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A DIRECT PROOF OF THE THEOREM

ON FORMAL FUNCTIONS

FERNANDO SANCHO DE SALAS AND PEDRO SANCHO DE SALAS

(Communicated by Ted Chinburg)

Abstract. We give a direct and elementary proof of the theorem on formal
functions by studying the behaviour of the Godement resolution of a sheaf
of modules under completion. This proof also works in some non-noetherian
cases.

Introduction

Let π : X → SpecA be a proper scheme over a noetherian ring A. Let M be a
coherent OX -module and Y ⊂ SpecA a closed subscheme. Let us denote by ∧ the
completion along Y (respectively, along π−1(Y )). The theorem on formal functions
states that

Hi(X,M)∧ = Hi(X,M̂).

Two important corollaries of this theorem are Stein’s factorization theorem and
Zariski’s Main Theorem ([H, III, 11.4, 11.5]).

Hartshorne [H] gives a proof of the theorem on formal functions for projective
schemes (over a noetherian ring). Grothendieck [Gro] proves it for proper noe-
therian schemes. He first gives sufficient conditions for the commutation of the
cohomology of complexes of A-modules with inverse limits ([Gro, 0, 13.2.3]); sec-
ondly, he gives a general theorem on the commutation of the cohomology of sheaves
with inverse limits ([Gro, 0, 13.3.1]); finally, he laboriously checks that the theorem
on formal functions is under the hypothesis of this general one ([Gro, 4.1.5]).

In this paper we give the “obvious direct proof” of the theorem on formal func-
tions. Very briefly, we prove that the completion of the Godement resolution of a
coherent sheaf is a flasque resolution of the completion of the coherent sheaf and
that taking sections in the Godement complex commutes with completion. This,
together with the finiteness theorem for the higher direct images of a proper mor-
phism, yields the theorem. In fact, we prove that in the non-noetherian case the
theorem on formal functions still holds under some finiteness hypothesis.
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1. Completion of Godement resolution

Definition 1. Let X be a scheme, p ⊂ OX a sheaf of ideals and M an OX -module.

The p-adic completion of M, denoted by M̂, is

M̂ := lim
←
n

M/pnM.

If U = SpecA is an affine open subset and I = p(U), one has a natural morphism

Γ(U,M)⊗A A/In → Γ(U,M/pnM)

and then a morphism

Γ(U,M)∧ → Γ(U,M̂),

where Γ(U,M)̂ is the I-adic completion of Γ(U,M).

Definition 2. We say that M is affinely p-acyclic if for any affine open subset U
and any natural number n, the sheaves M and M/pnM are acyclic on U and the
morphism Γ(U,M) ⊗A A/In → Γ(U,M/pnM) is an isomorphism. In particular,

Γ(U,M)∧ → Γ(U,M̂) is an isomorphism.

Every quasi-coherent module is affinely p-acyclic (with p quasi-coherent).

Notation. For any sheaf F , let us denote

0 → F → C0F → C1F → · · · → CnF → · · ·
as its Godement resolution (see [Go, II, 4.3]). We shall also denote C·F =

⊕
i≥0

CiF

and Fi = Ker(CiF → Ci+1F ). One has that C0Fi = CiF . The functors F � CiF
and F � Fi are exact.

Lemma 3. Let X be a scheme, p a sheaf of ideals of finite type on X and M an
OX -module. Denote I = Γ(X, p) and assume that p is generated by a finite number
of global sections (this holds for example when X is affine). For any open subset
V ⊆ X one has

Γ(V,C0(pM)) = I · Γ(V,C0M).

In particular, the natural morphism pC0M → C0(pM) is an isomorphism.

Proof. If J is a finitely generated ideal of a ring A and Mi is a collection of A-
modules, then J ·

∏
Mi =

∏
(J ·Mi). Now, by hypothesis, p is generated by a finite

number of global sections f1, . . . , fr. Let J = (f1, . . . , fr). Then

Γ(V,C0(pM)) =
∏
x∈V

px · Mx =
∏
x∈V

J · Mx = J ·
∏
x∈V

Mx = J · Γ(V,C0M).

Since I ·
∏

x∈V Mx is contained in Γ(V,C0(pM)) one concludes the lemma. In

particular, if V is affine, then Γ(V,C0(pM)) = IV · Γ(V,C0M), with IV = Γ(V, p).
It follows that pC0M → C0(pM) is an isomorphism. �

Proposition 4. Let X be a scheme and let p be an ideal of finite type. For any
OX -module M one has:

(1) pCiM = Ci(pM) and (CiM)/p(CiM) = Ci(M/pM), for any i.
(2) pMi = (pM)i and (M/pM)i = Mi/pMi, for any i.
(3) CiM is affinely p-acyclic.
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(4) ĈiM is flasque. Moreover, if p is generated by a finite number of global
sections, then

Γ(X, ĈiM) = Γ(X,CiM)∧.

Proof. (1) and (2). We may assume that X is affine. Hence pC0M = C0(pM) by
the previous lemma and (C0M)/pC0M = C0M/C0(pM) = C0(M/pM). From
the exact sequence

M/pM → C0M/pC0M → M1/pM1 → 0

and the isomorphism C0M/pC0M = C0(M/pM), it follows that M1/pM1 =
(M/pM)1. By the exactness of the functor M � M1 one concludes that pM1 =
(pM)1. Consequently pC1M = pC0(M1) = C0(pM1) = C0((pM)1) = C1(pM),
and analogously C1M/pC1M = C1(M/pM). Repeating this argument one con-
cludes (1) and (2).

3. Since CiM = C0Mi, we may assume that i = 0. Denote N = C0M. By (1),
N/pnN is acyclic on any open subset. From the long exact sequence of cohomology
associated to 0 → pnN → N → N/pnN → 0 and the acyclicity of pnN (by (1)),
one obtains that

Γ(U,N/pnN ) = Γ(U,N )/Γ(U, pnN ).

Moreover, if U is affine, Γ(U, pnN ) = pn(U)Γ(U,N ), by Lemma 3. We have con-
cluded (3).

(4) Again, we may assume that i = 0. Let us prove that the completion of
N = C0M is flasque. It suffices to prove that its restriction to any affine open
subset is flasque, so we may assume that X is affine. Let us denote I = p(X). For
any open subset V , one has as in the proof of (3)

Γ(V, N̂ ) = lim
←
n

Γ(V,N/pnN ) = lim
←
n

Γ(V,N )/Γ(V, pnN ),

and by Lemma 3, Γ(V, pnN ) = InΓ(V,N ). In conclusion, Γ(V, N̂ ) = Γ(V,N )̂ .

One concludes that N̂ is flasque becauseN is flasque and that the I-adic completion
preserves surjections. The same arguments prove the second part of the statement.

�

Lemma 3 and Proposition 4 will be used very often in the sequel without refer-
encing.

Proposition 5. Let p be of finite type and M be affinely p-acyclic. Then Ĉ·M is

a flasque resolution of M̂.

Proof. We already know that Ĉ·M is flasque. Let us prove now that M1 is affinely
p-acyclic. From the exact sequence

0 → M/pnM → C0(M/pnM) → M1/p
nM1 → 0

one has that M1/p
nM1 is acyclic on any affine open subset. Moreover, taking

sections on an affine open subset U = SpecA, one obtains the exact sequence (let
us denote I = p(U))

0 → Γ(U,M)⊗A A/In → Γ(U,C0M)⊗A A/In → Γ(U,M1/p
nM1) → 0

and then Γ(U,M1)⊗A A/In = Γ(U,M1/p
nM1); i.e. M1 is affinely p-acyclic.
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Now, taking the inverse limit in the above exact sequence (and taking into ac-
count that the I-adic completion preserves surjections) one obtains the exact se-
quence

(∗) 0 → Γ(U,M̂) → Γ(U, Ĉ0M) → Γ(U,M̂1) → 0.

Therefore the sequence 0 → M̂ → Ĉ0M → M̂1 → 0 is exact. The conclusion
follows easily. �

Remark 6. From the exact sequence (∗) one obtains that H1(U,M̂) = 0 for any
affine open subset U and any affinely p-acyclic module M. Since M1 is also affinely

p-acyclic, one has H2(U, M̂) = 0. Recurrently, Hi(U,M̂) = 0 for any i > 0.

Moreover, M̂/pnM̂ = M/pnM. In fact, M̂/pnM̂ is the sheaf associated to the

presheaf Γ(U,M̂)/InΓ(U,M̂), with I = p(U). Since Γ(U,M̂) = Γ(U,M)∧, this
presheaf is Γ(U,M)∧/InΓ(U,M)∧ = Γ(U,M)/InΓ(U,M) (because I is finitely
generated), whose associated sheaf is M/pnM. Finally

Γ(U,M/pnM) = Γ(U,M)/InΓ(U,M) = Γ(U,M)∧/InΓ(U,M)∧

= Γ(U,M̂)/InΓ(U,M̂).

In conclusion, if p is a finite type ideal and M is affinely p-acyclic, then M̂ is also
affinely p-acyclic. This result will not be used in the sequel.

2. Finiteness hypothesis

Definition 7. An OX -module M is said to be pseudo-coherent if for each n ∈ N

there exists locally onX an exact sequence Ln → · · · → L0 → M → 0, where Li are
free modules of finite type. A morphism f : X → Y is said to be pseudo-coherent
if every x ∈ X has an open neighborhood U such that the restriction f|U factors as

U
i→ Z

p→ Y , where i is a closed immersion such that i∗OU is pseudo-coherent on
Z, and p is smooth ([I, p. 228, Def. 1.2]).

Let f : X → Y be a pseudo-coherent morphism of schemes, M a pseudo-coherent
OX -module and p a sheaf of ideals on Y of finite type. Let us denote DpOY =⊕
n∈N

pn, which has an obvious structure of sheaf of rings. Moreover,
⊕
n∈N

Rif∗(p
nM)

has a natural structure of DpOY -module. We shall assume that

(1)
⊕
n∈N

Rif∗(p
nM) is a DpOY -module of finite type.

Examples 8. Let f : X → Y , M and p be as above. Let us see some cases where
the hypothesis (1) holds:

(a) Noetherian case: Assume that f : X → Y is a proper morphism between noe-
therian schemes. Then f is pseudo-coherent, M is coherent and p is a coherent sheaf
of ideals. By [Gro, 3.3.2], (1) holds. In fact, this statement is a consequence of the
Finiteness Theorem: let Y ′ = SpecDpOY , X

′ = SpecDpOX , and M′ = DpM =
∞⊕

n=0
pnM, with the obvious OX′-module structure and f ′ : X ′ → Y ′ the natural mor-

phism. M′ is a coherent OX′-module and f ′ is proper. By the Finiteness Theorem
Rif ′

∗M′ is a coherent OY ′-module. Since π : Y ′ → Y and π′ : X ′ → X are affine
morphisms, one concludes that π∗(R

if ′
∗M′) = Rif∗(π

′
∗M′) =

⊕
n∈N

Rif∗(p
nM) is

a π∗OY ′ = DpOY -module of finite type.
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(b) Assume that f is proper and flat and that M is flat over Y . With the same
notation as in the preceding example, one has that f ′ is a proper pseudo-coherent
map (see [I, p. 233, Cor 1.10]) and M′ � OY ′ ⊗OY

M is a pseudo-coherent module
on X ′ (see [I, p. 111, Cor 2.16.1]). By Kiehl’s Finiteness Theorem ([K, p. 315,
Thm. 2.9′]) Rif ′

∗M′ is a pseudo-coherent OY ′-module. One concludes as before
that (1) holds.

Theorem 9 (on formal functions). Let f : X → Y be a morphism of schemes,
p a sheaf of ideals of finite type on Y and pOX the ideal induced in X. Let M
be an affinely p-acyclic OX -module satisfying (1). The natural morphisms (where
completions are made by p and pOX respectively)

R̂if∗M → Rif∗(M̂)

are isomorphisms. If Y = SpecA, then

Hi(X,M)∧ = Hi(X,M̂).

Proof. The question is local on Y , so we may assume that Y = SpecA is affine. It

suffices to show that Hi(X,M)̂ = Hi(X,M̂). It is clear that pOX is generated
by the global sections I = Γ(Y, p).

Let C·M be the Godement resolution of M. Let us denote by di the differ-
ential of the complex Γ(X,C·M) on degree i and dni the differential of the com-
plex Γ(X, pnC·M) = InΓ(X,C·M) on degree i. Observe that Im dni = InIm di
and Ker di = Γ(X,Mi) because Mi is the kernel of CiM → Ci+1M (recall that
CiM = C0Mi). Moreover, (InKer di) ∩ Im di−1 = In Im di−1, as follows from the
inclusion In Im di−1 ⊆ (In Ker di) ∩ Im di−1 and the diagram

0 �� InΓ(X,Mi) ∩ Im di−1
��

� �

���
�
�

InΓ(X,Mi) ��
� �

��

InHi(X,M) ��

��

0

0 �� In Im di−1 = Im dni−1
�� Γ(X, pnMi) �� Hi(X, pnM) �� 0.

Hence,

Hi(X,M)
∧
= (Ker di/ Im di−1)

∧ = K̂er di/ ̂Im di−1.

Ĉ·M is a flasque resolution of M̂ (by Proposition 5) and Γ(X, Ĉ·M) =
Γ(X,C·M)̂ (by Proposition 4(4)). Completing the exact sequences

0 → Ker di → Γ(X,CiM) → Im di → 0

we obtain the exact sequences

0 → K̂er di → Γ(X, ĈiM) → Îm di → 0

because, as we shall see below, the I-adic topology of Γ(X,CiM) induces the I-adic

topology on Ker di. Then Hi(Γ(X, Ĉ·M)) = K̂er di/ ̂Im di−1 and the natural map

Hi(X,M)∧=[HiΓ(X,C·M)]∧→Hi(Γ(X,C·M)∧)=Hi(Γ(X, Ĉ·M))=Hi(X,M̂)

is an isomorphism.
Let us prove that the I-adic topology of Γ(X,CiM) induces the I-adic topology

on Ker di = Γ(X,Mi). Intersecting the equality InΓ(X,C0Mi) = Γ(X,C0(pnMi))
with Γ(X,Mi), one obtains that the induced topology on Γ(X,Mi) is given by the
filtration {Γ(X, pnMi)}. Hence it suffices to show that this filtration is I-stable.
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Since pnMi = (pnM)i (see Proposition 4(2)), it is enough to prove that the
filtration {Γ(X, (pnM)i)} is I-stable. This is equivalent to showing that⊕∞

n=0 Γ(X, (pnM)i) is a DIA-module generated by a finite number of homoge-

neous components, where DIA =
∞⊕

n=0
In. By the exact sequence

∞⊕
n=0

Γ(X,Ci−1(pnM)) →
∞⊕
n=0

Γ(X, (pnM)i) →
∞⊕

n=0

Hi(X, pnM) → 0

it suffices to see the statement for the first and third members. The statement
for the first one is obvious because Γ(X,Ci−1(pnM)) = InΓ(X,Ci−1M). For the
third one, it is true by hypothesis (1). �
Remark 10. Reading the above proof carefully, it is not difficult to see that one has
already showed that Hi(X,M)∧ = lim

←
n

Hi(X,M/pnM).

Corollary 11. Assume now that f : X → Y is a pseudo-coherent projective mor-

phism of schemes; that is, locally on Y , f factors as X
i
↪→ Pr

Y
π→ Y , where i is

a pseudo-coherent closed immersion and π is the natural projection. Let M be a
pseudo-coherent OX-module, flat over Y , and p a sheaf of ideals on Y of finite type.
Then the theorem on formal functions holds:

R̂if∗M
∼→ Rif∗(M̂).

Proof. The question is local on Y , so we can assume that f factors asX
i
↪→ Pr

Y
π→ Y .

The theorem holds obviously for i, i.e., î∗M = i∗M̂, and it holds also for π (by
Theorem 9). Then

R̂if∗M = ̂Riπ∗(i∗M) = Riπ∗(î∗M) = Riπ∗(i∗M̂) = Rif∗(M̂). �
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