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Abstract : One approach to the study of multivariate operator theory on Hilbert space in-
volves the study of Hilbert spaces that are modules over natural function algebras or Hilbert
modules. Techniques from complex and algebraic geometry have natural application in this
setting. Many modules give rise to a canonical hermitian holomorphic bundle and part of
the study involves relating the operator and geometric structures.

In these notes, an exposition is presented of work by several authors over the past two or
three decades with an emphasis on some more recent work. In particular, concrete examples
are drawn from algebras acting on classical Hilbert spaces of holomorphic functions. The
characterization of reducing submodules in geometric terms is considered, particularly the
relation to the curvature of the Chern connection on the associated bundle. An interpreta-
tion of the model theory of Sz.-Nagy and Foias in this context is given including possible
generalizations to the several variable context. Recent results characterizing submodules
isometrically isomorphic to the original are described. Many proofs are given especially
when new insights are possible and references are provided for those readers interested in
following up on these ideas.

Key words: Hilbert modules, Šilov modules, kernel Hilbert spaces, invariant subspaces,
isometries, holomorphic structure, localization.

AMS Subject Class. (2000): 46E22, 46M20, 47B32, 32B99, 32L05.

1. First lecture

1.1. Introduction We discuss an approach to the study of bounded
linear operators on a complex Hilbert space which involves concepts and tech-
niques from complex geometry. Although the main goal is to develop an
effective approach to the study of multivariate operator theory, the methods
are also useful for the single variable case and we will use concrete examples
from the latter to illustrate the theory.

We begin by recalling a basic result from linear algebra on finite dimen-
sional Hilbert space, that the number of distinct eigenvalues of a matrix can’t

† This is an informal writeup of a series of three lectures given at the Fourth Advanced
Course in Operator Theory and Complex Analysis, Sevilla, 2007. The research was partially
supported by a grant from the National Science Foundation.
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exceed the dimension of the space. It is not surprising that on an infinite
dimensional Hilbert space an operator can have infinitely many distinct eigen-
values. However, the “size” or the cardinality of such a set is, perhaps, unex-
pected. In particular, consider the basic separable Hilbert space, `2(Z+), of
one-sided sequences {an}n∈Z+ , of complex numbers for Z+ the non-negative
integers, which are square-summable. On `2(Z+) a diagonal operator can
have ℵ0 distinct eigenvalues. However, a bounded operator on `2(Z+) can
have more.

Let U+ be the unilateral shift on `2(Z+); that is, U+{(a0, a1, a2, . . . )} =
(0, a0, a1, . . . ). Then U∗

+, its adjoint the backward shift, has the property that
U∗

+kλ = λ̄kλ for λ in the open unit disk D. Here kλ = (1, λ̄, λ̄2, . . . ), which is
square summable for |λ| < 1. Thus U∗

+ has distinct eigenvalues corresponding
to D which has the cardinality of the continuum. The unilateral shift and its
adjoint were introduced by von Neumann in his classic study [27] of symmetric
operators.

The family {kλ} is not only continuous in λ but is an anti-holomorphic
vector-valued function λ → kλ on D. (The introduction of the complex
conjugate is standard so that there is holomorphicity for U+ and anti-
holomorphicity forU∗

+.) We will use this property to study the operator as
follows. If we consider `2(Z+) ⊆ `2(Z), where the latter is the Hilbert space
of two-sided infinite square summable sequences, then using Fourier series
we can identify the latter space with L2(T), the space of square summable
complex-valued measurable functions on the unit circle T = ∂D with D the
unit disk in C. In this way, `2(Z+) corresponds to the Hardy space H2(D) of
functions in L2(T) which have holomorphic extensions to D. The operator U+

corresponds to the Toeplitz operator Tz on H2(D) defined to be multiplication
by the coordinate function z. Moreover, the function kλ above corresponds to
the analytic function kλ(z) = (1− λ̄z)−1 for z ∈ D.

If 〈kλ〉 denotes the one-dimensional subspace of H2(D) spanned by kλ for
λ ∈ D, then π(λ) = 〈kλ〉 defines an anti-holomorphic function from D to the
Grassmannian Gr(1,H2(D)) of one-dimensional subspaces of H2(D). This
Grassmannian is an infinite dimensional complex manifold over which there
is a canonical Hermitian holomorphic line bundle with the fiber over a point
being the one-dimensional Hilbert subspace itself. We are interested in the
natural pull-back bundle E∗

H2(D) over D defined by π. (The presence of the
asterisk corresponds to the fact that this bundle is anti-holomorphic. We see
its dual, EH2(D), later in these notes.) Our goal is to study H2(D) and the
action of Tz on it using E∗

H2(D), an approach introduced by M. Cowen and the
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author in [9].
There are many other natural examples analogous to the Hardy space with

similar structure. We describe one class, the family of weighted Bergman
spaces on D. Fix α, −1 < α < ∞, and consider the measure dAα =(
1 − |z|2)α dA on D, where dA denotes area measure on D. The weighted

Bergman space L2,α
a (D) is the closed subspace of L2(dAα) generated by the

polynomials C[z] or, equivalently, the functions in L2(dAα) which are equal
a.e. to a holomorphic function on D.

There is an explicit formula for an analytic function γα
λ ∈ L2,α

a (D) for λ ∈ D
such that M∗

z,αγα
λ = λ̄γα

λ , where Mz,α is the operator on L2,α
a (D) defined to be

multiplication by z and such that γα
λ is anti-holomorphic in λ. In particular,

one has

γα
λ (z) = (1− zλ̄)−2−α =

∞∑

n=0

Γ(n + 2 + α)
n!Γ(2 + α)

(zλ̄)n, (1)

where Γ is the gamma function. (For more information on weighted Bergman
spaces, see [21].) In particular, for α = 0, one obtains the classical Bergman
space for D, the closure of C[z] in L2(dA).

Again one has an anti-holomorphic map πα : D → Gr(1, L2,α
a (D)) and a

Hermitian anti-holomorphic line bundle E∗
L2,α

a (D))
over D for −1 < α < ∞.

1.2. Quasi-free Hilbert modules We have indicated that we are in-
terested in studying not only the Hilbert space but also the action of cer-
tain natural operators on it. The best way to express this structure is in
the language of Hilbert modules. Given an n-tuple of commuting bounded
operators TTT = (T1, . . . , Tn) acting on a Hilbert space H, there is a natu-
ral and obvious way of making H into a unital module over the algebra
C[zzz] = C[z1, . . . , zn] of complex polynomials in n commuting variables. In
some cases, we are interested in contractive modules or module actions that
satisfy ‖Mpf‖H ≤ ‖p‖A(Bn)‖f‖H, where Mp denotes the operator on H de-
fined by module multiplication Mpf = p · f . Here, A(Bn) is the algebra of
continuous functions on the closed unit ball in Cn that are holomorphic on
Bn, with the supremum norm.

More generally, we consider a unital module action of the function algebra
A(Ω) on a Hilbert space H, where Ω is a bounded domain in Cn. Here
A(Ω) is the closure in the supremum norm of the functions holomorphic on a
neighborhood of the closure of Ω.



138 r.g. douglas

A powerful technique from algebra, closely related to spectral theory, is
localization. We sketch those aspects of this approach which we will need.
For ωωω0 ∈ Cn, let

Iωωω0 =
{
p(zzz) ∈ C[zzz] : p(ωωω0) = 0

}

be the maximal ideal in C[zzz] of polynomials that vanish at ωωω0.
Now assume that H is a Hilbert module over C[zzz] for which

(i) DIMCH/Iωωω · H = m < ∞ for ωωω ∈ Bn;

(ii)
∞⋂

k=0

Ik
ωωω · H = (0) for ωωω ∈ Bn.

(2)

Assumption (i) is usually referred to as the module being semi-Fredholm
(cf. [19]). Note that the quotient module being finite dimensional implies that
the submodule Iωωω · H is closed in H. The integer m is called the multiplicity
of H. In general, this multiplicity is less than the rank of H or the smallest
cardinality of a set of generators for H as a Hilbert module.

Hilbert modules satisfying (i) and (ii) have the properties referred to as
quasi-freeness which we’ll discuss later in these lectures. In [12], [13], prop-
erties of a closely related class of modules are obtained as well as alternate
descriptions of the class. The concept is related to earlier work of Curto and
Salinas [11]. These modules are viewed as the potential building blocks for
general Hilbert modules. We will see in the second lecture that other sets of
assumptions yield much of the structure possessed by quasi-free Hilbert mod-
ules. In the following section we’ll discuss the intrinsic properties of the class.
Finally, while we confine our attention here to Hilbert modules over the unit
ball or over C[zzz], other domains in Cn are important.

There are many natural examples of such quasi-free Hilbert modules. In
particular, if L2(∂Bn) denotes the usual Lebesgue space for surface measure
on the unit sphere, ∂Bn, then the Hardy module H2(Bn) can be defined as the
closure of C[zzz] in L2(∂Bn). Similarly, the closure of C[zzz] in the Lebesgue space,
L2(Bn), relative to volume measure on Bn yields the Bergman module L2

a(Bn).
Both H2(Bn) and L2

a(Bn) are quasi-free Hilbert modules of multiplicity one. A
related example is the n-shift module H2

n, recently studied by several authors
[4], [18]. One quick description of H2

n is that it is the symmetric Fock space
in n variables. While module multiplication by polynomials in C[zzz] define
bounded operators on H2

n, that is not the case for general functions in A(Bn).
However, H2

n is quasi-free having multiplicity one.
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One could consider analogues of weighted Bergman spaces on Bn, but we
confine our attention here to these three examples.

The relation of quasi-free Hilbert modules to our earlier discussion of eigen-
vectors is given in the following lemma which is straightforward to establish.

Lemma 1.1. A vector f in the quasi-free Hilbert module H is orthogonal
to Iωωω · H for ωωω ∈ Bn if and only if M∗

p f = p(ωωω)f for p ∈ C[zzz].

Thus Bn consists of common eigenvalues for the operators defined by
the adjoint of module multiplication. The fact that one can find an anti-
holomorphic function consisting of eigenvectors is taken up in the next
section.

1.3. Hermitian holomorphic vector bundles Let Hωωω denote the
quotient Hilbert module H/Iωωω · H for ωωω ∈ Bn. Now the role of the complex
conjugate is revealed since the map ωωω → Hωωω is “holomorphic”. However,
this relationship is expressed not in terms of functions but as sections of a
holomorphic bundle.

For f ∈ H, let f̂ be the function in Bn so that f̂(ωωω) is the image of f ∈ Hωωω.

Definition 1.1. A Hilbert module R over Bn is said to be quasi-free of
multiplicity m if DIMCRωωω = m for ωωω ∈ Bn and

⋃
ωωω∈BnRωωω can be given

the structure of a Hermitian holomorphic vector bundle over Bn so that the
section f̂ is holomorphic for f ∈ R and the map f → f̂ is one-to-one.

We say that R is weakly quasi-free if these properties hold for Rωωω =
R/[Iωωω · R], where [ ] denotes closure.

Theorem 1.1. If H is a Hilbert module satisfying conditions (2) for m
and ωωω ∈ Bn, then it is quasi-free having multiplicity m.

This result is related to earlier work of Curto and Salinas [11] and the
existence of the bundle structure is established in [12, Section 2.2] with the
additional assumption that H has a set of precisely m generators as a Hilbert
module. The argument for the general case requires the use of Banach space-
valued sheaf theory [20] and was described to the author by Putinar. However,
the proof seems to require the assumption that H is finitely generated as a
Hilbert module.
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Question 1. Do conditions (2) imply that the theorem is true, at least
for Hilbert modules over Bn?

Remark 1.1. While the sheaf-theoretic techniques used require that the
module be finitely generated, it seems possible that one can restrict attention
to open subsets ∆ of Bn over which

⋃
ωωω∈∆Rωωω is finitely generated. In par-

ticular, the same would be true on the overlap of two such open sets. This
approach might allow one to prove a local version of Theorem 1.1 and show
that

⋃
ωωω∈U Rωωω could be given the structure of a Hermitian holomorphic vec-

tor bundle, when the dimension of Rωωω is constant for ωωω ∈ U an open subset of
Bn. Moreover, it would follow that the map from R to holomorphic sections
over U would be injective.

As the notation suggests, the bundle EH is dual to the bundle E∗
H defined

earlier (for the case m = 1) as the pull-back of the anti-holomorphic map from
Bn to Gr(m,H) defined by ωωω → (Iωωω ·H)⊥. We consider this result in the next
lecture.

The importance of this representation theorem lies in the fact that the
Hilbert module H is characterized by the Hermitian holomorphic vector bun-
dle EH and vice versa. This fact was established in the case n = 1 or 2 by
M. Cowen and the author in [9], [10]; for commuting n tuples, n > 1, by Curto
and Salinas [11]; and for Hilbert modules by Chen and the author [7].

Theorem 1.2. Two quasi-free Hilbert modules H and H̃ over Bn, are
isomorphic if and only if the corresponding Hermitian holomorphic vector
bundles EH and EH̃ are isomorphic.

More precisely, there exists a unitary module map U : H → H̃ if and only
if there exists an isometric holomorphic bundle map Φ : EH → EH̃.

That U is a module map means that UMp = M̃pU for p ∈ C[zzz], where
M̃p denotes the operators defined by module multiplication on H̃. Thus U

identifies H and H̃ as Hilbert modules.
The statement about Φ means that the bundle map is holomorphic from

the total space of EH to that of EH̃ and acts as a unitary operator from the
fiber EH|ωωω to the corresponding fiber EH̃|ωωω for ωωω ∈ Bn.

A key step in the proof of this result depends on a Rigidity Theorem,
established in full generality in [9].

Theorem 1.3. If Ω is a domain in Cn, k a positive integer, H and H̃
are Hilbert spaces with π and π̃ anti-holomorphic maps from Ω to Gr(k,H)
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and Gr(k, H̃), respectively, then the Hermitian anti-holomorphic pull-back
bundles for π∗ and π̃∗ over Ω are equivalent if and only if there exists a
unitary U : H → H such that

π(ωωω) = U∗π̃(ωωω)U for ω ∈ Ω .

An analogous result holds for the quotient Grassmanian which allows one
to replace E∗

H and E∗
H̃ in Theorem 1.2 by EH and EH̃.

1.4. Curvature- and operator-theoretic invariants Now Theo-
rem 1.2 is particularly useful in this context because we can directly relate
operator-theoretic invariants with those from complex geometry. Recall that
in the middle of the twentieth century, Chern observed that there is a unique
canonical connection on a Hermitian holomorphic bundle (cf. [34]). A connec-
tion is a first order differential operator defined on the smooth sections of the
vector bundle. Connections always exist and can be expressed in terms of a
sum of smooth one forms. In the holomorphic context, the connection can be
expressed as the sum of (1,0) forms and (0,1) forms. The key observation of
Chern is that when the bundle is Hermitian and holomorphic one can require
that the (0,1) forms all be zero and in this case the connection is unique. The
curvature K(ωωω) for a connection is a section of the two-forms built on the
bundle. Hence, one can speak of the curvature of a Hermitian holomorphic
vector bundle and hence, in particular, in our context. In [9], Cowen and the
author showed how to calculate this curvature and its partial derivatives in
terms of operator theoretic invariants.

Let us assume that H is a quasi-free, multiplicity one Hilbert module over
D. Then for ω ∈ D, NULL(Mz − ω)∗2 is two-dimensional and the restriction
of (Mz − ω)∗ to it is a nilpotent operator of order two. If one chooses an
orthonormal basis for NULL(Mz − ω)∗2 correctly, then (Mz − ω)∗ has the
form (

0 hH(ω)
0 0

)
.

If one requires that hH(ω) > 0, then the function hH(ω) is unique. Further,
one can show that KH(ω) = − 1

hH(ω)2
dωdω̄ in general. Since the curvature

is a complete invariant for line bundles, we see that this function hH(ω) is a
complete invariant for the Hilbert module H.

We can calculate this function for the examples introduced earlier. In
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particular,

hH2(D)(ω) = 1− |ω|2 ,

hL2
a(D)(ω) =

1√
2

(
1− |ω|2) ,

h
L2,α

a (D)
(ω) =

1√
2 + α

(
1− |ω|2) .

(3)

These calculations yield the fact that none of these Hilbert modules are iso-
morphic. (Of course, there are other ways to see this fact.)

One can also calculate the curvatures for the Hardy and Bergman modules
for Bn but curvature in this case can not be described by a single function.
We’ll say more about this case in the next lecture.

1.5. Reducing submodules We continue by relating some operator
theoretic concepts to their complex geometric counter-parts. Since the latter
invariants form a complete set, in principle, we can always do that but in some
cases the results are particularly striking and useful.

We begin by considering reducing submodules. For general quasi-free
Hilbert modules, there is no characterization available for general submod-
ules. Consideration of the situation for just the Hardy and Bergman modules
over D shows just how complex is the structure. Still we will have some things
to say about submodules in Section 2.5. Here we want to consider submod-
ules L1 contained in a quasi-free Hilbert module H for which there exists a
submodule L2 such that H = L1⊕L2. (The symbol ⊕ indicates an orthogonal
direct sum.) These are the reducing submodules.

A standard argument shows that a reducing submodule is the range of a
projection P which is a module map. Hence, one approach to characterizing
reducing submodules is to consider first the commutant of the Hilbert module;
that is, all X ∈ L(H) which are module maps. We begin with the case
of a quasi-free Hilbert module R over Bn having multiplicity one. If X :
R → R is a module map, then we can define the complex number X̂(ωωω)
so that X̂(ωωω)f̂(ωωω) = (X̂f)(ωωω) for ωωω ∈ Bn and f ∈ H. It is easy to see
that |X̂(ω)| ≤ ‖X‖ and hence X̂ is in the algebra, H∞(Bn), of bounded
holomorphic functions on Bn. For H2(Bn), L2,α

a (D) and L2
a(Bn), one can show

that the commutant equals H∞(Bn). This is not the case in general. In
particular, it is not true for H2

n for n > 1 [4].
If we consider a quasi-free Hilbert module R having multiplicity m > 1,

then X̂ is a bounded holomorphic bundle map on ER and should not be
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thought of as a function.
We now return to the question of characterizing reducing submodules. If

X is a projection in the commutant of R, then X̂(ωωω) is a projection on the
fiber ER|ωωω. If we set

Fωωω = RAN
{
X̂(ωωω)

}
and F̃ωωω = RAN

{
(Î −X)(ωωω)

}

for ωωω ∈ Bn, then we obtain orthogonal holomorphic sub-bundles F and F̃ of
ER. The converse is true which we will prove in Section 2.3.

Theorem 1.4. If R is a quasi-free Hilbert module of finite multiplicity
m over Bn, then L is a reducing submodule of R if and only if there exists
holomorphic sub-bundles F and F̃ of ER so that ER = F ⊕ F̃ and

L = {f ∈ R : f̂(ωωω) ∈ Fωωω ∀ωωω ∈ Bn}.

Corollary. If R is a quasi-free Hilbert module over Bn of multiplicity
one, then R is irreducible.

These arguments extend to the context of complementary submodules
since such a submodule M of the quasi-free Hilbert module R is the range
of an idempotent map in the commutant of R. Thus the same argument
establishes one direction of the analogue of the previous theorem to obtain:

Theorem 1.5. If R is a quasi-free Hilbert module of finite multiplicity
over BN and L is a complemented submodule, then there exists a holomorphic
sub-bundle F of ER such that L =

{
f ∈ R : f̂(ω) ∈ Fωωω ∀ωωω ∈ Bn

}
.

The converse is not clear. Since there is a necessary condition involving
the norm of the localization of the idempotent map. Whether this assumption
is sufficient is unknown.

Question 2. Let R be a quasi-free Hilbert module of finite multiplicity
over Bn so that there exist holomorphic sub-bundles F1 and F2 with ER|ωωω =
F1|ωωω+̇F2|ωωω for ωωω ∈ Bn. If the angle between F1|ωωω and F2|ωωω is bounded away
from 0, does there exist submodules L1 and L2 related to F1 and F2 as in
Theorem 1.5 so that R = L1+̇L2?

(Added in Proof.) In discussions on this question with Brett Wick, we
concluded that such complemented submodules do exist in this case at least
when the commutant of R coincides with H∞(Bn). One shows that one
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can define bounded idempotent-valued bundle maps which define bounded
idempotents whose ranges are the desired submodules. In the n = 1 case, one
can show that these questions are related to the Corona Theorem of Carleson,
particularly as described by N. Nikolski and S. Treil and B. Wick.

The preceding results raise other interesting questions about the situation
for submodules.

Question 3. Let R be a quasi-free Hilbert module over Bn of multiplicity
one and L be a submodule of R. Does it follow that L is irreducible? If so,
does L have any complemented submodules? What if L is finitely generated?

Remark 1.2. The answer is unknown for even weaker questions such as
the following: Do there exist non-zero submodules L1 and L2 of R so that
L1 ⊥ L2? This is not possible if R is subnormal which is defined in
Section 3.1.

Remark 1.3. Since Rudin exhibited [30] submodules of the Hardy module
over the bidisk which are not finitely generated, it seems likely that the same
might be true for quasi-free Hilbert modules over Bn.

The relevance of this finiteness assumption arises when one considers the
“spectral sheaf”

⋃
ωωω∈Bn Lωωω over Bn. If there exists ωωω0 ∈ Bn for which

DIMC Lωωω0 = 1, then following up on the suggestion in Remark 1.1, it might
be possible to make

⋃
ωωω∈∆ Lωωω into a Hermitian holomorphic line bundle and

use the same proof as that used for Theorem 1.1. It seems probable that for
finitely generated L, DIMC Lωωω ≥ 2 for all ωωω ∈ Bn is not possible, but this is
unknown.

1.6. Quasi-similar Hilbert modules Analogous to the commutant
for one Hilbert module is the space of intertwining module maps between
two quasi-free Hilbert modules. Again such a map leads to a map between
the corresponding bundles. Utilizing this object, however, can be somewhat
difficult. For example, the question of deciding when two modules are similar
or quasi-similar comes down to determine the existence or non-existence of
such maps, a problem which hasn’t been solved in general. But sometimes
the difficulties can be overcome as was observed in the following case by Curto
and Salinas [11].

Suppose X : L2,α
a (D) → L2,β

a (D) is an intertwining module map for −1 <

α, β < ∞ and let γα
ω and γβ

ω be the anti-holomorphic functions defined in
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Section 1.1 which satisfy M∗
z γα

ω = ω̄γα
ω and M∗

z γβ
ω = ω̄γβ

ω for ω ∈ D. Then
there exists an anti-holomorphic function ϕ on D such that X∗γβ

ω = ϕ(ω)γα
ω

and hence

|ϕ(ω)| ≤ ‖X∗‖
∥∥γβ

ω

∥∥
∥∥γα

ω

∥∥ = ‖X∗‖(1− |ω|2)α−β
. (4)

Thus, if α− β > 0, we have ϕ ≡ 0 and hence X = 0.

Theorem 1.6. For −1 < α 6= β < ∞, the Hilbert modules L2,α
a (D) and

L2,β
a (D) are not quasi-similar; that is, there do not exist module maps X, Y ,

X : L2,α
a (D) → L2,β

a (D) and Y : L2,β
a (D) → L2,α

a (D) which are injective with
dense range.

Actually the preceding proof shows that there is no non-zero module map
X : L2,α

a (D) → L2,β
a (D) when α < β.

Although much effort has been directed to understanding when two quasi-
free Hilbert modules of finite multiplicity are similar (cf. [24]), very few results
have been obtained, at least based on complex geometry.

Question 4. Can one give conditions involving the curvatures which im-
ply that two quasi-free Hilbert modules of multiplicity one are similar?

2. Second lecture

2.1. Module resolutions A fundamental approach to the study of
contraction operators on Hilbert space is the model theory of Sz-Nagy and
Foias [26]. Let us recall some aspects of it, placed in the context of contractive
Hilbert modules over the disk algebra A(D).

First, recall the von Neumann inequality states that ‖p(T )‖L(HT ) ≤
‖p‖A(D) for T a contraction on the Hilbert space HT and p(z) ∈ C[z]. Us-
ing this result one sees that the contraction T on HT can be used to make
HT into a contractive Hilbert module over A(D). And, vice versa, module
multiplication by the coordinate function z recovers the contraction operator
T on HT .

Second, if for the contraction operator T , the sequence T ?n converges
strongly to 0 (or T belongs to class C·0), then there exist coefficient Hilbert
spaces D and D∗ and module maps X : H2

D(D) → HT and Y : H2
D∗(D) →

H2
D(D) such that X is a co-isometry, Y is an isometry, and the sequence

0 ←− HT
X←− H2

D(D) Y←− H2
D∗(D) ←− 0 (5)
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is exact. Since X is onto and Y is one-to-one, exactness requires only the
additional condition that the range of Y equals the null space of X. If one
localizes the map Y over D; that is, one considers the map

H2
D(D)/Iω ·H2

D(D) Yω←− H2
D∗(D)/Iω ·H2

D∗(D) (6)

defined for ω ∈ D, one obtains the characteristic operator function ΘT (ω) for
the operator T . An important ingredient in the theory is an explicit formula
for ΘT (ω) in terms of T and HT . In particular, one takes D and D∗ to be

the closures of the ranges of DT =
(
I − T ∗T

) 1
2 and DT ∗ =

(
I − TT ∗

) 1
2 ,

respectively, and ΘT (z) : DT → DT ∗ , where

ΘT (z) =
[− T + zDT ∗(I − zT ∗)−1

]|DT
. (7)

A particularly simple case of this formula occurs for Jordan models of mul-
tiplicity one which are defined by inner functions. (Recall that an inner func-
tion is a function θ ∈ H∞(D) with unimodular non-tangential boundary val-
ues a.e. on ∂D.) More specifically, if Hθ is the quotient module H2(D)/θH2(D)
defined by the inner function θ, then we have the resolution

0 ←− Hθ
X←− H2(D) Y←− H2(D) ←− 0 (8)

with Y being defined to be multiplication by θ and X the quotient map.
Localization of the module map Y yields the fact that Ŷ (z) = θ(z) which is
equivalent to (7). (There is an arbitrary scalar of modulus one here which
arises from the non-canonical identification of the line bundles determined by
the two Hardy modules.)

In the introductory presentation on Hilbert modules given by Paulsen and
the author [14], this interpretation of the canonical model was given noting
the analogue of this resolution of HT in terms of H2

D(D) and H2
D∗(D) with the

projective resolutions used in algebra to study more general modules. The
goal posed in [14] was to construct resolutions for a Hilbert module in terms
of “Šilov modules” (which we will discuss in the third lecture) for contractive
Hilbert modules over function algebras. Since those notes were written, it
has become clear that this is not the best approach. Rather the author now
believes the key to the effectiveness of the Sz.-Nagy–Foias model theory rests,
in large part, on the fact that (1) the Hardy modules, H2

D(D) and H2
D∗(D),

are quasi-free in that H2
D(D)/Iω · H2

D(D) and H2
D∗(D)/Iω · H2

D∗(D) are iso-
morphic to D and D∗, respectively, for ω ∈ D and (2) these modules give
rise to Hermitian holomorphic vector bundles over D with the characteristic
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operator function being a holomorphic bundle map. In any case, the goal we
are currently pursuing is to construct resolutions for Hilbert modules in terms
of quasi-free Hilbert module (cf. [12], [13]). In these notes, we will say little
more about such resolutions except for the fact that this goal provide much
of our motivation for studying quasi-free Hilbert modules. Of course, there
is also the fact that the class of quasi-free Hilbert modules contains most of
the classical examples of Hilbert spaces of holomorphic functions closed under
multiplication by polynomials.

There is another technique important in algebraic geometry which we are
mimicking in our approach, that of the resolution of sheaves by vector bundles.
More specifically, localization of a general Hilbert module M yields a notion
of spectral sheaf

⋃
ωωω∈Bn Mωωω in many cases. (This spectral sheaf has few

nice properties unless we make assumptions about M.) The resolution by
quasi-free Hilbert modules described above should provide a resolution of this
sheaf in terms of holomorphic vector bundles. While there is a wealth of
technicalities to overcome to validate this approach, it is one picture we have
in mind for the future development of multivariate operator theory.

2.2. Quasi-free Hilbert modules revisited While we introduced
quasi-free Hilbert modules in the first lecture, we return to the topic with an
alternate approach as well as enough details to make clear the meaning of
the statement in the first lecture that the bundles EH and E∗

H are dual to
each other.

Although the spaces D and D∗ are, in general, infinite dimensional, the
model theory is particularly powerful when they are finite dimensional and ΘT

is essentially a holomorphic matrix-valued function. As in the first lecture,
we will confine our attention to quasi-free Hilbert modules of finite multiplic-
ity. Although such modules are not sufficient to form the building blocks for
general modules, the class that does possess such resolutions is likely to be
an interesting one, whose study should reveal many interesting insights and
results, particularly for multivariate operator theory.

We continue to restrict attention to modules over the unit ball and the
ball algebra A(Bn). Free modules over A(Bn) in the sense of algebra have
the form A(Bn) ⊗alg Ck, or at least those which are finitely generated. (The
subscript “alg” on ⊗ indicates that the symbol denotes the algebraic tensor
product.) However, A(Bn)⊗algCk is NOT a Hilbert space. Thus we consider
inner products on A(Bn) ⊗alg Ck and their completions. Not every inner
product can be used since we want to preserve the holomorphic character of
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the elements of the completion. Thus we assume the inner product 〈 , 〉R
satisfies:

(a) evalωωω : A(Bn) ⊗alg Ck → Ck is bounded and locally uniformly
bounded in the induced R-norm;

(b)
∥∥∥∑k

i=1 pϕi ⊗ ei

∥∥∥
R
≤ ‖p‖A(Bn)

∥∥∥∑k
i=1 ϕi ⊗ ei

∥∥∥
R

for p ∈ C[zzz],

{ϕi} ∈ A(Bn) and {ei} ∈ Ck;

(c) for
{∑k

i=1 ϕ
(`)
i ⊗ ei

}
Cauchy in the R-norm,

lim
`→∞

k∑

i=1

ϕ
(`)
i (ωωω)⊗ei = 0 ∀ωωω ∈ Bn ⇔ lim

`→∞

∥∥∥
∑

ϕ
(`)
i ⊗ ei

∥∥∥
R

= 0 .

(9)

We let R denote the completion of A(Bn)⊗alg Ck in the R-norm.
Condition (a) implies that the completion in the R-norm can be identified

with Ck-valued functions on Bn and the local uniform boundedness implies
that these functions are holomorphic. Condition (c) implies that the limit
function of a Cauchy sequence in A(Bn) ⊗alg Ck vanishes identically if and
only if the limit in the R-norm is the zero function. Finally, condition (b)
ensures that R is a contractive Hilbert module on A(Bn).

A Hilbert module R so obtained does not have the same properties as
those described in (2). In that case, R has k generators as a Hilbert mod-
ule over A(Bn) and DIMCR/[Iωωω · R]R = k for ωωω ∈ Bn, where the bracket
[Iωωω · R] denotes closure in the R norm. Conditions (2) don’t guarantee that
R is finitely generated let alone k-generated. Moreover, in general, we can’t
conclude from (9) that Iωωω · R is closed in R. In [12], however, the bundle
structure for

⋃
ωωω∈Bn R/[Iωωω · R] is demonstrated under conditions (9), which

we’ll restate as a theorem.

Theorem 2.1. If H is a Hilbert module over A(Bn) obtained as the com-
pletion of A(Bn)⊗algCk in a norm satisfying conditions (9), then it is weakly
quasi-free.

We now want to consider the relationship between EH and E∗
H, for weakly

quasi-free Hilbert modules under the assumption that conditions (9) hold.
If R is the completion of A(Bn)⊗algCm and {ei}m

i=1 is a basis for Cm, then
set ki = 1⊗ ei for i = 1, 2, . . . , m. Then {ki} is a set of module generators for
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R. Using a standard argument, we can identify f ∈ R with a holomorphic
function f̂ : Bn → Cm so that k̂i(ωωω) ≡ ei for ωωω ∈ Bn and i = 1, 2, . . . , m. Note
that we can identify Rωωω = R/[Iωωω · R] canonically with Cm and hence we can
identify ER =

⋃
ωωω Rωωω with the trivial bundle Bn × Cm over Cm. Moreover,

the correspondence f → f̂ yields the desired injection of R into O(ER) ∼=
O(Bn,Cm), the spaces of holomorphic sections of ER and holomorphic Cm-
valued functions on Bn, respectively.

For each ωωω ∈ Bn and i = 1, . . . , m, there exists a vector hi(ωωω) ∈ R so that
〈
f, hi(ωωω)

〉
R =

〈
f̂(ωωω), ei

〉
Cm .

The functions {hi} are anti-holomorphic and the {hi(ωωω)} forms a basis for
(Iωωω ·R)⊥. Hence, the {hi} forms an anti-holomorphic frame for the dual bun-
dle E∗

R. The duality between the bases {ki(ωωω)}m
i=1 and {hi(ωωω)}m

i=1 establishes
the duality between the Hermitian holomorphic vector bundle ER and the
Hermitian anti-holomorphic vector bundle E∗

R. A similar result holds for the
quasi-free case, in general, but here one must work locally since one doesn’t
have a global frame for ER consisting of sections defined by vectors in R. One
knows that the bundle ER does have a holomorphic frame since all holomor-
phic vector bundles over Bn are trivial. However, the key is whether such a
frame can be obtained from sections defined by vectors in the Hilbert space.

Question 5. Does there always exist a frame for ER determined by a
finite number of elements of R?

This question is equivalent to whether (weakly) quasi-free Hilbert modules
of finite multiplicity are always finitely generated.

2.3. Reducing submodules revisited In the previous lecture, reduc-
ing submodules of a quasi-free Hilbert module were considered. In the multi-
plicity one case, it was shown that such a module is irreducible and there are
no reducing submodules. Thus the Hardy module and the weighted Bergman
modules on the disk, or on the unit ball, are all irreducible. The same is true
for H2

n. Still, there is a family of quasi-free Hilbert modules which can be
constructed from them for which the answer is less obvious and more inter-
esting. However, before we consider this class, let us take a closer look at the
reducing submodules of a quasi-free Hilbert module R and their relation to
the Hermitian holomorphic vector bundle ER. We begin with a lemma.
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Lemma 2.1. Let R be a weakly quasi-free Hilbert module over Bn of mul-
tiplicity m, m < ∞, ωωω0 ∈ Bn, V a neighborhood of ωωω0 ∈ Bn, and {ki}m

i=1

vectors in R such that
{
k̂i(ωωω)

}m

i=1
forms a basis for Rωωω for ωωω ∈ V . Then

∨

ααα,i

∂ααα

∂z̄zzααα
ki(ωωω0) = R .

Here ααα is the multi-index (α1, . . . , αn) with each αi a non-negative integer.
The argument uses a vector f ∈ R to reduce the proof to the fact that

the only vector-valued holomorphic function for which all partial derivatives
vanish at a point is the zero function.

Proof of Theorem 1.4. Suppose L is a reducing submodule of R and P
is the orthogonal projection of R onto L. A straightforward argument shows
that P (Iωωω · R)⊥ ⊂ (Iω · R)⊥ and similarly, P⊥(Iωωω · R)⊥ ⊂ (Iω · R)⊥, where
P⊥ = I − P . Thus each subspace

(Iωωω · R)⊥ = P (Iωωω · R)⊥ ⊕ P⊥(Iωωω · R)⊥.

This is, of course the decomposition of E∗
R into an orthogonal direct sum or

as the direct sum of two Hermitian anti-holomorphic bundles. In particular,
using the dual basis {hi}m

i=1, we obtain the sets {Phi}m
i=1 and {P⊥hi}m

i=1,
which are spanning holomorphic sections for the two bundles. An easy argu-
ment involving dimension shows that these sections span the fiber but don’t
necessarily form a basis.

For the other direction of the argument, suppose we can write E∗
R =

F1⊕F2, where F1 and F2 are anti-holomorphic sub-bundles. (Here, the symbol
⊕ indicates that F1|ωωω ⊥ F2|ωωω for ωωω ∈ Bn.) Take local anti-holomorphic
sections {gi}m

i≡1 of E∗
R such that g1, . . . , gm0 span F1 and {gm0+1, . . . , gm}

span F2 in a neighborhood of a point ωωω0 ∈ Bn. Since 〈gi(ωωω), gj(ωωω)〉R = 0 for
1 ≤ i ≤ m0 and m0 < j ≤ m, we can differentiate by ∂ααα+βββ

∂zzzααα∂z̄zzβββ to show that

∨
ααα

1≤i≤m0

∂ααα

∂z̄zzα
gi(ωωω0) and

∨

βββ
m0<j≤m

∂βββ

∂z̄zzβββ
gj(ωωω0)

are orthogonal subspaces of R which span R by the lemma. Therefore, the
decomposition ER = F1 ⊕ F2 yields reducing submodules.

One conclusion we can draw from this line of argument is that reducing
submodules determine orthogonal decompositions of a fiber E∗

H|ω relative to
which the curvature matrix also decomposes as an orthogonal direct sum.
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Theorem 2.2. Let R be a quasi-free Hilbert module over A(D) of finite
multiplicity and ω0 be a point in D at which the curvature KR dωdω̄ has
distinct eigenvalues. Then the lattice of reducing submodules of R is finite
and discrete.

An analogous result holds for the multivariate case but the “curvature
matrix” must be replaced by the self-adjoint algebra which the “curvature
matrices” generate. In particular, there is an injective map from the lattice of
reducing submodules to the lattice of reducing subspaces of this algebra. In
general, this map is not surjective.

The curvature matrix having eigenvalues of multiplicity greater than one
at a point doesn’t imply the existence of other reducing submodules. How-
ever, such an assumption on an open set, under appropriate conditions, does.
Analogous statements hold for the multivariate case.

2.4. Powers of the Bergman shift Now let us consider the operator
Mzm on the Bergman module L2

a(D). Using Mzm as the contraction operator,
we can define a quasi-free Hilbert module on D of multiplicity m, which we’ll
call Rm. The question we want to consider is the determination of the reduc-
ing subspaces of Mzm or the reducing submodules of Rm. Before we study the
mth power of the Bergman shift, we consider the mth power of the unilateral
shift; that is, Tzm . Here the answer is straightforward since Tzm on H2(D) is
unitarily equivalent to Tz ⊗ Im on H2(D) ⊗ Cm, since Tzm is an isometry of
multiplicity m. In particular, there is a reducing subspace for every subspace
of Cm. Hence, the lattice of reducing submodules is continuous and has in-
finitely many elements. The surprise, perhaps, is that this is not the case for
Mzm .

Let us begin with the case m = 2. Then there are two obvious reduc-
ing submodules: L0 =

∨∞
k=0

{
z2k

}
, the span of the even powers of z, and

L1 =
∨∞

k=0

{
z2k+1

}
, the span of the odd powers. Both L0 and L1 are invari-

ant under multiplication by z2 and together spanL2
a(D). Moreover, L0 and

L1 are orthogonal since the {zk} form an orthogonal basis for L2
a(D). Hence,

L2
a(D) = L0 ⊕ L1 and L0 and L1 are reducing submodules. The question is

whether there are other reducing submodules. As pointed out above, there are
infinitely many more for the analogous construction using the Hardy module.
However, for the Bergman module, these are all and the lattice of reducing
submodules is discrete and finite.

There are at least two ways to see that this is the case, one involving com-
plex geometry and the other depends directly on operator theory exploiting
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the fact that all these operators are unilateral weighted shifts. Let us consider
the complex geometric approach first.

Corresponding to the submodules L0 and L1, there are Hermitian holomor-
phic vector bundles with curvatures K0(ω)dωdω̄ and K1(ω)dωdω̄. If there
were another anti-holomorphic sub-bundle of E∗

R2
whose ortho complement

is also anti-holomorphic, then the curvature for Mz2 on R2 would have to
decompose as a direct sum corresponding to it as we discussed in the last
section. In particular, once one shows that the curvatures of E∗

L0
and E∗

L1
at

0 are distinct, such a decomposition is seen to be impossible and the result
will follow.

Let γω = γ0
ω be the vector in L2

a(D) defined in (1) such that Mzγω = ω̄γω

for ω ∈ D. If η and −η are complex numbers such that η2 = ω, then γη

and γ−η span the eigenspace for Mz2 at ω. If we differentiate the equation
M∗

z γω = ω̄γω using d
dω̄ , we obtain M∗

z γ′ω = γω + ω̄γ′ω, where γ′ω = d
dω̄γω.

An easy argument shows that a basis for KER(Mz2 − ω)∗2 is given by γη,
γ′η, γ−η and γ′−η for ω 6= 0. If one obtains the matrix for the nilpotent
operator (Mz2−ω)|KER(Mz2−ω)∗2 , that would solve the problem. However, the
calculation required is tedious. A better approach is to find anti-holomorphic
sections for E∗

R2
which lie in L0 and L1. Another way to view this approach

is to find global anti-holomorphic sections which also span the eigenspace
at 0.

Defining ν0 as the sum of γη and γ−η to obtain a section involving only
the even powers of z is more or less an obvious step. If one considers the
difference of γη and γ−η, one obtains a section involving only the odd powers
of z. However, the resulting section vanishes at 0 which is why one obtains ν1

by first dividing by η.
If we set

ν0 =
1
2
(
γη + γ−η

)
and ν1 =

√
2

2η

(
γη − γ−η

)
,

then easy calculations show that these sections form an anti-holomorphic or-
thogonal frame for E∗

R2
. Moreover, ν0 is a section for the bundle corresponding

to L0 and ν1 is a section for L1. This follows since the Taylor series for ν0

involves only even powers of z while the Taylor series for ν1 involves only the
odd powers of z. The curvature is calculated using the formula ∂̄H−1∂H,
where H is the Grammian matrix

H(ννν) =

(
〈ν0, ν0〉 〈ν0, ν1〉
〈ν1, ν0〉 〈ν1, ν1〉

)
(10)
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and ννν = (ν0, ν1). Since 〈ν0, ν1〉 ≡ 0, we obtain the diagonal matrix



1+|ω|2
(1−|ω|2)2

0

0 1
(1−|ω|2)2


 .

A simple calculation yields the curvature matrix

−

3+2|ω|2+3|ω|4
(1−|ω|4)2

0

0 − 2
(1−|ω|2)2


 (11)

and hence at 0 we have
(−3 0

0 −2

)
. Since the eigenvalues are distinct, the lattice

of reducing submodules is discrete and finite. Moreover, since the curvature for
the Bergman module is − 2

(1−|ω|2)2
, we see that Mz2 |L1 is unitarily equivalent

to Mz on L2
a(D).

This same approach, and extended calculation, yields the same results for
Mzm on L2

a(D) for all m. That is, the lattice of reducing subspaces of Mzm is
finite and discrete with the minimal elements {Lm,k}, 0 ≤ k < m, determined
by the span of the powers of z that are congruent to k modulo m and Mzm

on Lm,m−1 is unitarily equivalent to Mz on L2
a(D).

We won’t provide the details for general m but record the following result.

Theorem 2.3. For a positive integer m > 1, 0 ≤ k < m, set

Lm,k =
∨ {

z` : ` = k mod m
} ⊂ L2

a(D).

Then {Lm,k} are reducing submodules for Mzm and the curvature for
Mzm |Lm,k

at 0 is −m+k
k . Thus these are all the reducing submodules for

Mzm and the lattice of reducing submodules of Rm is finite and discrete.

As a result, none of the operators Mzm |Lm,k are unitarily equivalent. How-
ever, the above calculations can be used to show that Lm,m−1 is unitarily
equivalent to L2

a(D).
The approach to this question outlined above was obtained with J.M.

Landsberg. The result was known and is part of a program begun by Zhu [35]
and extended by Hu, Sun, Xu and Yu [23] and Sun, Zheng and Zhong [33]
investigating the reducing subspaces of MB on L2

a(D), for B a finite Blaschke
product.
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As mentioned earlier, the operators obtained by restricting Mzm to the
Lm,k are unilateral weighted shifts. It is a known result [32] on how to de-
termine when two such unilateral weighted shifts are unitarily equivalent or
similar. Again let us provide the details for the m = 2 case.

Since
{
zk

}∞
k=0

is an orthogonal basis, one obtains an orthonormal basis
{ek}∞k=0, where

ek =
zk

‖zk‖ =
√

k + 1zk and Mzek =

√
k + 1
k + 2

ek+1

for k = 0, 1, 2, . . . . Further, the orthonormal bases for L0 and L1 are given by
{e2k+1}∞k=0 and {e2k}∞k=0, respectively. Thus, if T0 = Mz2 |L0 and T1 = Mz2 |L1 ,
then

T0e2k = T0

(
z2k

‖z2k‖
)

=
‖z2k+2‖
‖z2k‖

z2k+2

‖z2k+2‖ =

√
2k + 1
2k + 3

e2k+2

and

T1e2k+1 = T1

(
z2k+1

‖z2k+1‖
)

=
‖z2k+3‖
‖z2k+1‖

z2k+3

‖z2k+3‖

=

√
2k + 2
2k + 4

e2k+3 =

√
k + 1
k + 2

e2k+3 .

Thus since the weights are not equal, we see that T0 on L0 and T1 on L1

are not unitarily equivalent but since the weights do agree, we see that T1

on L1 is unitarily equivalent to Mz on L2
a(D). More specifically, if we define

X : L2
a(D) → L1 so that Xek = e2k+1 for k = 0, 1, 2, . . . , then X is a unitary

operator satisfying XMz = T1X.
If we define Y : L2

a(D) → L0 so that Y ek = cke2k, where

ck =

√
2(2k)(2k + 1)

3(k + 1)(k + 2)
,

then Y Mz = T0Y . Moreover, Y is bounded and invertible since lim
k→∞

ck =
8
3 > 0. Thus the operators obtained by restricting Mz2 to both L0 and L1 are
similar to Mz on L2

a(D).
The same kind of argument establishes the analogous result for arbitrary

m > 1.
Finally, let us observe that the similarity results show that Mzm on L2

a(D)
is similar to Mz⊗Im on L2

a(D)⊗Cm. This result raises an interesting question
related to the program of Zhu mentioned earlier.
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Question 6. Is MB on L2
a(D) similar to Mz ⊗ Im on L2

a(D)⊗Cm, where
m is the multiplicity of the finite Blaschke product B(z)?

(Added in Proof.) About the time these notes were prepared, a paper
by C.-I. Jiang and Y-C. Li appeared answering the question in the affirma-
tive. (The commutant and similarity invariant of analytic Toeplitz operators
on Bergman space, Science in China Series A: Mathematics 50 (5) (2007),
651 – 664.)

2.5. Submodules obtained from ideals As mentioned earlier, the
problem of describing submodules of a quasi-free Hilbert module is a nearly
impossible one in most cases although much has been learned in the past
decade or two. For example, consider what is known about the submodules for
the Hardy module [6] and the Bergman modules (cf. [21]). For the multivariate
case, we will illustrate the wide variety of possibilities with another rigidity
theorem and an example.

Let R be a quasi-free Hilbert module over Bn of multiplicity one. If for I
an ideal in C[zzz], [I]R denotes the closure of I in R, then [I]R is a submodule
of R. Of course, not all submodules arise in this manner as can be seen by
considering submodules of the Hardy module H2(D). However, the question
in which we are interested is when is [I]R ∼= [Ĩ]R for two ideals I and Ĩ of
C[zzz]. There is now considerable literature on this question [14], [15], [8]. We
state one of the early fundamental results.

Theorem 2.4. Suppose R is a quasi-free Hilbert module over Bn of mul-
tiplicity one and I, Ĩ are ideals in C[zzz]. Assume further that

(i) the codimension of each of the algebraic components
of Z(I) and Z(Ĩ) is greater than one, and

(ii) these same components all intersect Bn.

(12)

Then [I]R and [Ĩ]R are quasi-similar if and only if I = Ĩ.

Here, Z(I) denotes the zero variety of I or the set of common zeros of the
polynomials in I and by algebraic component of I is meant the zero variety
of a prime ideal in a primary decomposition of I. If we omit (ii), then [I]R
and [Ĩ]R quasi-similar holds if and only if [I]R = [Ĩ]R.

We conclude with one example which illustrates the kind of techniques
used which trace back to results of Zariski and Grothendieck.
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We consider the Hardy module H2(D2) over the bidisk which is the closure
of C[z1, z2] in L2(T2) and the submodule H2

0 (D2) of functions in H2(D2) that
vanish at the origin 000. A simple calculation shows that

H2(D2)/I0 ·H2(D2) ∼= C0 ,

while

H2
0 (D2)/I0 ·H2

0 (D2) ∼= C0 ⊕ C0 .

Here C0 denotes the Hilbert module over C[zzz] for the Hilbert space C in which
module multiplication is defined p · λ = p(0)λ for p ∈ C[zzz] and λ ∈ C.

The same results hold for H2(B2) but the calculations for the bidisk are
more transparent.

If X and Y define a quasi-similarity between H2(D2) and H2
0(D2), then

the localized maps X̂(000) and Ŷ (000) would define an isomorphism between C0

and C0 ⊕ C0 which is impossible.
Note that one can show if R and R̃ are quasi-free Hilbert modules of

multiplicity one over A(Bn) and I and Ĩ are ideals in C[zzz] satisfying (12) such
that [I]R and [Ĩ]R̃ are quasi-similar or, [I]R ∼ [Ĩ]R, then I = Ĩ. However, it
is not true that [I]R ∼ [I]R̃ implies R ∼ R̃, but it seems reasonable to ask
when it does. For an example when this implication does not hold, consider
the Hilbert module L2

a(µ) over A(D) obtained from the completion of C[z] in
L2(µ), where µ is Lebesgue measure on D plus the point mass at 0 and I is
the principal ideal generated by z. Then the closures of I in L2

a(µ) and L2
a(D)

are unitarily equivalent but L2
a(µ) and L2

a(D) are not even quasi-similar.

Question 7. Find conditions on an ideal I in C[zzz] and/or on the quasi-
free Hilbert modules R and R̃ of multiplicity one over A(Bn) so that [I]R
quasi-similar to [I]R̃ implies that R and R̃ are quasi-similar. What about the
same question for similarity or unitary equivalence?

3. Third lecture

3.1. Isomorphic submodules In this last lecture we take up a new
topic which we believe to have intrinsic interest and to provide an impetus to
develop new tools for the study of multivariate operator theory.

If L is a non-zero submodule of H2(D), then a consequence of Beurling’s
Theorem [6] is that L is isometrically isomorphic to H2(D) itself. In particu-
lar, there exists an inner function θ so that L = θH2(D) and the operator Tθ
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defines an isometry on H2(D) which establishes a module isometric isomor-
phism between H2(D) and L. On the other hand, a result of Richter [29] shows
that if L is a submodule of L2

a(D) which is isometrically isomorphic to L2
a(D),

then L = L2
a(D). Thus, in one case every non-zero submodule is isometrically

isomorphic to the module itself while in the other, no proper submodule is.
J. Sarkar and the author recently investigated this phenomenon in [16] and it
is some of the results from [16] we discuss here. In this lecture, we will allow
Hilbert modules over A(Ω) for bounded domains Ω ⊂ Cn.

Our first result shows that the existence of a proper submodule of finite
codimension, isometrically isomorphic to the original module is a single oper-
ator or one variable phenomenon; that is, it occurs only for Hilbert modules
over A(Ω) for Ω ⊂ C. Before proceeding, however, we need conditions ensur-
ing the “fullness” of the submodule.

If R is a Hilbert module over A(Ω), then there exists a submodule L of R
isometrically isomorphic to R if and only if there exists an isometric module
map V on R with range L. If V is unitary, then L = R. We are interested in
the opposite extreme; that is, when V is pure or

⋂∞
k=0 V kR = (0) in which

case we have the following result.

Theorem 3.1. Let R be a quasi-free Hilbert module of finite multiplicity
over A(Ω) for Ω a bounded domain in Cn. If there exists a submodule L of
R such that DIMCR/L < ∞ and the corresponding isometric module map
is pure, then n = 1 and Ω ⊂ C.

Our approach to prove this result involves the Hilbert–Samuel polyno-
mial. Recall that the Hilbert–Samuel polynomial for the Hilbert module M
is a polynomial hMωωω (z) in one variable so that hMωωω (k)DIMC M/[Ik

ωωω · M] for
k À 0. A necessary condition for the existence of such a polynomial is that
DIMCM/[Iωωω · M] < ∞ and in [17] K. Yan and the author established the
existence of such a polynomial under this assumption extending the earlier
work of Hilbert and Samuel to this context. More recently, Arveson has also
considered this notion [4] in his study of Hilbert modules related to H2

n.
One can show by analyzing local frames for the Hermitian holomorphic

bundle ER for R a quasi-free Hilbert module of finite multiplicity m, that the
Hilbert–Samuel polynomial for R does not depend on which quasi-free Hilbert
module is chosen. We consider the argument to establish this independence
for the case n = 2.

Assume R is a quasi-free Hilbert module over A(Ω) such that DIMR/[Iωωω·
R]m < ∞ and Ω ⊂ C2. For some neighborhood V of ωωω0, there exist vectors
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{fi}m
i=1 such that

{
f̂i(ωωω)

}m

i=1
is a basis for Rωωω for ωωω ∈ V . Then one can show

that {
∂α1+α2

∂zα1
1 ∂zα2

2

f̂i(ωωω) : 0 ≤ α1 + α2 < k , 1 ≤ i ≤ m

}

is a basis for R/[Ik
ωωω · R] for ωωω ∈ V . However, the cardinality of the set{

(α1, α2) : α1, α2 ≥ 0 and α1 + α2 < k
}

is 1
2(k − 1)2. Therefore, hRωωω has

degree 2. Hence, in a similar manner one can show for Ω ⊂ Cn that hRωωω has
degree n. The proof of the theorem is completed by showing that under the
hypotheses of an isometrically isomorphic submodule of finite codimension,
the Hilbert–Samuel polynomial is actually linear, or that n = 1. We first need
a lemma which is a key step in the analysis of Hilbert modules containing a
pure isometrically isometric submodule.

Lemma 3.1. Let M be a Hilbert module over C[zzz] with a pure isometri-
cally isomorphic submodule L. Then there exists a Hilbert space E ; ϕ1, . . . , ϕn

in H∞
L(E)(D) such that

[
ϕi(ω), ϕj(ω)

]
= 0 for ω ∈ D and 1 ≤ i, j ≤ n, and an

isometrical isomorphism Ψ : M → H2
E(D) such that Ψ is a module isomor-

phism where Mp on H2
E(D) is defined to be multiplication by p(ϕ1, . . . , ϕn).

Moreover, Tz is the isometric module map that defines L.

As is perhaps obvious, to establish the lemma one uses the von Neumann–
Wold decomposition to identify V on M with the Toeplitz operator Tz on
H2
E(D), where E = M/VM, and then uses the fact that all operators that

commute with Tz have the form Tη for η ∈ H∞
L(E)(D).

Lemma 3.2. Let M be a Hilbert module over C[zzz] with a pure isome-
trically isomorphic submodule L such that DIMCM/L < ∞ and
DIMCM/[Iωωω0 · M] < ∞ for some ωωω0. Then hm

ωωω0
is linear.

Proof. Without loss of generality we can assume that ωωω0 = 000. Applying
the previous lemma, we can identify M with H2

E(D) using Ψ, where E = M/L
is finite dimensional, with the module action on H2

E(D) defined by an n-tuple
{ϕi}n

i=1 of functions in H∞
L(E)(D) such that [ϕi(z), ϕj(z)] = 0 for z ∈ D and

1 ≤ i, j ≤ n and L = TzH
2
E(D). Since DIMCM/[I000 · M] < ∞, it follows

that the closure of the Tϕ1 · H2
E(D) + · · · + Tϕn · H2

E(D) is a closed subspace
of H2

E(D) having finite codimension and which is invariant under Tz. Thus
by the Beurling–Lax–Halmos Theorem (cf. [26]) it follows that there exists an
inner function Θ(z) in H∞

L(E)(D) so that

ΘH2
E(D) = clos

[
Tϕ1 ·H2

E(D) + · · ·+ Tϕn ·H2
E(D)

]
.
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Moreover, since ΘH2
E(D) has finite codimension in H2

E(D), it follows that Θ(z)
is a rational function and Θ(eit) is unitary for eit ∈ T (cf. [26]). Moreover,
one can define detΘ, the determinant of Θ(z), on D to obtain a rational
scalar-valued inner function satisfying

(detΘ)H2
E(D) ⊆ ΘH2

E(D) .

The proof of this fact depends on Cramer’s Rule and is due to Helson [22].
Now we have

[
I2
000 · M

]
=

∨

|ααα|=2

zzzααα · M , where |ααα| = α1 + α2 .

Hence
∨

1≤i,j≤n

TϕiTϕjH
2
E(D) = Tϕ1ΘH2

E(D) + · · ·+ TϕnΘH2
E(D)

⊇ Tϕ1 det ΘH2
E(D) + · · ·+ Tϕn detΘH2

E(D)

⊇ detΘ
(
Tϕ1H

2
E(D) + · · ·+ TϕnH2

E(D)
)

⊇ detΘΘH2
E(D) ⊇ (detΘ)2H2

E(D) .

By induction, one obtains

(detΘ)kH2
E(D) ⊆

∨

1≤i1,i2,...,ik≤n

Tϕi1
Tϕi2

· · ·Tϕik
H2
E(D) .

Thus using Ψ we have

DIMCM/[Ik
000M] ≤ DIMCH2

E(D)/(detΘ)kH2
E(D) .

Therefore, hm
ωωω (k) ≤ k` · DIMC E , where ` is the number of zeros of detΘ

counted multiply, and hence hm
ωωω is linear.

Combining the lemmas, we complete the proof of the theorem. Hence,
to study isometrically isomorphic submodules of finite codimension, we can
assume that Ω is a domain in C. If we assume further that Ω is “nice”, then
we can characterize the situation completely.

Theorem 3.2. If R is a contractive, quasi-free Hilbert module over A(D)
of finite multiplicity containing a pure isometrically isomorphic submodule of
finite codimension, then R is isometrically isomorphic to H2

E(D) as A(D)-
Hilbert modules with DIMC E finite and equal to the multiplicity of R.
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Proof. Using Lemma 3.1, one reduces the question to a single Toeplitz
operator Tϕ on some H2

E(D), where ϕ is in H∞
L(E)(D) and DIMC E < ∞. But

one knows since R is contractive, that ‖ϕ(z)‖ ≤ 1 for z ∈ D. Moreover, since
R is quasi-free, we can conclude that the spectrum of the matrix ϕ(eit) is
contained in T a.e. Since we are on the finite dimensional space E , it follows
that ϕ(eit) is unitary a.e. Hence Tϕ is an isometry and the module action
it defines on H2

E(D) yields a module which is isomorphic to a Hardy module
H2
F (D). Finally, the multiplicity of Tϕ, and hence the dimension of F , is the

dimension of R/I0 · R which is the multiplicity of R as a quasi-free Hilbert
module which was assumed to be finite.

A key step in the argument is to observe that Tϕ − ω Fredholm implies
that ϕ(eit)− ω is bounded away from 0 for ω ∈ D.

Question 8. Does the theorem hold with the assumption that R is only
weakly quasi-free or without assuming that Iωωω · R is closed for ω ∈ D?

If we assume that Ω is a finitely connected domain in C for which ∂Ω
consists of a finite number of simple closed curves, then a similar argument
yields the analogous result with Hilbert modules defined by bundle shifts
replacing the Hardy modules on D.

Recall that if π1(Ω) is the fundamental group of Ω and α : π1(Ω) → U(E)
is a unitary representation, then the bundle shift H2

α(Ω) is defined as a space
of holomorphic sections of the flat Hermitian holomorphic bundle determined
by α. The multiplicity of H2

α(Ω) equals the dimension of E . The norm can
be defined using harmonic measure on Ω for some point in Ω. The theory of
such Hilbert modules was developed by Abrahamse and the author [1] and
they play the role for multiply connected domains that the Hardy module
does for the unit disk. If one specializes to the case of the annulus, one
obtains the spaces of modulus automorphic holomorphic functions studied by
Sarason [31].

Theorem 3.3. Let Ω be a finitely connected domain with ∂Ω consist-
ing of simple closed curves. If R is a quasi-free Hilbert module over A(Ω)
of finite multiplicity for which there exists a pure isometrically isomorphic
submodule of finite codimension, then R is isomorphic to H2

α(Ω) for some
unitary representation α : π1(Ω) → U(E), where DIMC E is finite and equals
the multiplicity of R.

Bundle shifts are examples of “subnormal modules”. Recall that a Hilbert
module S is subnormal if there exists a reductive Hilbert module N or one for
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which module multiplication defines commuting normal operators, and such
that S is a submodule of N . If N extends to a module over C(∂A), where
∂A denotes the Šilov boundary of the algebra A(Ω) over which L is a Hilbert
module, then L is said to be a Šilov module. Bundle shifts are examples of
Šilov modules as are the Hardy modules.

Question 9. If R is a weakly quasi-free Hilbert module of finite mul-
tiplicity containing a pure isometrically isomorphic submodule, must it be a
Šilov module? Conversely, does every Šilov module possess such a submodule,
at least for Ω ⊂ C?

Remark 3.1. It seems likely that a Šilov module which is weakly quasi-
free of finite multiplicity is actually quasi-free. If so, then one could add that
hypothesis to the question.

There is another question which one can ask in this context but which is
not related to the topic of this section.

Question 10. Let H2
α(Ω) be a bundle shift of finite multiplicity over Ω.

What is the precise relation between the flat unitary holomorphic bundle Eα

determined by α and the bundle EH2
α(Ω)? Does Eα represent the holonomy of

EH2
α(Ω) in some sense?

3.2. The case of infinite codimension What can one say about a
(weakly) quasi-free Hilbert module of finite multiplicity that contains a pure
isometrically isomorphic submodule of infinite codimension? We offer a couple
of observations before proceeding to some results.

If R is a (weakly) quasi-free Hilbert module over A(Ω), then R⊗H2(D)
is a (weakly) quasi-free Hilbert module over A(Ω × D) and R ⊗ H2

0 (D) is a
pure isometrically isomorphic submodule. Note that the boundary of Ω× D
has “corners” or is not smooth.

Question 11. Could we say something about R if we assume that Ω is
strongly pseudo-convex with smooth boundary?

The nicest domain in Cn, of course, is the unit ball Bn. The existence of
an inner function, established by Aleksandrov [2], yields a pure isometrically
isomorphic submodule θH2(Bn) of H2(Bn).

If we add the assumption that the module is essentially reductive, we can
reach some rather surprising conclusions. Recall that a Hilbert module M is
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said to be essentially reductive if all of the operators on M defined by module
multiplication are essentially normal.

Theorem 3.4. If R is an essentially reductive Hilbert module over A(Ω)
for some bounded domain Ω of Cn that contains a pure isometrically isomor-
phic submodule, then R is subnormal.

Proof. Again we use the representation of R as H2
E(D) with module mul-

tiplication defined by a commuting n-tuple {ϕi}n
i=1 of commuting functions

in H∞
L(E)(D). Of course, we must allow E to have infinite dimension in this

case. However, the assumption that the algebra generated by the operators
Tϕi is essentially normal implies that the operators ϕi(eit)∗ and ϕj(eit) com-
mute for eit ∈ T a.e. for 1 ≤ i, j ≤ n. The key step in this argument is to
observe that [T ∗ϕi

, Tϕj ] compact implies that [L∗ϕi
, Lϕj ] is compact. Then one

notes that the C∗-algebra generated by {Lϕi} contains no non-zero compact
operator. Thus {ϕi(eit)}n

i=1 is an n-tuple of commuting normal operators for
eit ∈ T a.e. Hence, the Hilbert module for L2

E(T) with module multiplication
defined by {Lϕi}n

i=1 is reductive and extends the Hilbert module H2
E(D) with

module multiplication defined by {Tϕi}n
i=1. Thus, the latter Hilbert module

is subnormal and hence so is R.

In [16] we reprove a result of Chen and Guo [8] that no proper submodule
of H2

n, for n > 1, is isometrically isomorphic to H2
n. (Added in proof. In a

recent paper by C. Foias, J. Sarkar and the author, a rather straightforward
proof of this result is given.) The proof requires handling the possibility that
the isometry, whose range is the submodule, is not pure. Note that this result
along with the theorem provides another proof of the result of Arveson [3]
that coordinate multiplication operators on the n-shift space are not jointly
subnormal. Actually, this result was established earlier by Lubin in [25] where
he defined the space H2

m as a commuting weighted shift space. His purpose
was to exhibit commuting subnormal operators, namely multiplication by the
coordinate functions Mz1 , . . . , Mzn , for which their sum and products are not
subnormal. Hence there is no common normal extension.

One should note also based on formula (1) that the restriction of Mz1 to
cyclic subspace generated by z`

2 is unitarily equivalent to a weighted Bergman
shift for each `. Hence, Mz1 , on H2

2 , is the orthogonal direct sum of subnormal
operators and hence is subnormal. The same is true for Mz2 . Therefore, Mz1

and Mz2 are commuting subnormal operators which have no joint normal
extension.
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Further, we can use this theorem and the result of Athavale [5] to prove
an analogue of Theorem 2.4 for the unit ball.

Theorem 3.5. If R is an essentially reductive quasi-free Hilbert module
over A(Bn) which contains a pure isometrically isomorphic submodule M,
then R is isomorphic to H2

E(Bn) and M = θH2
E(Bn) for some inner function

θ and DIMC E < ∞.

The proof is analogous to the earlier one using facts about row contractions
on a Hilbert space of finite dimension. Note again that H2

E(Bn) is a Šilov
module since H2

E(Bn) ⊆ L2
E(∂Bn) and ∂Bn is the Šilov boundary of A(Bn).

In [16] we obtain more results about which subnormal Hilbert modules
contain pure isometrically isomorphic submodules. In particular, we extend
the results of Richter [29] and Putinar [28] to Bergman modules over other
domains.

Theorem 3.6. Let Ω be a bounded domain in Cn, µ be a probability
measure on Ω and L2

a(µ) the closure of A(Ω) in L2(µ). No proper submodule
of L2

a(µ) is isometrically isomorphic to L2
a(µ).
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