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Introduction

The operators which arise naturally in models of the physical, biological
or economic world are almost always unbounded operators, that is, they do
not act continuously from one Banach space X to itself. For example, this
applies to the operator of differentiation on functions of a single variable: if
one takes X small enough that the operator is defined on the whole of X (for
example, if X consists of C1-functions, or X is a Sobolev space) then X is
not invariant under differentiation.

Nevertheless mathematicians learn operator theory first in the context of
bounded operators. Since the theory of unbounded operators is usually taught
only at graduate level, many students learn about bounded operators in some
detail but never encounter the general theory of unbounded operators. This
arrangement may be anomalous but there are some good pedagogic reasons
for it. Firstly, the theory of bounded operators is relatively neat, because
one avoids the intricacies concerning the domains of unbounded operators.

†This article is an extended version of three lectures given at the 4th Advanced Course
in Operator Theory and Complex Analysis, in Sevilla, 18–20 June 2007.
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Secondly, there are various techniques for converting unbounded operators
into bounded operators, and then one can apply the bounded theory.

The most basic way to turn an operator A into a bounded operator is to
invert A, but often this does not solve the problem at hand. In applications,
we usually have several operators involved, acting in space variables and time
variables, and with derivatives of different orders; solving the model requires
more than simple inversion of a single operator. Our hand is greatly strength-
ened if we can interpret the operator f(A) for more complicated functions
than the reciprocal f(z) = z−1. Sometimes this process actually solves the
problem for us, and sometimes it is a helpful step towards finding a solution.

Consider the abstract Cauchy problem

u′(t) = Au(t) (t ≥ 0), u(0) = x, (0.1)

where u : R+ → X, x ∈ X. In very simple examples it may be possible to
give an explicit solution, but usually that is not possible. So the task is to
find out information about the solutions from knowledge of A.

Abstractly and formally the solution of (0.1) should be

u(t) = exp(tA)x.

Now we see that the relevant function of A is not a resolvent but an exponen-
tial. This raises some questions: What does exp(tA) mean? Is it a bounded
operator? What knowledge of exp(tA) as a function of t can be inferred from
knowledge of A?

Similarly the second-order problem

u′′(t) = Au(t) (t ≥ 0), u(0) = x, u′(0) = y

should have the solution

u(t) = cos
(
t
√
−A

)
x + sin

(
t
√
−A

)(√
−A

)−1
y.

Again, one needs to know whether these functions of A make sense, and what
their properties are.

These questions are about functional calculus, concerning f(A) for specific
functions f . The theories of semigroups and groups (exponential functions),
and cosine and sine functions, of operators were developed to answer these
questions for those specific functions, and that occurred historically well before
the introduction of general functional calculus. The latter has now found many
other applications, and we describe it here, placing the theory of semigroups
and groups within it.
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The two most classical forms of functional calculus are as follows:

1. Functional calculus of self-adjoint operators on Hilbert space [19, Section
XII.2]: f(A) is defined by spectral theory when A is an (unbounded)
self-adjoint operator and f is a bounded measurable function on R (or
just on σ(A)). This calculus applies only to rather special operators
and it is different in nature from the functional calculus of this article,
although they agree whenever both make sense.

2. Riesz-Dunford functional calculus of bounded operators [19, Section
VII.3]:

f(A) =
1

2πi

∫

Γ
f(λ)R(λ,A) dλ,

where f is holomorphic in a neighbourhood U of σ(A) and Γ is a contour
in U around σ(A).

The functional calculus under consideration in this article is of Riesz-
Dunford type, but extended to unbounded operators. Since Γ will not go
around σ(A) if σ(A) is unbounded, it is necessary to make some assumptions
on A. The first such functional calculus was defined by Bade [6] for oper-
ators with spectrum in a strip. However it was not until work of McIntosh
[43] in the 1980s that the functional calculus for sectorial operators was in-
troduced. With a view to parabolic differential equations, sectorial operators
have become the standard context for the subject, but there are now several
other classes of operators with similar functional calculi. Haase [25] has given
an axiomatic approach to functional calculi which saves repetition of simi-
lar arguments in each different case. Some work has to be done in order to
ensure that each functional calculus has reasonable analytic properties (the
Convergence Lemma and Composition Rules) but then much follows more or
less automatically. It is typical of these theories that there are some oper-
ators A for which f(A) is not necessarily a bounded operator even if f is a
bounded holomorphic function on a suitable domain Ω containing σ(A), but
many operators A have bounded H∞-calculus in the sense that f(A) is always
a bounded operator for all f ∈ H∞(Ω).

In Section 2 we briefly describe the functional calculus for sectorial op-
erators, as in [25]. In Section 3, we show how the theory of C0-semigroups
and groups, and cosine functions, fits within similar functional calculi for
half-plane, strip-type and parabolic-type operators. The basic results about
semigroups and groups go back to Hille, Yosida and Phillips in the 1950s (see
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[30]), but our presentation of the material relies on the functional calculus
which barely existed until the 1980s, and it is heavily influenced by the re-
cent work of Haase [25], [26]. In Section 4, we describe some of the many
results showing that certain types of perturbations of operators preserve cer-
tain properties of operators such as generation of semigroups or boundedness
of the functional calculus.

In these lectures, we do not give any details of the numerous applications to
differential equations, such as maximal regularity of abstract Cauchy problems
which is discussed in detail in the survey article [40]. Our content overlaps to
some extent with some other survey articles [1], [3], [10]. We do not reproduce
any proofs which are easily available in books such as [4], [20], [25], [30], [49],
but we give at least outlines of some proofs which are less easily available
and not too technical, notably Iley’s theorem on bounded perturbations of
differentiable semigroups (Theorem 4.4) and Kalton’s theorem on triangular
perturbations of operators with bounded functional calculus (Theorem 4.5).
Accordingly we have tried to give the most accessible reference for each main
result. In many cases we have also given at least one of the main original
references, but we have not systematically identified all the contributors to
the theory.

1. Preliminaries

In this article, an operator A will be a linear operator A : D(A) → X,
where X is a complex Banach space and D(A) is a dense subspace of X.
The assumption that the domain D(A) is dense in X is for simplicity of
presentation—some results are true without it and some are not.

It is essential for analysis that A should be closed, i.e., the graph G(A) :=
{(x, Ax) : x ∈ D(A)} is closed in X × X. In practical examples where A
is a differential operator, it may be hard to identify the appropriate domain
D(A) precisely. However one may be able to show that A is closable on some
dense domain, and then one can take the closure of A without identifying the
domain explicitly [34, Section 3.5]. Alternatively, A may be defined initially
on an L2-space by means of a quadratic form, and then on corresponding Lp-
spaces [34, Chapter 6], [47]. Again it may be difficult to identify the precise
domains.

We will now summarise some basic properties of closed operators—for
further details see [34, Section 3.5]. An operator A is invertible if there exists
A−1 ∈ B(X) (the space of all bounded linear operators on X) such that
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• For each x ∈ D(A), A−1Ax = x, and

• For each y ∈ X, A−1y ∈ D(A) and AA−1y = y.

Any such operator is closed. Conversely if A is closed and bijective from D(A)
to X, then A−1 ∈ B(X), by the Closed Graph Theorem.

For a complex number λ, the resolvent of A is R(λ,A) := (λI − A)−1 if
this exists; the resolvent set ρ(A) is the set of all λ ∈ C for which R(λ,A)
exists, and the spectrum is σ(A) = C \ ρ(A).

The spectrum and resolvent of unbounded operators have similar proper-
ties to the case of bounded operators, except that σ(A) may be empty or it
may be unbounded. In particular, ρ(A) is an open subset of C and R(·, A) is
a holomorphic function from ρ(A) to B(X).

More specifically, if λ ∈ ρ(A) and |λ − µ| < ‖R(λ, A)‖−1, then µ ∈ ρ(A)
and

R(µ,A) =
∞∑

n=0

(λ− µ)nR(λ, A)n+1 (1.1)

This series expansion is called the Neumann series. Note also that

σ(R(λ,A)) =
{

1
λ− µ

: µ ∈ σ(A)
}
∪ {0}

if A is unbounded.

Example 1.1.

1. Multiplication operators. Let X = `p (1 ≤ p < ∞) or X = c0, and (αn)
be a sequence in C. Let

Ax = (αnxn),

with D(A) consisting of all x ∈ X such that Ax ∈ X. Then

σ(A) = {αn}, R(λ,A)x =
(
(λ− αn)−1xn

)
.

Similarly, if X = Lp(Ω, µ) for some measure space (Ω, µ) and h : Ω → C
is measurable, one can define

(Af)(ω) = h(ω)f(ω).

Then σ(A) is the essential range of h.
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2. Differential operators.

(a) Let X = Lp(R) where 1 ≤ p < ∞. Let D(D) be the first-order
Sobolev space W 1,p(R), and Df = f ′. Then σ(D) = iR [25, Section
8.4].

(b) Let Y be a Banach space and X = Lp(0, 1;Y ) be the usual Lebesgue-
Bochner space of functions f : (0, 1) → Y , where 1 ≤ p < ∞ (see [4,
Section 1.1]). Let DY be the derivative operator with domain

D(DY ) = W 1,p
0 (0, 1;Y ) := {f ∈ W 1,p(0, 1;Y ) : f(0) = 0},

where W 1,p(0, 1;Y ) is the vector-valued Sobolev space. Then σ(DY ) = ∅
[25, Section 8.5].

(c) Let X = Lp(Ω) where 1 ≤ p < ∞ and Ω is an open subset of
Rn (equipped with n-dimensional Lebesgue measure unless otherwise
specified). Let A be the Laplacian ∆ with domain chosen to incorporate
appropriate boundary conditions. Then σ(∆) depends on Ω and on the
boundary conditions, but it is often independent of p. See [47] for a
general treatment of second-order elliptic operators.

In most of Examples 1.1, the solution of (0.1) can be written down explic-
itly (see Examples 3.1). We emphasise that this is rarely the case.

2. Functional calculus of sectorial operators

We shall describe the functional calculus here for “sectorial” operators in
a way which will generalise easily to other classes of operators considered in
Section 3. The theory was initiated by McIntosh but the presentation here
follows Haase [25, Chapter 2].

An operator A on X is sectorial if there exists θ ∈ (0, π) such that

(1) σ(A) ⊆ Σθ ∪ {0}, where Σθ = {λ ∈ C : | arg λ| < θ}, and

(2) there exists cθ such that ‖λR(λ,A)‖ ≤ cθ whenever λ ∈ C \ Σθ, λ 6= 0.

The sectorial angle θsect(A) of A is the infimum of the set of all such θ. Note
that this infimum is never attained, by (1.1).
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Example 2.1.

1. A multiplication operator A is sectorial if it satisfies the condition (1),
because

‖R(λ,A)‖ = d(λ, σ(A))−1.

In particular, any non-negative self-adjoint operator on a Hilbert space
has sectorial angle 0.

2. (a) The operators D and −D on Lp(R) (1 ≤ p < ∞) are both sectorial
of angle π/2.

(b) DY is sectorial of angle π/2 on Lp(0, 1;Y ), but −DY is not sectorial.

(c) For Dirichlet, Neumann and various other boundary conditions, −∆
is sectorial of angle 0 on Lp(Ω); it is self-adjoint and non-negative when
p = 2.

Let H∞
0 (Σθ) be the set of all bounded holomorphic functions f : Σθ → C

for which there exist constants c and ε > 0 such that

|f(z)| ≤ c
|z|ε

1 + |z|2ε
(z ∈ Σθ). (2.1)

For µ ∈ C \ Σθ, let eµ(z) = z(µ− z)−2. Then eµ ∈ H∞
0 (Σθ).

Let A be a sectorial operator, and let θsect(A) < θ < π and f ∈ H∞
0 (Σθ).

Define
f(A) =

1
2πi

∫

∂Σθ′
f(λ)R(λ,A) dλ, (2.2)

where θsect(A) < θ′ < θ. It follows from (2.1) that this integral is absolutely
convergent in B(X).

The definition (2.2) has the following properties which are fundamental
for a functional calculus:

• f(A) is independent of the choice of θ′ (from Cauchy’s Theorem);

• (f + g)(A) = f(A) + g(A);

• (f.g)(A) = f(A)g(A) (from Fubini’s Theorem);

• Let µ ∈ C \ Σθ. Then eµ(A) = AR(µ, A)2.

In order to cover many applications, we would like to extend this to define
f(A) for all f ∈ H∞(Σθ) (the space of bounded holomorphic functions on
Σθ) and perhaps for even more functions. To describe this process, we shall
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assume for simplicity that A is injective. There is no great loss of generality
in doing so, because if A is any sectorial operator, X̃ is the closure of the
range of A and Ã is the restriction of A to D(A)∩ X̃, then Ã is sectorial and
injective. If X is reflexive, one also has that X = kerA⊕ X̃.

Let f : Σθ → C be holomorphic, and suppose that there exists e ∈ H∞
0 (Σθ)

such that e.f ∈ H∞
0 (Σθ) and e(A) is injective. Define an operator f(A) on X

by means of its graph G(f(A)): for x, y ∈ X,

(x, y) ∈ G(f(A)) if and only if (e.f)(A)x = e(A)y.

Note that f(A) is not necessarily everywhere defined or bounded, but it is
closed and independent of the choice of the regulariser e.

When f ∈ H∞(Σθ), we can take as regulariser e = eµ, for any µ ∈ C \ Σθ

(assuming that A is injective). So we have defined an operator f(A) but it may
be unbounded. As we would hope, rµ(A) = R(µ,A) when rµ(z) = (µ− z)−1.

We have also defined f(A) for many unbounded functions. Using (eµ)n as
regulariser for suitable n ∈ N, we recover definitions of the following important
operators:

• Fractional powers Aα for α > 0 (originally defined in [37], [7]; see [25,
Section 3.1], [42]),

• Imaginary powers Ait for t ∈ R (see [25, Section 3.5]),

• The logarithm log A (originally defined in [46]; see [25, Section 3.5]).

For a functional calculus to be useful it is essential that it should behave
reasonably well for limits of sequences of functions. Thus the following result,
originally from [43], is very important. The assumption that A has dense
range is slightly stronger than our earlier assumption of injectivity in general,
but they are equivalent in reflexive spaces. Again the assumption is of little
significance because one can restrict A to the closure of its range.

Theorem 2.1. (Convergence Lemma) [25, Proposition 5.1.4]. Let A be
sectorial with dense range, and let θ ∈ (θsect(A), π). Suppose that fn ∈
H∞(Σθ), fn(A)∈ B(X) for each n ∈ N, supn ‖fn‖H∞ < ∞ and supn ‖fn(A)‖<
∞, and fn(z) → f(z), uniformly on compact subsets of Σθ, as n →∞. Then
f(A) ∈ B(X) and fn(A) → f(A) in the strong operator topology.

Consequently, the following are equivalent:

(1) There is a constant c such that ‖f(A)‖ ≤ c‖f‖∞ for all f ∈ H∞
0 (Σθ).

(2) f(A) ∈ B(X) for all f ∈ H∞(Σθ).



unbounded operators 107

When these properties hold, the map f 7→ f(A) is an algebra homomorphism
of H∞(Σθ) into B(X).

We say that A has bounded H∞-calculus (on a sector) if there exist θ ∈
(θsect(A), π) and cθ such that f(A) ∈ B(X) and ‖f(A)‖ ≤ cθ‖f‖H∞ for all
f ∈ H∞(Σθ). The infimum of all such θ is the H∞-angle θH∞(A) of A.

If A has dense range, then A has bounded H∞-calculus if and only if either
of the conditions (1) and (2) in Theorem 2.1 holds.

Example 2.2.

1. Any multiplication operator which is sectorial has bounded H∞-calculus.

2. The derivative D has bounded H∞-calculus (of angle π/2) on Lp(R) if
and only if p ∈ (1,∞). Furthermore, DY has bounded H∞-calculus (of
angle π/2) on Lp(0, 1;Y ) if and only if p ∈ (1,∞) and Y is a UMD-
space, i.e., the Hilbert transform is bounded on L2(R; Y ). For example,
this occurs if Y is an Lq-space for 1 < q < ∞, but not for q = 1. See
[25, Theorem 8.5.8], [28], [40, Examples 10.2].

3. Many classes of differential operators on Lp-spaces (1 < p < ∞) have
bounded H∞-calculus. See [17], [25, Chapter 8], [40, Section 14].

4. Let X be a Hilbert space and A be an operator on X with numerical
range contained in a sector Σθ where θ < π/2, and assume that A + I
is surjective. (We call such operators Kato-sectorial. They are called
m-sectorial operators in [34], and they coincide with operators defined
by quadratic forms [34, Theorem VI.2.7].) Then A is sectorial with
bounded H∞-calculus, and θH∞(A) = θsect(A) ≤ θ [41]. Conversely, let
A be a sectorial operator on a Hilbert space with bounded H∞-calculus
and θH∞(A) < π/2. Then there is an equivalent scalar product on X,
with respect to which A is Kato-sectorial [5]. See [25, Corollary 7.3.10],
[40, Section 11].

5. There is a sectorial operator A on a Hilbert space, with θsect(A) < π/2,
which does not have bounded H∞-calculus [44].

The following is an important characterisation of bounded H∞-calculus.
It is a special case of a result from [14, Theorems 4.2 and 4.4].
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Theorem 2.2. [40, Theorem 12.2]. Suppose that A is sectorial with dense
range, and θsect(A) < θ < π. The following are equivalent:

(1) A has bounded H∞-calculus on a sector;

(2) There exist θ ∈ (θsect(A), π) and a constant cθ such that
∫

∂Σθ

∣∣〈AR(λ,A)2x, x∗〉∣∣ |dλ| < cθ‖x‖ ‖x∗‖ (2.3)

for all x ∈ X and x∗ ∈ X∗.

Moreover, (2.3) holds whenever θ > θH∞(A) and it fails whenever θ <
θH∞(A).

By the Uniform Boundedness Principle, it suffices that each integral in
(2.3) is finite. The condition (2.3), and other similar equivalent conditions,
are called “quadratic estimates” or “square-function estimates” in harmonic
analysis. They are sometimes much easier to verify than the definition of
bounded H∞-calculus, because they involve only resolvents, and not arbitrary
functions, of A. For an example of this, see the proof of Theorem 4.5.

3. Generation

Now we turn to the more classical subject of generation of C0-semigroups
of operators, corresponding to applying a function etz to an operator, and
similar families arising from abstract Cauchy problems. This theory goes
back to work of Hille [29], [30] in the 1940s, but we present it in terms of the
functional calculus described in Section 2 and other similar calculi.

3.1. Bounded holomorphic semigroups Let A be sectorial with
θsect(A) < π/2. Take θ ∈ (θsect(A), π/2). For t > 0, the function ft : z 7→
e−tz − 1 belongs to H∞

0 (Σθ). Hence T (t) := exp(−tA) = ft(A) + I ∈ B(X).
Let T (0) = I.

The function T : R+ → B(X) has the following properties:

(i) T (s)T (t) = T (s + t) (s, t ≥ 0) and T (0) = I,

(ii) T is strongly continuous,

(iii) For x, y ∈ X,

(x,−y) ∈ G(A) if and only if lim
t↓0

1
t
(T (t)x− x) = y,
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(iv) T extends to a holomorphic function on Σθ′ where θ′ = π/2− θsect(A),
and T is bounded on Σφ for each φ ∈ (0, θ′).

By definition, the first two properties say that T := {T (t) : t ≥ 0} is a C0-
semigroup; the third says that −A is the generator of T ; the fourth that T is a
bounded holomorphic semigroup. Conversely, if−A generates a bounded holo-
morphic semigroup, then A is sectorial with θsect(A) < π/2. Thus bounded
holomorphic C0-semigroups T correspond exactly to sectorial operators A with
θsect(A) < π/2. For further information, see [4, Section 3.7], [20, Section I.4a],
[49, Section 2.5].

3.2. C0-semigroups and half-plane operators Let T be an arbi-
trary C0-semigroup with generator B so that (3.1) and (3.1) of Subsection 3.1
hold, with B replacing −A in (3.1). In addition,

(v) There exist constants ω and M such that ‖T (t)‖ ≤ Meωt for all t > 0
and

R(λ,B)x =
∫ ∞

0
e−λtT (t)x dt (x ∈ X, Reλ > ω). (3.1)

(vi) u(t) = T (t)x is the unique solution of the Cauchy problem

u′(t) = Bu(t) (t ≥ 0), u(0) = x,

in the classical sense if x ∈ D(B) and in a mild sense if x ∈ X.

See [4, Section 3.1], [20, Chapter 2], [49, Chapter 1] for further information.

Example 3.1.

1. A multiplication operator generates a C0-semigroup if and only if its
spectrum is contained in a left half-plane.

2. For 1 ≤ p < ∞, D generates the left-shift C0-semigroup on Lp(R), given
by (T (t)f)(s)f(s + t), and −D generates the corresponding right-shift
C0-semigroup. Similarly, −DY generates the right-shift C0-semigroup
on the space Lp(0, 1;Y ).

In these examples, the C0-semigroups can be written down explicitly, but
that is unusual. In typical applications, there is no hope of giving the semi-
group explicitly, and one tries to show that a given operator generates a
C0-semigroup by using criteria discussed in this section and in Section 4.
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Numerous situations in which C0-semigroups can be introduced are de-
scribed in [20, Chapter VI].

An operator B is said to be of strong half-plane type if there exist constants
ω and Mω such that

σ(B) ⊆ Lω := {λ ∈ C : Reλ ≤ ω}, ‖R(λ, B)‖ ≤ Mω

Re λ− ω
(Reλ > ω).

The infimum of all such ω is the strong half-plane type ωshp(B) of B.
It follows easily from (3.1) that the generator B of a C0-semigroup is of

strong half-plane type. However the converse is not true [20, Exercise II.3.12].
Let B be a strong half-plane type operator and ω > ωshp(B). Then ωI−B

is sectorial of angle π/2. Using the functional calculus for sectorial operators
described in Section 2, we can define g(ωI − B) when g ∈ H∞(Σθ) for some
θ ∈ (0, π/2). If f is bounded and holomorphic on the reversed sector {z ∈ C :
| arg(ω− z)| > θ} of angle π− θ > π/2, then we can define f(B) = g(ωI−B),
where g(z) = f(ω − z). However a C0-semigroup generated by B should
correspond to exp(tB), and the function f(z) = etz is not bounded on such a
sector. On the other hand, it is bounded on every left half-plane. So, instead of
using the sectorial functional calculus, a parallel notion of half-plane functional
calculus is used.

The functional calculus for operators of strong half-plane type is con-
structed in a similar way to sectorial operators (see Section 2). Sectors Σθ are
replaced by half-planes Lω where ω > ωshp(B). Let H∞

0 (Lω) be the space of
all holomorphic functions f on Lω such that

|f(z)| ≤ c

1 + | Im z|1+ε

for some c and ε > 0. Then define

f(B) =
1

2πi

∫

∂Lω′
f(λ)R(λ,B) dλ, (3.2)

where ωshp(B) < ω′ < ω. One extends this definition to a larger class of
functions exactly as for sectorial operators. In particular, f(B) is defined as
a closed operator for all f ∈ H∞(Lω), using the function r2

µ(z) = (µ − z)−2

as regulariser where Reµ > ω, so that

f(B)x = y if and only if (r2
µ.f)(B)x = R(µ,B)2y.

This functional calculus has the same basic properties as the sectorial case, and
in particular the Convergence Lemma (Theorem 2.1) holds for all operators
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of strong half-plane type. Thus one can define the notion of an operator of
strong half-plane type having bounded H∞-functional calculus in the same
way as for sectorial operators. However there does not seem to be a natural
analogue of Theorem 2.2.

Let B be an operator of strong half-plane type. Since the exponential
function is bounded and holomorphic on each left half-plane, the functional
calculus defines exp(tB) as a closed operator for any t ≥ 0. Let Reµ > ω >
ωshp(B) and t ≥ 0. The function z 7→ etz/(µ− z)2 belongs to H∞

0 (Lω). Using
it as regulariser, we find that D(B2) ⊆ D(exp(tB)) and

exp(tB)x =
1

2πi

∫

Re z=ω

etz

(µ− z)2
R(z,B)(µI −B)2x dz (x ∈ D(B2)).

By the Dominated Convergence Theorem, this function of t is continuous on
[0,∞). It is also exponentially bounded, and by Fubini’s Theorem, Cauchy’s
Residue Theorem and some algebraic manipulations, its Laplace transform is
∫ ∞

0
e−tλ exp(tB)x dt

1
2πi

∫

Re z=ω

1
(λ− z)(µ− z)2

R(z, B)(µI −B)2x dz

= R(λ,B)x.

(3.3)

If B generates a C0-semigroup T , then it follows from (3.1), (3.3) and
uniqueness of Laplace transforms that exp(tB)x = T (t)x for x ∈ D(B2).
Since D(B2) is dense, exp(tB) is closed and T (t) is bounded, it follows that
exp(tB) = T (t) ∈ B(X).

Conversely, suppose that exp(tB) ∈ B(X) for each t ≥ 0 and

sup {‖ exp(tB)‖ : 0 ≤ t ≤ 1} < ∞.

Let T (t) = exp(tB). Then T (0) = I and T (s)T (t) = T (s + t) (s, t ≥ 0)
by general properties of functional calculus, and T is strongly continuous (by
density of D(B2)). So T is a C0-semigroup. If B′ is the generator of T , then
R(λ,B) and R(λ,B′) coincide on the dense subspace D(B2), so B′ = B. Thus
we have shown the following.

Proposition 3.1. [26, Proposition 2.4]. Let B be an operator of strong
half-plane type. Then B generates a C0-semigroup if and only if

(1) exp(tB) ∈ B(X) for all t ≥ 0, and

(2) sup {‖ exp(tB)‖ : 0 ≤ t ≤ 1} < ∞.
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Let B be an operator of strong half-plane type, ω > ωshp(B) and

rn,t(z) =
(

1− tz

n

)−n

.

For Re z < ω, 0 ≤ t ≤ 1 and n ≥ max(2ω, 1),

|rn,t(z)| ≤ 4ω.

Also, rn,t(z) → etz as n → ∞. By the Convergence Lemma, exp(tB) is
bounded, uniformly for 0 ≤ t ≤ 1, if ‖rn,t(B)‖ is bounded uniformly in n
and t. From this and some use of (1.1), we obtain the classical Hille-Yosida
Theorem, presented here in the general form due to Feller, Miyadera and
Phillips [4, Theorem 3.3.4], [20, Theorem II.3.8], [49, Theorem 1.5.3], but we
have used the method of [26, Theorem 3.2].

Theorem 3.1. (Hille-Yosida) An operator B generates a C0-semigroup
T if and only if there exist ω and M such that {λ ∈ R : λ > ω} ⊆ ρ(B) and

‖R(λ,B)n‖ ≤ M

(λ− ω)n
(3.4)

whenever λ > ω and n ≥ 1.

The condition (3.4) is not easy to verify for large values of n, so it is useful
to have criteria involving only n = 1 or n = 2. Such criteria have long been
known for holomorphic semigroups (see Subsection 3.1) and for contraction
semigroups (when M = 1, so n = 1 suffices in (3.4)) [4, Corollary 3.3.5],
[20, Theorem II.3.5], [49, Theorem 1.3.1]—indeed these cases were known to
Hille and Yosida before the general form of Theorem 3.1. For general semi-
groups, no such criterion is known, but we will now give an integral criterion
involving only squares of the resolvents, which is sufficient for generation of a
C0-semigroup and which is satisfied in many examples.

Let B be an operator of strong half-plane type. For Reλ = a > ωshp(B),
µ > a and x ∈ D(B2),

R(λ,B)2x = (R(λ,B)R(µ,B))2(µI −B)2x

=
(

R(λ, B)−R(µ,B)
µ− λ

)2

(µI −B)2x.

It follows that ∫

Re λ=a
etλR(λ,B)2x dλ
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is absolutely convergent. Since R(λ,B)x is the Laplace transform of exp(tB)x
by (3.3), its negative derivative R(λ,B)2x is the Laplace transform of
t exp(tB)x. By complex inversion of Laplace transforms [4, Theorems 2.3.4,
4.2.21],

exp(tB)x =
1

2πit

∫

Re λ=a
etλR(λ,B)2x dλ

(
t > 0, x ∈ D(B2), a > ωshp(B)

)
.

Now suppose that, for some ω ≥ ωshp(B) and some K,
∫

Re λ=a

∣∣〈R(λ,B)2x, x∗〉∣∣ |dλ| ≤K‖x‖ ‖x∗‖
a− ω

(x ∈ D(B2), x∗ ∈ X∗, a > ω).

(3.5)

Then

‖ exp(tB)x‖ ≤ Keta‖x‖
2π(a− ω)t

(t > 0, x ∈ D(B2), a > ω).

Since D(B2) is dense in X and exp(tB) is closed, it follows that exp(tB) ∈
B(X) and

‖ exp(tB)‖ ≤ Keat

2π(a− ω)t

for any a > ω. Choosing a = ω + t−1 gives ‖ exp(tB)‖ ≤ Meωt, where
M = Ke/2π. So B generates a C0-semigroup.

Conversely, suppose that B generates a C0-semigroup T with ‖T (t)‖ ≤
Meωt. Since the resolvent of B is the Laplace transform of T , s 7→ R(a +
is, B)x is the Fourier transform of the function

t 7→




e−atT (t)x (t ≥ 0),

0 (t < 0).

If X is a Hilbert space, then Plancherel’s Theorem gives that
∫ ∞

−∞
‖R(a + is, B)x‖2 ds = 2π

∫ ∞

0
e−2at‖T (t)x‖2 dt ≤ πM2‖x‖2

a− ω
.

A similar estimate holds for the dual semigroup generated by B∗. Since

〈R(a + is, B)2x, x∗〉 = 〈R(a + is, B)x,R(a− is, B∗)x∗〉,
the Cauchy-Schwarz inequality leads to (3.5) with K = πM2.

The following result summarises these facts, in a slightly more general form
obtained independently by Gomilko [23], and Shi and Feng [54].
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Theorem 3.2. Let B be an operator on X and suppose that there exist
K and ω such that σ(B) ⊆ {λ ∈ C : Re λ ≤ ω} and

∫ ∞

−∞

∣∣〈R(a + is, B)2x, x∗〉∣∣ ds ≤ K‖x‖ ‖x∗‖
a− ω

(3.6)

whenever a > ω, x ∈ X and x∗ ∈ X∗. Then B generates a C0-semigroup on
X.

Conversely, if X is a Hilbert space and B generates a C0-semigroup, then
(3.6) holds for some K and ω.

We shall see in Example 3.3 that the derivative operator D on Lp(R) does
not satisfy (3.6) when p 6= 2.

3.3. C0-groups and strip-type operators A C0-group is a strongly
continuous function T : R→ B(X) such that T (0) = I and T (s)T (t) = T (s+t)
for all s, t ∈ R. In other words, T |R+ is a C0-semigroup, each operator T (t) is
invertible, and t 7→ T (t)−1 = T (−t) is also a C0-semigroup. Thus, B generates
a C0-group if and only if B and −B both generate C0-semigroups, equivalently
B and −B both satisfy the Hille-Yosida condition (3.4).

Example 3.2.

1. The translation, or shift, group on Lp(R) (1 ≤ p < ∞) is generated by
D (see Example 3.1(2)).

2. If H is a self-adjoint operator on a Hilbert space, then {exp(itH) : t ∈
R}, defined by the functional calculus of self-adjoint operators, is a C0-
group. Moreover, every C0-group of unitaries on a Hilbert space is of
this form [20, Theorem II.3.24].

If B generates a C0-group then the Hille-Yosida condition (3.4) for n = 1,
applied to both B and −B, shows that B is an operator of strong vertical
strip type in the sense that there exist ω > 0 and Mω such that

• σ(B) ⊆ Sω := {λ ∈ C : |Re λ| < ω};

• ‖R(λ, B)‖ ≤ Mω

|Reλ| − ω
whenever λ ∈ C \ Sω.

The infimum of such ω is the strong vertical strip type ωsvst(B) of B.
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The functional calculus for an operator B of strong vertical strip type is
defined in a similar way to sectorial operators and operators of strong half-
plane type. Now the sector Σθ or half-plane Lω is replaced by the strip Sω.
Thus in (3.2), f is holomorphic on a strip Sω, and the integral is now taken
over ∂Sω′ , two vertical lines in opposite directions, instead of over a single
line, where ωsvst(B) < ω′ < ω.

One may then define the notion of a strong vertical strip type operator hav-
ing bounded H∞-calculus on a strip. The following analogue of Theorem 2.2
characterizes this notion in terms of square-function estimates. This contrasts
with the case of Subsection 3.2 and exhibits the advantages of integrals being
taken over two lines.

Theorem 3.3. [55, Corollary 4.27]. Let B be an operator of strong ver-
tical strip type on a Banach space X. Then B has bounded H∞-calculus on
some strip if and only if there exist ω > ωsvst(B) and c such that

∫

∂Sω

∣∣〈R(λ, B)2x, x∗〉∣∣ |dλ| ≤ c‖x‖ ‖x∗‖

for all x ∈ X and x∗ ∈ X∗.

If B is a strong vertical strip type operator with bounded H∞-calculus,
then B generates a C0-group given by T (t) = exp(tB) defined by the func-
tional calculus. In the light of Example 2.2(5), one might expect the converse
to be false even on Hilbert spaces. Actually it is true and it follows directly
from the final statement of Theorem 3.2 together with Theorem 3.3. The
result was first obtained by a different method in [11], and other proofs are
given in [25, Section 7.2].

Theorem 3.4. Let B be the generator of a C0-group on a Hilbert space.
Then B has bounded H∞-calculus on a strip.

Example 3.3. Theorem 3.4 is not true on Lp-spaces for 1 ≤ p < ∞, p 6=
2. For example, the generator D of the translation group on Lp(R) does not
have bounded H∞-calculus on any strip when p 6= 2 [25, p.240]. It follows
from Theorem 3.3 that ±D does not satisfy (3.6). Since −D and D are similar
operators, D does not satisfy (3.6).

Nevertheless there is a version of Theorem 3.4 which holds in UMD-spaces,
in particular in Lp-spaces for p ∈ (1,∞). If B generates a C0-group T on a
UMD-space X and there exists ω such that

{
e−ω|t|T (t) : t ∈ R}

is R-bounded
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in the sense of [40, Section 2], then B has bounded H∞-calculus on a strip
[27].

It will be convenient in the next subsection to consider operators associated
with horizontal strips instead of vertical strips. Clearly there is a correspond-
ing, essentially identical, theory of operators of strong horizontal strip type
and their functional calculus. In fact, B is of strong horizontal strip type if
and only if iB is of strong vertical strip type.

3.4. Operator logarithms The logarithm is a conformal mapping
of the sector Σθ onto the horizontal strip of half-width θ. As observed in
Section 2, if A is an injective sectorial operator, the operator logarithm log A
is a closed operator. The following two results relate the functional calculi of
A and log A.

Theorem 3.5. [25, Theorem 4.3.1]. Let A be an injective sectorial opera-
tor. Then log A is of strong horizontal strip type and ωshst(log A) = θsect(A).

Theorem 3.6. (Composition Rule) [25, Corollary 4.2.5]. Let A be an
injective sectorial operator, and let f be a holomorphic function on {λ ∈
C : | Im λ| < ω} for some ω ∈ (θsect(A), π). Then f(log A) is defined by the
functional calculus for operators of strong horizontal strip type if and only if
(f ◦ log)(A) is defined by the functional calculus for sectorial operators. In
that case,

f(log A) = (f ◦ log)(A).

Composition rules of this type are an important feature of this subject,
but they do not come for free—they have to be proved in each context in
which they occur. Then consequences can be read off quickly. For example, it
follows immediately from Theorem 3.6 that A has bounded H∞-calculus on
a sector if and only if log A has bounded H∞-calculus on a strip.

The extended definition of functional calculus for operators of strong hori-
zontal strip type includes the case of the exponential function, so we can define
expB if B is of strong horizontal strip type. The Composition Rule provides
the expected result that exp(log A) = A. One would also hope that if B is
of strong horizontal strip type with ωshst(B) < π, then expB is sectorial. If
B has bounded H∞-calculus on a strip of half-width less than π, then expB
is sectorial with bounded H∞-calculus on the sector, and log(expB) = B.
Nevertheless there is a surprise.
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Example 3.4. Let B = iD on L1(R). Then B is of strong horizontal strip
type with ωshst(B) = 0. However expB has empty resolvent set [25, Example
4.4.1].

On the other hand there are some positive results, under supplementary
assumptions. The first is originally due to Monniaux [45].

Theorem 3.7. [25, Theorem 4.4.3]. If B generates a C0-group on a UMD-
space, then exp(iB) is sectorial.

Theorem 3.8. [13, Proposition 5.2.9]. Suppose that B is of strong hori-
zontal strip type with ωshst(B) = ω < π, and ρ(expB)∩(C\Σω) is non-empty.
Then

(1) σ(expB) ⊆ Σω,

(2) for each θ ∈ (ω, π), there exists cθ such that

‖λR(λ, expB)‖ ≤ cθ log(| log(|λ|)|+ 2) (3.7)

whenever λ ∈ C \ Σθ.

Theorem 3.8 indicates that expB is very close to being sectorial (provided
that σ(expB) does not contain C\Σω), but it is not known whether it can be
improved to give sectoriality. Having an iterated logarithm in (3.7) is signif-
icantly better than having an ordinary logarithm, because the basic method
of [46] extends to the former class of operators, but not the latter. In other
words, if an operator A satisfies (1) and (2) in Theorem 3.8, then log A can
be defined and it is very close to being of strong horizontal strip type [13,
Chapter 6].

3.5. Cosine functions and operators of parabolic type Let B
be a strong vertical strip type operator, and t ∈ R. Then cos(itB) is defined
as a closed operator by the functional calculus. If B generates a C0-group,
then

C(t) := cos(itB) =
1
2

(exp(tB) + exp(−tB)) ∈ B(X).

Then

(i) C is strongly continuous,

(ii) C(0) = I and

2C(t)C(s) = C(t + s) + C(t− s) (t, s ∈ R),
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(iii) For any x, y ∈ X,

B2x = y if and only if lim
t↓0

2
t2

(C(t)x− x)y.

The first two properties say that C is a cosine function, and the third says
that B2 is the generator of C.

An arbitrary cosine function C with generator A has further properties as
follows:

(iv) There exist real constants ω and M such that ‖C(t)‖ ≤ Meω|t| for all
t ∈ R, and

λR(λ2, A)x =
∫ ∞

0
e−λtC(t)x dt (x ∈ X, Reλ > ω).

(v) u(t) = C(t)x is a solution of the Cauchy problem

u′′(t) = Au(t) (t ≥ 0), u(0) = x, u′(0) = 0,

in the classical sense if x ∈ D(A) and in a mild sense if x ∈ X.

In particular A is an operator of parabolic type in the sense that there exist
ω > 0 and M such that

σ(A) ⊆ Πω :=
{
λ2 : λ ∈ Sω

}
=

{
ξ + iη : ξ < ω2 − η2/4ω2

}
,

‖R(µ,A)‖ ≤ M√
|µ|(|Re

√
µ| − ω)

(µ ∈ C \Πω).

In fact, if B is an operator of strong vertical strip type, then B2 +ωI is of
parabolic type for every ω ∈ R. On the other hand if A is of parabolic type,
then for sufficiently large ω, ωI −A is a sectorial operator and its square root
is of strong horizontal strip type. Thus an operator A is of parabolic type
if and only if A = B2 + ωI for some ω > 0 and some operator B of strong
vertical strip type.

It is possible to define functional calculus for operators of parabolic type,
in a similar way to sectorial and strip-type operators. The function z 7→
cos(t

√−z) is well-defined, entire, and bounded on each Πω. An operator A of
parabolic type generates a cosine function if and only if cos(t

√−A) (defined
by this functional calculus) is bounded, uniformly for 0 ≤ t ≤ 1 [26].
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If B generates a C0-group and A = B2 + ωI, then A generates a cosine
function. The converse is not true in general [35] but Fattorini [21] proved
that it is true on UMD-spaces. This indicates that there are few examples of
cosine functions which are not associated with C0-groups.

Theorem 3.9. [4, Theorem 3.16.7]. If X is a UMD-space and A generates
a cosine function, then A = B2+ωI where B generates a C0-group and ω ∈ R.

In the case of Hilbert spaces, generators of cosine functions can be de-
scribed precisely in terms of the numerical range of the operators, up to
equivalence of norms.

Theorem 3.10. (Crouzeix [15]). Let A be an operator on a Hilbert space
such that the numerical range and spectrum of A are both contained in Πω

for some ω > 0. Then A generates a cosine function.

Theorem 3.11. [25, Corollary 7.4.8]. Let A be the generator of a cosine
function on a Hilbert space X. Then there is an equivalent scalar product on
X with respect to which the numerical range of A is contained in Πω for some
ω > 0.

Theorem 3.10 is part of a remarkable discovery by Crouzeix [16] for ma-
trices. If A is an n × n matrix with numerical range W (A) and p(x) is any
complex polynomial, then

‖p(A)‖B(Cn) ≤ 12 sup{|p(z)| : z ∈ W (A)}.

Once this result is established for matrices, then standard approximation
methods allow one to pass from matrices to operators on Hilbert space and
from polynomials to holomorphic functions. Thus the assumptions of Theo-
rem 3.10 imply that A has bounded H∞-calculus on Πω.

One further result, due to Kisyński [36], links general cosine functions to
C0-semigroups.

Theorem 3.12. [4, Theorem 3.14.11]. Let A be an operator on X. If A
generates a cosine function on X then there exists a unique Banach space V
such that

(1) D(A) ↪→ V ↪→ X, and
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(2) the operator

B :=
(

0 1
A 0

)
,

with D(B) = D(A)× V , generates a C0-semigroup on V ×X.

Conversely, if there is a Banach space V such that (1) and (2) hold, then A
generates a cosine function on X.

The space V in Theorem 3.12 is sometimes called the Kisyński space as-
sociated with the cosine function or its generator, and sometimes the phase
space, but the latter terminology is sometimes used for V ×X. If A = B2+ωI
where B generates a C0-group, then V = D(B).

For further information on cosine functions, see [4, Sections 3.14-3.16],
[22].

4. Perturbations

Perturbation theory is important for applications because many models
involve an operator Ã which can be written as

Ã = A + Q

where A is well understood (say, a differential operator which is purely second
order) and Q is a perturbation which is small in some sense (say, lower order
terms only). One wants to establish that Ã has similar properties to A.
Actually it is often sufficient if we can show that ωI + Ã has those properties,
and we shall be satisfied with that.

4.1. Sectorial operators, C0-semigroups and cosine functions
Let λ ∈ ρ(A) and Q ∈ B(X). Then

λI − (A + Q) = (I −QR(λ,A))(λ−A).

If ‖QR(λ,A)‖ < 1/2, then

λ ∈ ρ(A + Q) and ‖R(λ,A + Q)‖ ≤ 2‖R(λ,A)‖. (4.1)

If A is sectorial and θ > θsect(A), then ‖λR(λ,A + Q)‖ ≤ 2cθ if λ /∈ Σθ and
|λ| is large enough. Then ωI + A + Q is sectorial for some ω ∈ R, and we
can make θsect(ωI + A + Q) as close as we like to θsect(A) by choosing ω large
enough.
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This argument can be adapted to some situations where Q is unbounded.
Let Q : D(A) → X be relatively bounded, i.e., bounded when D(A) has the
graph norm. Assuming (without loss) that A is invertible, this means that
Q = SA where S ∈ B(X). Now QR(λ,A) = S(λR(λ,A) − I) and it follows
from sectoriality of A that ‖QR(λ,A)‖ < 1/2 whenever λ /∈ Σθ, if ‖S‖ is
sufficiently small. Then A + Q is sectorial.

Now assume that Q : D(A) → X is relatively compact, and write

λI − (A + Q) = (λI −A)(ID(A) −R(λ,A)Q).

When A is sectorial, R(λ,A) : X → D(A) is bounded uniformly for λ ∈ C\Σθ

and strongly convergent to 0 as |λ| → ∞. Since Q : D(A) → X is compact, it
follows that ‖R(λ,A)Q‖B(D(A)) → 0 as |λ| → ∞. In a similar way to before,
it follows that ωI + A + Q is sectorial with angle arbitrarily close to θsect(A).

Considering the case when the angle is less than π/2 and applying facts
from Subsection 3.1 provides the following result.

Theorem 4.1. Let −A be the generator of a holomorphic semigroup and
Q : D(A) → X be relatively bounded. Assume that either

(1) ‖Q‖B(D(A),X) is sufficiently small, or

(2) Q is relatively compact.

Then −(A + Q) generates a holomorphic semigroup.

The case (1) of Theorem 4.1 was known to Hille [29]. Case (2) is due to
Desch and Schappacher [18], and they also showed that no result of this type
holds for semigroups which are not holomorphic (see also [2]). Another type
of perturbation theorem for holomorphic semigroups may be found in [39].

For general C0-semigroups, Phillips [50] showed the following for bounded
perturbations.

Theorem 4.2. If B generates a C0-semigroup and Q ∈ B(X) then B +Q
generates a C0-semigroup.

For unbounded perturbations Q of generators B of C0-semigroups which
are not holomorphic, there are many results saying that B + Q, or some
extension of it, generates a C0-semigroup under various assumptions on B
and Q, separately or in combination. We refer the reader to [20, Sections
III.2, III.3] for details of some such results.

For generators of cosine functions, we have the following corollary of The-
orem 3.12 and Theorem 4.2.
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Corollary. If A generates a cosine function with Kisyński space V and
B : V → X is bounded, then A + B generates a cosine function.

4.2. Differentiable semigroups A C0-semgroup T with generator
B is said to be (immediately) differentiable if T is differentiable on (0,∞)
in operator-norm, or equivalently in the strong operator topology. This is
equivalent to saying that T (t) maps X into D(B), and then T ′(t) = BT (t),
a bounded operator, for each t > 0. Holomorphic semigroups are differ-
entiable, and some degenerate differential operators generate differentiable
semigroups which are not holomorphic (see [24], for example). Moreover, C0-
semigroups which are eventually differentiable (i.e., differentiable on (t0,∞)
for some t0 > 0) arise naturally in the study of delay equations [9], [10] and
Volterra equations [8].

The definition of a differentiable semigroup can be expressed in terms of
functional calculus as follows. For t > 0, let gt(z) = zetz. Then gt is holomor-
phic on each left half-plane, and moreover gt can be regularised by means of
a function of the form (ω + z)−3. Thus gt(B) is defined as a closed operator,
and indeed gt(B) is a closed extension of T (t)B. Now T is differentiable if
and only if gt(B) ∈ B(X) for each t > 0.

A necessary condition for T to be differentiable is that gt is bounded on
σ(B). Writing β = 1/t, this requires σ(B) to be disjoint from a region of
the form Eβ,c defined below (sometimes known as an exponential region, and
sometimes as a logarithmic region). This explains part of the characterisation
of generators of C0-semigroups given in Theorem 4.3, originally due to Pazy
[48].

For β > 0 and c ∈ R, let

Eβ,c = {λ ∈ C : Re λ ≥ c− β log(| Imλ|+ 1)}.

Theorem 4.3. [49, Theorem 2.4.7]. Let T be a C0-semigroup with gen-
erator B. Then T is differentiable if and only if, for each β > 0, there exist
cβ, c′β such that Eβ,cβ

⊆ ρ(B) and

‖R(λ,B)‖ ≤ c′β(|λ|+ 1) for all λ ∈ Eβ,cβ
. (4.2)

In this case, T is given by a contour integral of the form (2.2) for exp(tB)
using Eβ,cβ

instead of a sector:

T (t) =
1

2πi

∫

∂Eβ,cβ

eλtR(λ,B) dλ,
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where this integral, and the corresponding integral for T ′, are absolutely con-
vergent if t > 3/β.

The nature of the resolvent estimate (4.2) is somewhat surprising. The
linear growth of the resolvent can be replaced by polynomial growth of any
order. However, differentiability of T does not imply boundedness of the
resolvent of B in any Eβ,c [48, p.1136].

Let B be the generator of a differentiable semigroup. The question was
raised whether the semigroup generated by B + Q is differentiable for every
Q ∈ B(X). Pazy [48] observed that this is so if ‖R(λ,B)‖ → 0 as |λ| → ∞
through Eβ,cβ

. After a long interval Renardy [53] constructed a differentiable
semigroup with a bounded perturbation which is not differentiable. Iley [31]
recently proved that the converse of Pazy’s observation is true.

Theorem 4.4. Let T be a C0-semigroup with generator B. Suppose that
for each Q ∈ B(X), the C0-semigroup generated by B + Q is differentiable.
Then, for each β > 0, there exists cβ such that Eβ,cβ

⊆ ρ(B) and ‖R(λ,B)‖ →
0 as |λ| → ∞ through Eβ,cβ

.

The proof of this result involves several steps which we sketch here.

First step. Any locally Lipschitz C0-semigroup is differentiable, because the
condition that ‖T (t)−T (s)‖≤ c|t−s| on some interval implies that ‖BT (t)x‖≤
c‖x‖ for x ∈ D(B), and hence BT (t) ∈ B(X), for t in the same interval. The
converse is also true, because ‖T ′(t+h)‖ = ‖T (h)BT (t)‖ is uniformly bounded
for 0 ≤ h ≤ 1.

Second step. Assume that B + Q generates a differentiable semigroup SQ for
each Q ∈ K(X). Let t0 ∈ (0, 1) be arbitrary. Define

Fn = {Q ∈ K(X) : ‖SQ(t)− SQ(s)‖ ≤ n|t− s| (t0 ≤ s, t ≤ 1)} .

Then Fn is a closed subset of K(X), and K(X) =
⋃∞

n=1 Fn (by assumption
and the first step). By the Baire Category Theorem, there exists m such that
Fm contains a ball in K(X), with centre Q0 and radius ε > 0. Thus the
derivatives of the semigroups SQ are bounded uniformly for t ∈ [t0, 1] and
‖Q−Q0‖ < ε.

Third step. By examining the proof of Theorem 4.3, or by applying the state-
ment of Theorem 4.3 to a direct sum, it follows from the second step that, for
a fixed β > 0, the constants cβ, c′β in Theorem 4.3 can be chosen uniformly
for all the semigroups SQ with ‖Q − Q0‖ < ε. In particular, there exists cβ
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such that Eβ,cβ
⊆ ρ(B + Q0 + K) whenever K ∈ K(X) and ‖K‖ < ε. It fol-

lows by an elementary argument, involving only rank-one operators K, that
‖R(λ,B + Q0)‖ ≤ ε−1 for all λ ∈ Eβ,cβ

.
Fourth step. It is elementary that ‖R(λ,B + Q0)x‖ → 0 as |λ| → ∞ through
Eβ,cβ

, for each x ∈ D(B). Since ‖R(λ,B + Q0)‖ is bounded in this region (by
the third step) and Q0 is compact, it follows that ‖R(λ,B + Q0)Q0‖ → 0. As
in Subsection 4.1 this implies that R(λ, B) exists and is uniformly bounded
in a subregion Eβ,c̃β

.
Final step. Now the resolvent of B is bounded and holomorphic in a region
Eβ,c̃β

and it is bounded by M/(a − ω) for Reλ = a > ω, for some M and
ω. By choosing suitable a depending on Imλ, one can apply an approximate
form of the classical three-lines theorem to obtain an estimate on the resolvent
showing that, for each β′ < β, there exists cβ′ such that ‖R(λ,B)‖ → 0 as
|λ| → ∞ through Eβ′,cβ′ .

More precisely, the final step of the argument involves an application of
the two-constant theorem for subharmonic functions and harmonic measure
[52, Theorem 4.3.7]. In fact, explicit estimates are obtained for the rate of
decay. For example, it was shown in [31] that

‖R(is, B)‖ = o
(
(log |s|)−γ

)
as |s| → ∞

for any γ < 1, when B is as in Theorem 4.4. Chill and Tomilov [12, Lemma
4.13] improved this to

‖R(is, B)‖ = O

(
log log |s|

log |s|
)

as |s| → ∞. (4.3)

Król [38] has constructed an example showing that (4.3) is sharp.
There are variants of Theorem 4.3 and Theorem 4.4 in which immediately

differentiable semigroups are replaced by eventually differentiable semigroups
and the resolvent conditions hold for some β > 0 [31].

4.3. H∞-calculus on sectors Suppose that A has bounded H∞-
calculus on a sector. We consider the question:

When does ωI + A + Q also have bounded H∞-calculus, for some ω?
The answer is easily seen to be positive when Q ∈ B(X) or even when Q
is relatively bounded with respect to Aα for some α < 1 [40, Proposition
13.1]. The question is more interesting mathematically for relatively bounded
perturbations Q : D(A) → X. Then replacing A by ωI + A, we may assume,
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without loss of generality, that A is invertible and sectorial and we may write
Q = SA where S ∈ B(X). In addition, we will assume that A+SA is sectorial,
or we will impose conditions that S is compact or of small norm, implying
that ωI + A + SA is sectorial (Subsection 4.1).

A positive answer was obtained in [3] when S is rank-1, so Qx = 〈Ax, x∗〉y
for some x∗ ∈ X∗ and y ∈ X. The proof in [3] relied directly on the definition
of bounded H∞-calculus, but the argument is not straightforward. Indepen-
dently, Kalton [32] obtained the same result as part of a wider programme
which we discuss below. There is a rather simple proof of the rank-1 case from
the square-function estimates (Theorem 2.2), using the Morrison–Sherman–
Woodbury formula for the resolvent of A + Q in terms of the resolvent of A,
x∗ and y [55, Corollary 3.37].

It follows from the rank-1 case that our question has a positive answer when
S is of finite rank, and even when S is a nuclear operator. Moreover Kalton
obtained further results using the following notion of “triangular” operators
(unrelated to triangular matrices).

An operator S ∈ B(X) is said to be triangular if there exists c such that

∣∣∣∣∣
n∑

j=1

j∑

k=1

〈Sxj , x
∗
k〉

∣∣∣∣∣ ≤ c sup
|αj |=1

∥∥∥∥∥
n∑

j=1

αjxj

∥∥∥∥∥ sup
|βk|=1

∥∥∥∥∥
n∑

k=1

βkx
∗
k

∥∥∥∥∥

whenever n ∈ N, xj ∈ X, x∗k ∈ X∗. The least such c is the triangular norm
Θ(S) of S. Taking n = 1 shows that Θ(S) ≥ ‖S‖. The triangular operators
form an ideal in B(X) and Θ(USV ) ≤ ‖U‖Θ(S)‖V ‖.

Theorem 4.5. (Kalton [32]). Let A be a sectorial operator with bounded
H∞-calculus on a sector. Then A+SA has bounded H∞-calculus on a sector
whenever S is triangular and Θ(S) is sufficiently small.

The proof of this theorem uses the square-function estimates of Theo-
rem 2.2, as follows. For a C1-function F : I → B(X) where I is an interval,
let

‖F‖bv = sup
{∫

I

∣∣〈F ′(t)x, x∗〉∣∣ dt : ‖x‖ = 1, ‖x∗‖ = 1
}

.

Let A be sectorial with bounded H∞-calculus and |θ| ∈ (θH∞(A), π). Define
Fθ : (0,∞) → B(X) by

Fθ(t) = AR(teiθ, A).

Then Fθ is bounded since A is sectorial, and ‖Fθ‖bv < ∞ by Theorem 2.2.
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Let S be a triangular operator on X with ‖S‖ < ‖Fθ‖−1∞ , and let

Gθ(t) = (A + SA)R(teiθ, A + SA) = (I + S)AR(teiθ, A)(I − SAR(teiθ, A))−1

= (I + S)Fθ(t)(I − SFθ(t))−1 = (I + S)
∞∑

n=0

Fθ(t)(SFθ(t))n.

We shall show in Proposition 4.3 that ‖F (I−SF )−1‖bv < ∞ if ‖F‖bv < ∞
and Θ(S) is sufficiently small. Then

‖Gθ‖bv ≤ ‖I + S‖ ‖Fθ(I − SFθ)−1‖bv < ∞,

if Θ(S) is sufficiently small. So Theorem 4.5 follows from Theorem 2.2.

Proposition 4.1. Let f : [a, b] → X and g : [a, b] → X∗ be continuous
functions, and let S be a triangular operator on X. Then

∫ b

a

∣∣∣∣
∫ t

a
〈Sf(s), g(t)〉 ds

∣∣∣∣ dt

≤ Θ(S) sup
‖x∗‖=1

{∫ b

a
|〈f(s), x∗〉| ds

}
sup
‖x‖=1

{∫ b

a
|〈x, g(t)〉| dt

}
.

Proof. Let I1, . . . , In be a partition of [a, b] into disjoint subintervals, and
let

xj =
∫

Ij

f(s) ds, x∗j =
∫

Ij

g(t) dt (j = 1, . . . , n).

Take εj ∈ C so that |εj | = 1 and εj
∑j

k=1〈Sxj , x
∗
k〉 ≥ 0. Then

n∑

j=1

∣∣∣∣∣
j∑

k=1

〈Sxj , x
∗
k〉

∣∣∣∣∣ =
n∑

j=1

j∑

k=1

〈S(εjxj), x∗k〉

≤ Θ(S) sup
|αj |=1

∥∥∥∥∥
n∑

j=1

αjxj

∥∥∥∥∥ sup
|βk|=1

∥∥∥∥∥
n∑

k=1

βkx
∗
k

∥∥∥∥∥

= Θ(S) sup
|αj |=1
‖x∗‖=1

∣∣∣∣∣
n∑

j=1

αj

∫

Ij

〈f(s), x∗〉 ds

∣∣∣∣∣ sup
|βk|=1
‖x‖=1

∣∣∣∣∣
n∑

k=1

βk

∫

Ik

〈x, g(t)〉 dt

∣∣∣∣∣

≤ Θ(S) sup
‖x∗‖=1

∫ b

a
|〈f(s), x∗〉| ds sup

‖x‖=1

∫ b

a
|〈x, g(t)〉| dt.
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Now the result follows by taking the limit as the mesh of the partition tends
to 0.

Proposition 4.2. Let F, G : [a, b] → B(X) be C1-functions, and S be a
triangular operator on X. Let (FSG)(t) = F (t)SG(t). Then

‖FSG‖bv ≤ Θ(S) (2‖F‖bv‖G‖bv + ‖F‖bv‖G(a)‖+ ‖F (a)‖ ‖G‖bv) .

Proof. We use the formula

(FSG)′(t) = F ′(t)S(G(t)−G(a)) + (F (t)− F (a))SG(t)
+ F ′(t)SG(a) + F (a)SG′(t).

(4.4)

Let x ∈ X and x∗ ∈ X∗ be unit vectors. By Proposition 4.1,

∫ b

a

∣∣〈F ′(t)S(G(t)−G(a))x, x∗〉∣∣ dt =
∫ b

a

∣∣∣∣
∫ t

a
〈SG′(s)x, F ′(t)∗x∗〉 ds

∣∣∣∣ dt

≤ Θ(S) sup
‖y∗‖=1

{∫ b

a
|〈G′(s)x, y∗〉| ds

}
sup
‖y‖=1

{∫ b

a
|〈y, F ′(t)∗x∗〉| dt

}

≤ Θ(S)‖F‖bv‖G‖bv.

The second term on the right-hand side of (4.4) can be handled in a similar
way. For the third term, we have

∫ b

a

∣∣〈F ′(t)SG(a)x, x∗〉∣∣ dt ≤ ‖F‖bv‖SG(a)x‖ ≤ ‖F‖bv‖S‖‖G(a)‖

≤ ‖F‖bvΘ(S)‖G(a)‖,

and similarly for the last term.

Proposition 4.3. Let F : (0,∞) → B(X) be a bounded C1-function
such that ‖F‖bv is finite. Let r = ‖F‖∞ + 2‖F‖bv, and let S be a triangular
operator with Θ(S) < 1/r. Then

‖F (I − SF )−1‖bv ≤ (1− rΘ(S))−2‖F‖bv.

Proof. Let Fn = F (SF )n. Then F (I−SF )−1 =
∑∞

n=0 Fn. A simple induc-
tion shows that ‖F ′

n(t)‖ ≤ (n + 1)‖T‖n‖F (t)‖n‖F ′(t)‖, so
∑∞

n=0 F ′
n converges

to the derivative of F (I − SF )−1, locally uniformly on (0,∞).
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It follows from Proposition 4.2 that

‖Fn‖bv ≤ rΘ(S)‖Fn−1‖bv + ‖S‖n‖F‖n
∞‖F‖bv.

Hence,
‖Fn‖bv ≤ (n + 1)rnΘ(S)n‖F‖bv.

It follows that

‖F (I − SF )−1‖bv ≤
∞∑

n=0

‖Fn‖bv ≤ (1− rΘ(S))−2‖F‖bv.

In order to apply Theorem 4.5 one needs conditions which ensure triangu-
larity and which can be verified. Kalton established the following in [32].

Example 4.1.

1. Any 1-absolutely summing operator S is triangular and Θ(S) ≤ π1(S).
See [56, Section III.F] for background material on the 1-absolutely sum-
ming norm π1.

2. Let an(S) := inf (‖S −R‖ : rankR ≤ n) be the approximation numbers
of S, so S is compact if limn→∞ an(S) = 0 (and the converse holds if X
has the approximation property). Then

Θ(S) ≤ c
∞∑

n=1

(1 + log n)
an(S)

n

for some constant c. Using Theorem 4.5 and the positive result for finite-
rank operators, it follows that ωI + A + SA has bounded H∞-calculus
if

∑
an(S)(log n)/n converges.

3. Let X be a Hilbert space. Then S is triangular if and only if
∑

an(S)/n
converges. Moreover there exist positive constants c, c′ such that

c′
∞∑

n=1

an(S)
n

≤ Θ(S) ≤ c
∞∑

n=1

an(S)
n

for all triangular operators S. Again it follows that ωI + A + SA has
bounded H∞-calculus if

∑
an(S)/n converges.
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4. Let X = `2. There exist an operator A with bounded H∞-calculus on a
sector, and a compact operator S, such that, for each ω ∈ R, ωI+A+SA
does not have bounded H∞-calculus.

Kalton’s construction in Example 4.1(4) showed that Theorem 4.5 cannot
be improved by replacing the triangular operators by any larger operator
ideal. On the other hand, for a given operator A with bounded H∞-calculus
on a sector, there are likely to be many bounded non-triangular operators
S such that A + SA has bounded H∞-calculus on a sector. For example,
this occurs if S is the identity operator (which is not triangular if X has an
unconditional basis), or if S is any bounded operator commuting with R(λ,A)
and A+SA is sectorial. Furthermore, Kalton and Weis [33] showed that A+B
has bounded H∞-calculus if A and B have commuting resolvents, each has
bounded H∞-calculus on a sector, the calculus of one operator is R-bounded
in an appropriate sense, and the sum of the two angles is less than π. Prüss
and Simonett [51] have extended this to the case when the resolvents of A and
B do not commute but they satisfy a suitable commutator condition. These
results have many applications to questions of maximal regularity.

4.4. H∞-calculus on strips We begin this subsection with some
heuristic discussion. Consider an operator of the form log A where A is an
injective sectorial operator. In Subsection 4.3 we considered perturbations of
the form A+SA where S is triangular and small in some sense, so that A+SA
is sectorial. Then log A and log(A + SA) are of strong horizontal strip type
and log(I + S) is bounded on X if ‖S‖ < 1. We can imagine that

log(A + SA) = log A + log(I + S)

(although this will be false if A and S do not commute). This suggests that
we should consider bounded perturbations of operators of strong horizontal
strip type, and we might expect to obtain analogues of Kalton’s perturbation
results.

It is easy to see that if B is an operator of strong horizontal strip type
and S ∈ B(X), then B + S is of strong horizontal strip type. If iB generates
a C0-group, then i(B + S) also generates a C0-group, by Theorem 4.2. So it
follows from Theorem 3.4 that if X is a Hilbert space and B has bounded H∞-
calculus on a strip, then B + S has bounded H∞-calculus on a larger strip.
With more sophisticated arguments, this can be extended to UMD-spaces.
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Theorem 4.6. [27], [55]. If B is a strong horizontal strip type operator
on a UMD-space X with bounded H∞-calculus, and S ∈ B(X), then B + S
has bounded H∞-calculus on a strip.

This already shows that it is not possible to obtain an analogue of 4.1(4)
on Hilbert space. Our heuristic argument above relied too much on ignoring
non-commutativity of the operators. Nevertheless the following analogue of
Theorem 4.5 is true, with a similar proof.

Theorem 4.7. [55]. Let B be an operator of strong horizontal strip type
with bounded H∞-calculus, on any Banach space. Then B + S has bounded
H∞-calculus on a strip whenever S is triangular and Θ(S) is sufficiently small.

In the light of Theorem 4.6, it seems likely that Theorem 4.7 is true for a
much larger class of perturbations than triangular operators, but such a result
is not yet known.
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