.

Every character χ has a unique representing measure, i.e. a unique proba-
bility measure whose support is contained in ∂A0. The representing measure
of z ∈ ∆ is given by the Poisson kernel (3.3); if z ∈ ∂∆, the representing
measure is the Dirac measure δz.

Let E be a closed subset of ∂∆ with Lebesgue measure zero.
2A uniform algebra on a compact Husdorff space X is, by definition, a Dirichlet algebra

if ReA = {Re f : f ∈ A} is dense in CR(X).
3Alternate proof: the algebra A0 is generated by ι. Therefore Σ(A0) is the spectrum of

ι: σ(ι) = ∆.
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Theorem 3.3. (P. Fatou, [10], [17]) There exists a function in A0 which
vanishes precisely on E.

Theorem 3.4. (W. Rudin, [28], [17]) Let F be a continuous complex-
valued function on E. There exists a function f ∈ A0 whose restriction to E
is F . Moreover, f can be so chosen that |f | is bounded on ∆ by the maximum
of |F | on E.

3.3. Blaschke products Let {zn} be a sequence in ∆ such that
∑

(1−
|zn|) < ∞, and let m be the number of times 0 occurs in the sequence. Then
the Blaschke product

B(z) = zm
∏

zn 6=0

−zn

|zn|
z − zn

1− znz

converges at all z ∈ ∆, thus defining a bounded holomorphic function on ∆,
whose zeros are the points zn with multiplicities equal to the number of times
they occur in the sequence {zn}.

Furthermore |B(z)| ≤ 1 at all z ∈ ∆, and

|B(eiθ| = 1 (3.4)

a.e. on ∂∆.
Let K ⊂ ∂∆ be the set of all accumulation points of {zn}. The Blaschke

product B extends analytically on the complement of K ∪ {1/zn} in C and
across each arc of ∂∆\K, but |B| does not extend continuosly from ∆ to any
point of K.

Hence
B ∈ A0 ⇐⇒ {zn} is finite,

in which case (3.4) holds for all θ ∈ R.
Since polynomials are dense in A0, the closed unit ball of A0 is the closed

convex hull of the set of finite Blaschke products; [13].

3.4. Bounded holomorphic functions The set H∞ of all bounded
holomorphic functions on ∆ is a unital, commutative Banach algebra for point-
wise composition in ∆ and norm

‖f‖ = sup{|f(z)| : z ∈ ∆}.
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Let L∞ = L∞(∂∆) be the space of all complex-valued, bounded, measur-
able functions on ∂∆, where functions equal to each other almost everywhere
for the Lebesgue measure are identified. Then L∞(∂∆) is a commutative uni-
tal C∗ algebra for pointwise composition and for the essential sup norm. Hence
L∞(∂∆) can be identified with C(M), where M = Σ(L∞) = ∂L∞, endowed
with the Gelfand topology, is a compact Hausdorff space which turns out to
be totally disconnected4. For any f ∈ H∞ there exists a unique F ∈ L∞(∂∆)
such that

F
(
eiθ

)
= lim

r↑1
f

(
reiθ

)
a.e..

Furthermore, ‖F‖ = ‖f‖, and

f(z) =
∫ π

−π
F

(
eit

)
dmz(t), (3.5)

where dmz is given by (3.3) for all z ∈ ∆.
If F ∈ L∞(∂∆) is such that

∫ π

−π
einθF

(
eiθ

)
dθ = 0 n = 1, 2, . . . ,

(3.5) defines f ∈ H∞.
The algebra H∞ is a closed subalgebra of L∞. The restriction map

Σ (L∞) → Σ(H∞) defines a homeomorphism of M = Σ (L∞) into Σ (H∞)
whose image is ∂H∞, [17]. Thus H∞ is a uniform algebra on M .

Lemma 3.1. If h ∈ CR(M) there is f ∈ H∞−1 such that

log |f | = h. (3.6)

Sketch of proof. We extend h to a function h on ∆ by the integral

h(z) =
∫ π

−π
h

(
eit

)
dmz(t) (z ∈ ∆),

thus obtaining a real-valued, bounded harmonic function on ∆ for which

lim
r↑1

h
(
reiθ

)
= h

(
eiθ

)
a.e..

4Actually M is extremely disconnected, i.e. the closure of any open set in M is open;
[17], pp. 170-171 (where M is called extremally disconnected), or [13], p. 207.
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If k is the conjugate harmonic function of h, the function

f = eh+ik

is contained in H∞−1, and satisfies (3.6).

Thus H∞ is a logmodular algebra5, and therefore every character χ ∈
Σ(H∞) has a unique representing measure supported in M (see, e.g., [34],
pp. 170-172).

Note incidentally that, since every Dirichlet algebra is logmodular, any
character in a Dirichlet algebra A has a unique representing measure sup-
ported in ∂A.

The question arises whether H∞ is actually a Dirichlet algebra. The an-
swer to this question turns out to be negative, as a consequence of an ob-
servation of A. Gleason (see, e.g., [17], p. 182) whereby, if M is a totally
disconnected, compact Haudorff space, the only Dirichlet algebra on M is
C(M).

Let R : Σ (H∞) → ∆ map χ ∈ Σ(H∞) to 〈ι, χ〉.

Theorem 3.5. The map R is continuous, and

R (Σ (H∞)) = ∆;

R|R−1(∆) is one-to-one, and R−1 maps ∆ homeomorphically onto an open
subset D of Σ (H∞) whose complement is connected 6.

According to L. Carleson’s corona theorem the image D of ∆ is dense in
Σ (H∞) (see, e.g., [13]).

The structure of Σ (H∞) is extremely complicated. Here are a few prelim-
inary, elementary results (whose proofs can be found in [17]), which are useful
in the following.

Lemma 3.2. Let α ∈ ∂∆ and f ∈ H∞ be such that there is a sequence
{zn} ⊂ ∆ converging to α for which {f(zn)} converges to some ζ ∈ C. Then
there is χ ∈ Σ(H∞) for which 〈ι, χ〉 = α and 〈f, χ〉 = ζ.

For α ∈ ∂∆, let Σα be the “fiber”

Σα = {χ ∈ Σ(H∞) : 〈ι, χ〉 = α} = R−1(α).

5i.e. the set log |H∞−1| = {log |f(t)| : f ∈ H∞−1} is dense in LR
∞; see, e.g., [18], [13].

6For a proof, see, e.g, [17], [13].
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Lemma 3.3. A function f ∈ H∞ is continuously extendable to ∆ ∪ {α}
if, and only if, its Gelfand transform f̂ is constant on Σα.

For any θ ∈ R, the map z 7→ eiθz defines a “rotation” mapping homeomor-
phically Σ (H∞) and ∆ respectively onto themselves, and induces a homeo-
morphism of Σα onto Σeiθα.

Every fiber Σα is connected. Denoting byAα the algebra of the restrictions
to Σα of the Gelfand transforms of all functions in H∞, then, [17], Aα is a
regular uniform algebra whose Gelfand spectrum and Shilov boundary are
respectively

Σ (Aα) = Σα and ∂Aα = Σα ∩ ∂H∞.

Proposition 3.2. The set U(H∞) is the set of all inner functions.

In other words, u ∈ H∞ if, and only if,

lim
r↑1

|u(reiθ)| = 1

for almost all θ ∈ [0, 2π].

Proof. The “only if” part follows from D. J. Newman’s characterization of
the Shilov boundary ∂H∞ of H∞ ([17]; [13]), according to which, if u is an
inner function, then

|〈u, χ〉| = 1 ∀ χ ∈ ∂H∞.

Conversely, if u ∈ U is not inner, there is a Borel set C ⊂ ∂∆, with positive
Lebesgue measure, such that

lim
r↑1

|u(rζ)| < 1 ∀ ζ ∈ C.

By the Lusin theorem, there is a Borel set E ⊂ C, with positive Lebesgue
measure, such that u is continuously extendable to ∆ ∪ E. By Lemma 3.3, u
is constant on the fiber Σζ , and therefore has modulus less that 1 on Σζ for
all ζ ∈ E, contradicting the hypothesis whereby u is unimodular.

The set U(H∞) satisfies the hypotheses of the A. Bernard theorem because,
as was shown by D.E. Marshall, the Blaschke products generate H∞, [23], [13].
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4. Linear isometries of uniform algebras

Here is an elementary lemma which will play a role in the following con-
siderations.

Lemma 4.1. ([41]) Let m be a positive, regular Borel measure on a com-
pact Hausdorff space X with ‖m‖ ≤ 1. If f ∈ L1(X,m) is such that |f | ≤ 1
a.e. and ∣∣∣∣

∫
f dm

∣∣∣∣ = 1,

then ‖m‖ = 1 and f = eiθ a.e. for some θ ∈ R.

Let now A be a uniform algebra on a compact Hausdorff X, and let A′ be
its topological dual.

For every λ ∈ A′ there is a complex regular Borel measure µ with support
in X, with ‖µ‖ = ‖λ‖, such that

〈f, λ〉 =
∫

f dµ ∀ f ∈ A. (4.1)

Let dµ = h d|µ| be the polar decomposition of µ (with h measurable and
|h(x)| = 1 a.e. on Suppµ).

If u ∈ A is such that ‖u‖ = |〈u, λ〉| = 1, then ‖µ‖ = |µ|(X) = 1 and

hu = 〈u, λ〉 a.e.

Let B be a uniform algebra on a compact Hausdorff Y , and let A ∈ L(A,B)
be a linear isometry.

For x ∈ X let

Ω(x) = {f ∈ A : |f(x)| = ‖f‖ = 1} ,

and
Υ(x) = {y ∈ Y : |(Af)(y)| = 1 ∀ f ∈ Ω(x)} .

The proof of the following proposition has been devised by W. Holsztyński,
[19] in the case in which A = C(X) and B = C(Y ), but can be generalized,
with no substantial change, to the case considered here, [41].

Proposition 4.1. The set Υ(x) is closed and not empty for all x ∈ X.
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Let Q be the closed set of all y ∈ Y such that |(Au)(y)| = 1 for all
u ∈ U(A). Since

y ∈ Υ(x) ⇐⇒ |(Af)(y)| = 1 ∀ f ∈ Ω(x)

=⇒ |(Au)(y)| = 1 ∀u ∈ U(A) ⇐⇒ y ∈ Q,

and therefore
Υ(x) ⊂ Q ∀x ∈ X,

then Q 6= ∅.
For y ∈ Y , let λ ∈ A′ be the continuous linear form on A defined by

〈f, λ〉 = (Af)(y) ∀ f ∈ A,

and let µ be the complex, regular Borel measure on X which represents λ.
If, given any two distinct points t′ and t′′ in X there is u ∈ U(A) such

that u(t′) 6= u(t′′), Supp(µ) is reduced to one point, and the following lemma
holds, [41].

Lemma 4.2. If U(A) separates points in X, there is a map ψ : Q → X
such that

(Au)(y) = 〈u, λ〉 = (A1A)(y) u(ψ(y)) ∀u ∈ U(A), y ∈ Q.

An application of Bernard’s theorem yields then the following

Theorem 4.1. ([41]) If U(A) generates A, for any isometry A ∈ L(A,B)
there exist a closed, non-empty subset Q ⊂ Y and a continuous map ψ of Q
onto X such that

(Af)(y) = (A1A)(y) f(ψ(y)) ∀f ∈ A, y ∈ Q. (4.2)

Corollary. If U(A) generates A and

A(U(A)) ⊂ U(B),

then Q = Y .

Since ψ(Q) = X, if Af ∈ U(B), then f ∈ U(A), i.e.

A−1 (U(B) ∩A (A)) ⊂ U(A).

Hence, if A is surjective, U(B) ⊂ A (U(A)) and also U(A) ⊂ A−1 (U(B)).
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Corollary. If U(A) generates A and if the isometry A is surjective,
then A(U(A)) = U(B), and A is expressed by (4.2), where Q = Y and ψ is a
homeomorphism of Y onto X.

Assume now that every χ ∈ Σ(B) has a unique representing measure mχ

supported in Y .
Letting

P = {χ ∈ Σ(B) : Suppmχ ⊂ Q} ,

then Q ⊂ P and
Q = Y =⇒ P = Σ(B).

The following theorem, which yields a partial description of the linear
isometry A was established in [41].

Theorem 4.2. If every χ ∈ Σ(B) has a unique representing measure sup-
ported in Y , and if U(A) generates A, there exist a subset P of Σ(B), with
Q ⊂ P , and a continuous map ω : P → Σ(A) such that ω|Q = ψ and

〈Af, χ〉 = 〈A1A, χ〉.〈f, ω(χ)〉 ∀ f ∈ A, χ ∈ P. (4.3)

Let A,A,B be as before, and suppose furthermore that

A
(A−1

) ⊂ B−1. (4.4)

By the Gleason-Kahane-Zelazko theorem, this inclusion implies that

〈Af, χ〉 = 〈A1A, χ〉.〈f, φ(χ)〉 ∀ f ∈ A, χ ∈ Σ(B),

where φ : Σ(B) → Σ(A) is continuous.
Since A1A ∈ B−1, then φ is a continuous extension of ω, and therefore

φ(∂B) ⊃ ∂A.

Hence, if Σ(A) = ∂A and A1A ∈ U(B), then

|〈Au, χ〉| = |〈u, φ(χ)〉| = 1 ∀χ ∈ ∂B, u ∈ U(A),

proving thereby the following proposition which yields a complete description
of A in terms of the characters in Σ(B).

Proposition 4.2. Let A,A,B be as before, and let (4.4) hold. If Σ(A) =
∂A and A1A ∈ U(B), then P = Σ(B) and

〈Af, χ〉 = 〈A1A, χ〉.〈f, ω(χ)〉 ∀ f ∈ A, χ ∈ Σ(B).
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Corollary. If Σ(A) = ∂A and A is an isometric homomorphism, then

〈Af, χ〉 = 〈f, ω(χ)〉 ∀ f ∈ A, χ ∈ Σ(B),

where ω is a continuous map of Σ(B) onto Σ(A).

Let A = B. If the isometry A ∈ L(A) is not surjective, the spectrum
σ(A) of A is σ(A) = ∆, and ∆ is contained in the residual spectrum of A.
As a consequence, A(A) is contained in a proper closed linear subspace of A.
Hence,

Lemma 4.3. If A
(A−1

)
contains a non-empty open set, the isometry A is

surjective.

5. Examples

I. The algebras C(X) and C(Y )

By Theorem 3.2, Theorem 4.1 yields Holsztyński’s theorem, [19]:

Theorem 5.1. If A ∈ L(C(X), C(Y )) is an isometry, there exist a closed
subset Q of Y and a continuous surjective map ψ : Q → X such that

(Af)(y) = (A1C(X))(y).f(ψ(y)) ∀ f ∈ C(X), y ∈ Q.

Furthermore,

Q = Y ⇐⇒ A (U(C(X))) ⊂ U(C(Y )),

and, if A is an isometric homomorphism of C(X) into C(Y ), then Q = Y and

(Af)(y) = f(ψ(y)) ∀ f ∈ C(X), y ∈ Y.

Let now X = Y , and let the linear isometry A be such that

A (U(C(X))) ⊂ U(C(X)),

and that
lim

n→+∞ (Anf) (y) = f(y) ∀ f ∈ C(X), y ∈ X, (5.1)

where An is the n-th iterate of A:

An = A · · ·A, (n times),
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expressed by

(Anf)(y) = (An1C(X))(y) f(ψ◦n(y)) ∀ f ∈ C(X), y ∈ X,

and
ψ◦n = ψ ◦ · · · ◦ ψ (n times),

(An1C(X))(y)

= (A1C(X))(y) (A1C(X))(ψ(y)) . . . (A1C(X))(ψ
◦(n−1)(y)).

(5.2)

Since An(1C(X)) ∈ U(C(X)) for n = 1, 2, . . . , then

|(Anf)(y)| = |f(ψ◦n(y))| ∀ f ∈ C(X), y ∈ X, n = 1, 2, . . . ,

and (5.1) yields

lim
n→+∞ |f(ψ◦n(y))| = |f(y)| ∀ f ∈ C(X), y ∈ X.

Since X is compact, for any y ∈ X there are y′ ∈ X and a sequence
n1 < n2 < . . . of positive integers such that

lim
j→+∞

ψ◦nj (y) = y′.

Thus, by (5.2),

|f(y)| = lim
j→+∞

|f (ψ◦nj (y))| = |f(y′)| ∀ f ∈ C(X),

and therefore y = y′, whence

lim
n→+∞ψ◦n(y) = y ∀ y ∈ X,

and, in conclusion,

ψ(y) = lim
n→+∞ψ◦(n+1)(y) = y ∀ y ∈ X. (5.3)

Thus
Af = A1C(X) f ∀ f ∈ C(X),

and, by (5.3), (5.2) reads

(An1C(X))(y) =
(
(A1C(X))(y)

)n ∀ y ∈ X, n = 1, 2, . . . ,

whence A1C(X) = 1C(X), i.e. Af = f for all f ∈ C(X), proving thereby
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Proposition 5.1. If the isometry A ∈ L(C(X)) maps unimodular func-
tions to unimodular functions (in particular, if A is surjective or is an isometric
homomorphism) and if the sequence An of the iterates of A converges to the
identity for the weak operator topology, then A is the identity.

II. The disc algebra

Let A ∈ L (A0
)

be an isometry with

A
(
U

(A0
)) ⊂ U

(A0
)
. (5.4)

Then
A1A0 ∈ U

(A0
)
,

and, since every character in Σ
(A0

)
has a unique representing measure, by

Theorem 4.2 there is a continuous map ω : ∆ → ∆ such that ω(∂∆) = ∂∆,
and

(Af)(z) = (A1A0)(z) f(ω(z)) ∀ f ∈ A0, z ∈ ∆.

If ι is the coordinate function, then

(Aι)(z) = (A1A0)(z) $(z),

where $, defined by $(z) = ι(ω(z)), is a unimodular function in A0.
If f ∈ A0 is an analytic polynomial of degree N ,

f =
N∑

n=0

cn ιn, cn ∈ C,

then

(Af)(z) = (A1A0)(z)
N∑

n=0

cnιn($(z))

= (A1A0)(z)
N∑

n=0

cn(ι($(z))n = (A1A0)(z)f($(z)).

Since analytic polynomials are dense in A0,

Af = A1A0 f ◦$ ∀ f ∈ A0.
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If the isometry A is surjective, then

A−1f = A−1(1A0) f ◦ τ,

where τ ∈ U
(A0

)
.

Being

(A−1)(z) (A−11A0)(τ(z)) = (A1A0)(z) (A−1)($(z)) = 1 ∀ z ∈ ∆,

the holomorphic function A1A0 is constant: A1A0 = c1A0 for some c ∈ ∂∆.
Being also

f ◦$ ◦ τ = f ◦ τ ◦$ = f ∀ f ∈ A0,

$ is a Möbius transformation, and τ = $−1, proving, in conclusion,

Theorem 5.2. If, and only if, A ∈ L (A0
)

is a bijective isometry, then

Af = c f ◦$ ∀ f ∈ A0,

where c ∈ ∂∆ and $ is a Möbius transformation.

Here is an example of a linear isometry A of A0 into itself which does not
satisfy (5.4).

Let: C be a Cantor set, closed in ∂∆ and with Lebesgue measure zero;
y0 ∈ ∂∆\C; K = C ∪ {y0}; β : K → C a continuous function such that
β(C) = ∂∆ and β(y0) = 0.

By Rudin’s Theorem 3.4, there is ϕ ∈ A0 such that ‖ϕ‖ = 1 and ϕ|K = β.
The map

A : f 7→ f ◦ ϕ

is a continuous endomorphism of A0, but

A
(
U

(A0
)) 6⊂ U

(A0
)
.

We will see now how Theorem 5.2 and the Wolff-Denjoy theorem, yield
some information on the point spectrum of a surjective linear isometry A of
A0 mapping inner functions to inner functions

Note first that if, and only if, A1A0 is constant (A1A0 = c1A0 for some
c ∈ ∂∆), then 1A0 is an eigenvector of A (with eigenvalue c).

Let now A ∈ L(A0) be an isometry satisfying (5.4).
Then,

Af = A1A0 f ◦$ ∀ f ∈ A0, (5.5)
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where {A1A0 , $} ⊂ U(A0), and $ is not constant.
If $ is not an elliptic Moebius transformation, by the Wolff-Denjoy the-

orem (see, e.g., [7] or [25]), the sequence {$◦n(z) : n = 0, 1, 2, . . .} converges
to a point ζ ∈ ∂∆ for all z ∈ ∆:

lim
n→+∞$◦n(z) = ζ ∀ z ∈ ∆.

Let c ∈ ∂∆ be an eigenvalue of A and let g ∈ A0 be an eigenvector
associated to c:

A g = c g.

For any z ∈ ∆ and n = 1, 2, . . .

|g(z)| = |cng(z)| = |(Ang) (z)| = |g ($◦n(z))| ,

and therefore
|g(z)| = lim

n→+∞ |g ($◦n(z))| = |g(ζ)|

for all z ∈ ∆.
Hence the holomorphic function g is constant:

g = k1A0 for some k ∈ ∂∆.

Since

k1A0 = g =
1
c

Ag =
k

c
A1A0 ,

the following proposition holds

Proposition 5.2. If the linear isometry A is represented by (5.5), where
A1A0 ∈ U(A0) and $ ∈ U(A0) is non-constant and is not an elliptic Moe-
bius transformation of ∆, then: c is the only eigenvalue of A; its associated
eigenspace is spanned by 1A0 ; (5.4) holds; the unimodular function $ in (5.5)
fixes c and is such that

lim
n→+∞$n(z) = c ∀ z ∈ ∆.

If A is a surjective isometry, then A1A0 = c1A0 for some c ∈ ∂∆ and
$ in (5.5) is a Moebius transformation. If it is not elliptic, the asymptotic
behaviour of its iterates is described by the above proposition.
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III. Bounded holomorphic functions

Let A ∈ L(H∞) be an isometry. As in the case of A0, by Theorem 4.2
there are P ⊂ Σ(H∞) and a continuous map ω : P → Σ(H∞) such that

〈Af, χ〉 = 〈A1H∞ , χ〉.〈f, ω(χ)〉 ∀ f ∈ H∞, χ ∈ P.

Moreover, Q = P ∩ ∂H∞ is closed in ∂H∞, and ω(Q) = ∂H∞.
If

A (U(H∞)) ⊂ U(H∞), (5.6)

then Q = ∂H∞, P = Σ(H∞), and there is an inner function ϕ such that

(Af)(z) = (A1H∞)(z) f(ϕ(z)) ∀ f ∈ H∞, z ∈ ∆. (5.7)

Similar arguments to those developed above for A0 show that, if the isom-
etry A is surjective, A1H∞ is constant, and

Af = c . f ◦ ϕ ∀ f ∈ H∞,

where c ∈ ∂∆ and ϕ is a Möbius transformation.

Remark. The same example constructed above for A0 shows the existence
of linear isometries of H∞ which do not satisfy (5.6).

We will now show that, if the iterates of the linear isometry A of H∞

satisfying (5.6) converge to the identity for the weak operator topology, then
A itself is the identity.

The hypothesis implies that

lim
n→+∞ (Anf) (z) = f(z) ∀ f ∈ H∞, ∀ z ∈ ∆. (5.8)

If
|(Am1H∞) (z)| ≤ a

for some z ∈ ∆, a ∈ (0, 1) and m ≥ 1, then

|(An1H∞) (z)| ≤ a < 1

when n À 1, contradicting (5.8). Thus |(A1H∞)(z)| = 1 for all z ∈ ∆, and
therefore, by the maximum principle, there is some constant c ∈ ∂∆ such that

(A1H∞)(z) = c ∀ z ∈ ∆.
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Since, by (5.8),
cn → 1 as n → +∞,

then c = 1 and (5.7) yields
Af = f ◦ ϕ. (5.9)

Thus, again by (5.8),

lim
n→+∞ϕ◦n(z) = lim

n→+∞ ι(ϕ◦n(z)) = z

for all z ∈ ∆. The Wolff-Denjoy theoremñ implies that

ϕ(z) = z ∀ z ∈ ∆,

proving thereby the following theorem.

Theorem 5.3. The identity operator is the only linear isometry A of H∞

into itself which satisfies (5.7), and whose iterates converge to the identity for
the weak operator topology.

6. Strongly continuous semigroups of linear isometries of H∞

Let E be a complex Banach space and let T : R+ → L(E) be a strongly
continuous semigroup. For t ∈ R+, let T ′′(t) be the bi-dual of T (t)

The Banach space E is said to be a Grothendieck space if every weak-star
convergent sequence in the topological dual E ′ of E converges weakly.

Theorem 6.1. If E is a Grothendieck space, T ′′ : R+ 3 t 7→ T”(t) is a
strongly continuous semigroup.

The Banach space E is said to have the Dunford-Pettis property if, when-
ever {xn} and {λn} are sequences in E and in E ′ converging weakly to zero,
the sequence 〈xn, λn〉 converges.

Theorem 6.2. Let E have the Dunford-Pettis property. If T” is a strongly
continuous semigroup, the semigroup T is uniformly continuous.

Thus:

Theorem 6.3. If E is a Grothendieck space with the Dunford-Pettis prop-
erty every strongly continuous semigroup T on E is uniformly continuous 7.

7See, [21] and [22] also for bibliographical references.
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The link between these results and linear isometries of H∞ is provided by
a result, due to J. Bourgain, [5], whereby H∞ is a Grothendieck space with
the Dunford-Pettis property.

Thus, any strongly continuous semigroup T : R+ → L(H∞) of linear
isometries of H∞ into itself is the restriction to R+ of a uniformly continuous
group on R, with values in L(H∞), which will be denoted by the same symbol
T .

Since for any t < 0 and any f ∈ H∞

‖f‖ = ‖T (−t) T (t) f‖ = ‖T (t) f‖,

T is the restriction to R+ of a strongly continuous group T : R → L(H∞) of
surjective isometries of H∞.

Hence there are a function c : R → ∂∆ and a family {$t : t ∈ R} of
holomorphic automorphisms of ∆ such that

T (t)f = c(t) f ◦$t ∀ t ∈ R, f ∈ H∞, (6.1)

Being c(t) = T (t)1H∞ , c is a continuous homomorphism of R into ∂∆.
Therefore there is δ ∈ R such that

c(t) = eiδt ∀ t ∈ R. (6.2)

Furthermore
$s+t = $s ◦$t ∀ s, t ∈ R

and the map $ : t → $t(z) is continuous for every z ∈ ∆; thus, $ is a
continuous flow of holomorphic automorphisms of ∆: the conformal flow of
T .

Hence the following theorem holds:

Theorem 6.4. Any strongly continuous semigroup of linear isometries of
H∞ is the restriction to R+ of a uniformly continuous group of surjective
isometries.

The continuous flow $ is defined by a one-parameter subgroup t 7→ exp tΘ
of SU(1, 1) defined by a 2× 2 matrix

Θ
(

iγ c
c −iγ

)
,

with γ ∈ R, c ∈ C.



212 e. vesentini

As was shown, e.g., in [40], if γ2 − |c|2 is positive, negative or zero, then
$t(z) is expressed respectively by:

$t(z) =

(
cos(rt) + iγ

r sin(rt)
)
z + c

r sin(rt)
c
r sin(rt)z + cos(rt)− iγ

r sin(rt)

with r =
√

γ2 − |c|2;

$t(z) =

(
cosh(st) + iγ

s sinh(st)
)
z + c

s sinh(st)
c
s sinh(st)z + cosh(st)− iγ

s sinh(st)

with s =
√
|c|2 − γ2;

$t(z) =
(1 + itγ)z + tc

tcz + 1− itγ
.

In the first case, the flow $ is elliptic, i.e. fixes one point in ∆ and
is periodic with period 2π/r. In the second and third cases, the flow $ is
respectively hyperbolic and parabolic and has no fixed point in ∆.

In the elliptic case, the periodicity of $ and (6.2) show that the group T
is almost periodic.

It was shown in [40] that, if the flow $ is not elliptic, there is some k > 0
such that

‖T (t)ι‖ >
1
2

∀ t > k.

In conclusion, the following theorem holds, [40].

Theorem 6.5. The group T is almost periodic if, and only if, its confor-
mal flow $ is elliptic.

Let now T : R → L(A0) be a strongly continuous group of (surjective)
linear isometries of A0. Arguing as in the case of H∞ one shows that T is
represented by

T (t)f = eiδt . f ◦$t

for all t ∈ R and all f ∈ A0, where δ ∈ R and $ : t 7→ $t is a continuous flow
of Moebius transformations of ∆.

As before we see that, if the continuous flow $ is elliptic, the group T is
almost periodic.

On the other hand, if the flow $ is hyperbolic or parabolic, by Proposition
5.2 the only eigenspace of T (t) is a complex line. Theorem 2 of [3] shows then
that the group T is not almost periodic.
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7. Some remarks on the non-commutative case

In both the Banach-Stone and the Gleason-Kahane-Zelazko approaches,
the existence of weighted composition operators depends on the presence of a
wealth of continuous homomorphisms into the complex field, which is granted,
via the Gelfand theory, by the commutativity of the algebra. On the other
hand, these homomorphisms may be rare - or even not exist at all - in the case
of some non-abelian Banach algebra. For example, an elementary computation
shows that, for any integer n > 1 and for any linear form λ on the matrix
algebra L(Cn), there is some invertible element x ∈ L(Cn) such that 〈x, λ〉 =
0.

A similar result holds for the W ∗-algebra L(H) of all continuous linear
operators on any separable, infinite-dimensional complex Hilbert space H and
for a non-vanishing normal linear form λ on L(H):

Theorem 7.1. ([39]) If dimH > 1, for any normal linear form λ on
the W ∗-algebra L(H)8 there is some invertible element x ∈ L(H) such that
〈x, λ〉 = 0.

Proof. [42] We shall prove that there is no non-vanishing normal linear
form λ on L(H) such that

〈xy, λ〉 = 〈x, λ〉 〈y, λ〉 ∀x, y ∈ L(H). (7.1)

The polar decomposition of λ is expressed by λ = Rv µ, where: µ is a
normal positive functional on L(H), v is a partial isometry on H and Rv acts
on γ ∈ L(H)′ by

〈•, Rvγ〉 = 〈v •, γ〉.
Therefore,

〈x, λ〉 = 〈xv, µ〉 ∀x ∈ L(H).

Since µ is a positive normal functional, there is a sequence {ξn : n =
1, 2, . . .} of mutually orthogonal elements ξn ∈ H such that

∑+∞
n=1 ‖ξn‖2 < ∞

and

〈x, µ〉 =
+∞∑

n=1

(xξn|ξn)

8i.e. a linear form which is continuous for the topology defined in L(H) by the norm-
topology on its pre-dual; see, e.g,, [32]
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for all x ∈ L(H) ([32], Corollary 1.15.4). Thus, letting ηn = vξn, then∑+∞
n=1 ‖ηn‖2 < ∞ and

〈x, λ〉 =
+∞∑

n=1

(xηn|ξn) ∀x ∈ L(H).

Hence, (7.1) becomes

+∞∑

p=1

(xyηp|ξp) =
+∞∑

p=1

(xηp|ξp)
+∞∑

p=1

(yηp|ξp) ∀x, y ∈ L(H). (7.2)

Note at this point that the set {ξn} contains infinite non-vanishing elements
because, if that set contains only N > 0 non-vanishing elements ξ1, . . . , ξN ,
there are x, y ∈ L(H) such that

N∑

p=1

(xηp|ξp)
N∑

p=1

(yηp|ξp) 6= 0

and
y∗x∗ξp = 0 for p = 1, . . . , N,

contradicting (7.2).
Choosing now x and y with eigenvectors ηn and eigenvalues ζn and τn for

n = 1, 2, . . ., i.e.,
xηn = ζnηn and yηn = τnηn,

with
+∞∑

n=1

|ζn|2 < ∞,

+∞∑

n=1

|τn|2 < ∞, (7.3)

(7.2) reads
+∞∑

p=1

ζpτp ( ηp|ξp) =
+∞∑

p=1

ζp (ηp|ξp)
+∞∑

p=1

τp (ηp|ξp) (7.4)

for every choice of the sequences {ζp} and {τp} satisfying (7.3).
Fixing n ≥ 1, ζn = τn = 1 and ζm = τm = 0 whenever m 6= n, (7.4)

becomes
(ηn|ξn) (1− (ηn|ξn)) = 0,

and implies that either (ηn|ξn) = 0 or (ηn|ξn) = 1. Hence (ηn|ξn) = 0 when
n À 0.
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Choose n and m in such a way that (ηn|ξn) = 1 and (ηm|ξm) = 0 and
choose x, y in L(H) such that: xηpyηp = 0 whenever p 6= n,m, and

{
x ξn = a11ξn + a12ξm,

x ξm = a21ξn + a22ξm,

{
y ηn = b11ξn + b12ξm,

y ηm = b21ξn + b22ξm,

with a11, . . . , b22 ∈ C.
Then, xyηp = 0 for all p 6= n,m, and

{
xy ηn = c11ξn + c12ξm,

xy ηm = c21ξn + c22ξm.

The matrix (
c11 c12

c21 c22

)

is the product of the matrices
(

b11 b12

b21 b22

)
,

(
a11 a12

a21 a22

)
.

Since

〈x, λ〉 =
+∞∑

p=1

(xηp|ξp) = a11 (ξn|ξn) + a22 (ξm|ξm) = a11 (ξn|ξn) ,

〈y, λ〉 =
+∞∑

p=1

(yηp|ξp) = b11 (ξn|ξn) + b22 (ξm|ξm) = b11 (ξn|ξn) ,

〈xy, λ〉 =
+∞∑

p=1

(xyηp|ξp) = c11 (ξn|ξn) + c22 (ξm|ξm)

= c11 (ξn|xn) = (b11a11 + b12a21) (ξn|ξn) ,

choosing b12a21 6= 0 we contradict (7.1), proving thereby Theorem 7.1.

An attempt to extend the Banach-Stone and the Gleason-Kahane-Zelazko
approaches to the non-commutative case faces the problem how to replace
the continuous maps into C which play a relevant role in Theorem 2.2 and
Theorem 4.2. A preliminary exploration in this direction is carried out in
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[42], where some linear idempotents are singled out among all continuous
homomorphisms with a higher dimensional range. Here are some scattered
findings of this exploration.

Let A be a unital Banach algebra, let λ ∈ A′ and let λ̃ ∈ L(A) be defined
by

λ̃ : x 7→ 〈x, λ〉 1A ∀x ∈ A.

Then, λ̃ is an idempotent of L(A) mapping A−1 into itself if, and only if,
λ is a continuous character of A.

If λ̃ is an idempotent of L(A) mapping A−1 into itself, then λ̃ is a module-
map of A as a two-sided ker(λ̃− I)-module.

Let B be a unital Banach algebra, let E(B) be the set of all invertible
elements of B which have logarithms, and let f : C → B be a holomorphic
map for which

f(0) = 1B, f ′(0) = 0, f(C) ⊂ E(B)

and there is a ≥ 1 such that

0 < ‖f(z)‖ ≤ ae|z| ∀ z ∈ C.

If, for any two distinct points x, y of f(C) there is λ ∈ B′ for which 0 6∈
〈E(B), λ〉 and 〈x, λ〉 6= 〈y, λ〉, then

f(z) = 1B ∀ z ∈ C.

As a consequence of this result, if A is a unital Banach algebra, and if
Λ ∈ L(A,B) is such that

Λ(A−1) ⊂ E(B) and Λ(1A) = 1B,

then
Λ(x) = 0 =⇒ Λ(xn) = 0 ∀n = 1, 2, . . . .
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