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1. Introduction

We write BE for the closed unit ball of a real Banach space E and the dual
space of E is denoted by E∗; x ∈ BE is called an extreme point of BE if y, z ∈
BE with x = 1

2(y+z) implies x = y = z; x ∈ BE is called an exposed point of
BE if there is a f ∈ E∗ so that f(x) = 1 = ‖f‖ and f(y) < 1 for every y ∈ BE\
{x}; x ∈ BE is called a smooth point of BE if there is a unique f ∈ E∗ so that
f(x) = 1 = ‖f‖. It is easy to see that every exposed point of BE is an extreme
point. We denote by expBE , extBE and smBE the sets of exposed, extreme
and smooth points of BE , respectively. We recall that a bilinear function
L : E × E → R is a symmetric bilinear form if L(x, y) = L(y, x) for every
x, y ∈ E. We denote by Ls(2E) the Banach space of all symmetric bilinear
forms from E into R endowed with the norm ‖L‖ = sup‖x‖=‖y‖=1 |L(x, y)|.
A mapping P : E → R is a continuous 2-homogeneous polynomial if there
exists a unique continuous symmetric bilinear form L on the product E × E
such that P (x) = L(x, x) for every x ∈ E. We denote by P(2E) the Banach
space of all continuous 2-homogeneous polynomials from E into R endowed
with the norm ‖P‖ = sup‖x‖=1 |P (x)|. For more details on polynomials and
symmetric bilinear maps, see [6]. It is well-known that there is an isomorphism
between Ls(2E) and P(2E). If E is a (real or complex) Hilbert space, then
there is an isometric isomorphism between Ls(2E) and P(2E) via L → L̂,
where L̂(x) = L(x, x) for every x ∈ E. Thus L is an extreme (exposed,
smooth, respectively) point in the unit ball of Ls(2E) if and only if L̂ is an
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extreme (exposed, smooth, respectively) point in the unit ball of P(2E). Some
work has been done in analyzing the geometry of spaces of polynomials on
real Banach spaces ([1] – [5], [7] – [10]). Note that there is no isometry between
Ls(2l2∞) and P(2l2∞). Thus it is natural to consider the problem of analyzing
the geometry of spaces of symmetric bilinear forms on real Banach spaces. In
this paper, we classify the extreme, exposed and smooth points of the unit
ball of the space Ls(2l2∞).

2. The results

Theorem 1. Let L ∈ Ls(2l2∞) with L
(
(x1, x2), (y1, y2)

)
= ax1y1+bx2y2+

c(x1y2 + x2y1) for (x1, x2), (y1, y2) ∈ l2∞. Then we have

‖L‖ = max
{|a + b|+ 2|c|, |a− b|}.

Proof. By symmetric bilinearity of L, we have

‖L‖ = max
{

max
|x|≤1,|y|≤1

∣∣L(
(1, x), (1, y)

)∣∣, max
|x|≤1,|y|≤1

∣∣L(
(1, x), (y, 1)

)∣∣,

max
|x|≤1,|y|≤1

∣∣L(
(x, 1), (y, 1)

)∣∣
}

.

It follows that

max
|x|≤1,|y|≤1

∣∣L(
(1, x), (1, y)

)∣∣

= max
{

max
|y|≤1

∣∣L(
(1,±1), (1, y)

)∣∣, max
|x|≤1

∣∣L(
(1, x), (1,±1)

)∣∣
}

= max
{|a− b|, |a + b|+ 2|c|}.

Similarly,

max
|x|≤1,|y|≤1

∣∣L(
(1, x), (y, 1)

)∣∣ = max
|x|≤1,|y|≤1

∣∣L(
(x, 1), (y, 1)

)∣∣

= max
{|a− b|, |a + b|+ 2|c|},

which completes the proof.

Theorem 2. We have

extBLs(2l2∞) =
{
±x1y1, ±x2y2, ± 1

2
[
x1y1 − x2y2 ± (x1y2 + x2y1)

]}
.
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Proof. Let L ∈ SLs(2l2∞) with L
(
(x1, x2), (y1, y2)

)
= ax1y1 + bx2y2 +

c(x1y2 + x2y1) for (x1, x2), (y1, y2) ∈ l2∞. By Theorem 1, we have |a| ≤ 1,
|b| ≤ 1, |c| ≤ 1

2 .
Claim 1: If c = 0 and L ∈ extBLs(2l2∞) then L

(
(x1, x2), (y1, y2)

)
= ±x1y1

or ±x2y2.
Otherwise ab 6= 0. Put

A
(
(x1, x2), (y1, y2)

)
:= (a + sign(a)ε0)x1y1 + (b− sign(b)ε0)x2y2 ,

B
(
(x1, x2), (y1, y2)

)
:= (a− sign(a)ε0)x1y1 + (b + sign(b)ε0)x2y2 .

Clearly, we have A, B ∈ SLs(2l2∞) and L = 1
2(A + B), which is a contradiction

of the hypothesis that L ∈ extBLs(2l2∞). Thus a = 0 or b = 0, which shows
the claim 1.

Claim 2: If |c| = 1
2 , then

L
(
(x1, x2), (y1, y2)

)
= ± 1

2
[
x1y1 − x2y2 ± (x1y2 + x2y1)

]

and L ∈ extBLs(2l2∞).
By Theorem 1, we have b = −a, |a| = 1

2 . For simplicity, we may assume
that a = c = 1

2 , b = −1
2 . Suppose that L = 1

2(A+B) for some A, B ∈ SLs(2l2∞).
We may write

A
(
(x1, x2), (y1, y2)

)
:= αx1y1 + βx2y2 + γ(x1y2 + x2y1) ,

B
(
(x1, x2), (y1, y2)

)
:= α

′
x1y1 + β

′
x2y2 + γ

′
(x1y2 + x2y1) ,

for some α, α
′
, β, β

′
, γ, γ

′ ∈ R. Since 1
2(γ + γ

′
) = 1

2 , |γ| ≤ 1
2 and |γ′ | ≤ 1

2 , we
have γ = γ

′
= 1

2 . By Theorem 1, we have β = −α, β
′
= −α

′
, 1

2(α + α
′
) = 1

2 .
Since |α| ≤ 1

2 and |α′ | ≤ 1
2 , we have α = 1

2 = α
′
, which show A = B = L, so

L ∈ extBLs(2l2∞). Thus we may that 0 < |c| < 1
2 .

Claim 3: If |a + b|+ 2|c| < 1, then L /∈ extBLs(2l2∞)

Indeed, put

A
(
(x1, x2), (y1, y2)

)
:= ax1y1 + bx2y2 + (c + ε0)(x1y2 + x2y1) ,

B
(
(x1, x2), (y1, y2)

)
:= ax1y1 + bx2y2 + (c− ε0)(x1y2 + x2y1) ,

where

ε0 := min
{
|c| , 1− (|a + b|+ 2|c|)

2

}
> 0 .
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By Theorem 1, we have A,B ∈ SLs(2l2∞), A 6= L, L = 1
2(A + B), so L /∈

extBLs(2l2∞). Suppose that |a + b|+ 2|c| = 1.
Claim 4: If |a− b| < 1, then L /∈ extBLs(2l2∞).
Indeed, put

A
(
(x1, x2), (y1, y2)

)
:= (a + ε0)x1y1 + (b− ε0)x2y2 + c(x1y2 + x2y1) ,

B
(
(x1, x2), (y1, y2)

)
:= (a− ε0)x1y1 + (b + ε0)x2y2 + c(x1y2 + x2y1) ,

where

ε0 :=
1− |a− b|

2
> 0 .

By Theorem 1, we have A,B ∈ SLs(2l2∞), A 6= L, L = 1
2(A + B), so L /∈

extBLs(2l2∞).
For simplicity, we may assume that a > 0.
Claim 5: If |a− b| = 1, then

L
(
(x1, x2), (y1, y2)

)
= ax1y1 + (−1 + a)x2y2 + (1− a)(x1y2 + x2y1)

for 1
2 < a < 1 and L /∈ extBLs(2l2∞).
By Theorem 1, we have

L
(
(x1, x2), (y1, y2)

)
= ax1y1 + (−1 + a)x2y2 + (1− a)(x1y2 + x2y1)

for 1
2 < a < 1. Put

A
(
(x1, x2), (y1, y2)

)
:= (a + ε0)x1y1 + (−1 + a + ε0)x2y2

+ (1− a− ε0)(x1y2 + x2y1) ,

B
(
(x1, x2), (y1, y2)

)
:= (a− ε0)x1y1 + (−1 + a− ε0)x2y2

+ (1− a + ε0)(x1y2 + x2y1) ,

where

ε0 := min
{

1− a, a− 1
2

}
> 0 .

By Theorem 1, we have A,B ∈ SLs(2l2∞), A 6= L, L = 1
2(A + B), so L /∈

extBLs(2l2∞). Therefore we complete the proof.

Remark. We note that extBLs(2l2∞) ⊂ extBLs(2l∞).
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Indeed, by Theorem 2, it’s enough to show that x1y1 and 1
2x1y1− 1

2x2y2 +
1
2(x1y2 + x2y1) are extreme points of BLs(2l∞).

Claim 1: L := x1y1 is an extreme point of BLs(2l∞).
Suppose that L = 1

2(A + B) for some A,B ∈ SLs(2l∞). We may write

A
(
(xn), (yn)

)
:=

∞∑

j=1

ajjxjyj +
∑

1≤k<s

aks(xkys + xsyk) ,

B
(
(xn), (yn)

)
:=

∞∑

j=1

bjjxjyj +
∑

1≤k<s

bks(xkys + xsyk) .

It suffices to show that a11 = 1 and ajj = aks = 0 for every j > 1, 1 ≤ k < s.
Since 1 = L(e1, e1) = 1

2(a11 + b11), |a11| ≤ 1, |b11| ≤ 1, we have a11 = 1 = b11.
Let j > 1 be fixed. Note that

1 ≥ |A(x1e1 + xjej , y1e1 + yjej)| = |x1y1 + ajjxjyj + a1j(x1yj + xjy1)|

for every x1e1+xjej , y1e1+yjej ∈ Bl∞ . By Theorem 1, we have ajj = 0 = a1j .
Suppose that 2 ≤ k < s. Since

1 ≥ |A(e1 + ek + es, e1 ± ek ± es)| = |1± 2aks| ,

we have aks = 0.
Claim 2: L := 1

2x1y1 − 1
2x2y2 + 1

2(x1y2 + x2y1) is an extreme point of
BLs(2l∞).

Suppose that L = 1
2(A + B) for some A,B ∈ SLs(2l∞). We may write

A
(
(xn), (yn)

)
:=

∞∑

j=1

ajjxjyj +
∑

1≤k<s

aks(xkys + xsyk) ,

B
(
(xn), (yn)

)
:=

∞∑

j=1

bjjxjyj +
∑

1≤k<s

bks(xkys + xsyk) .

Since L ∈ extBLs(2l2∞), we have a11 = a12 = 1
2 , a22 = −1

2 . It suffices to
that ajj = 0 = a1j = a2j for every j ≥ 3. Let j ≥ 3 be fixed. Since
1 ≥ |A(e1 + e2, e1 + e2 ± ej)| = |1 ± (a1j + a2j)|, we have a1j + a2j = 0.
Since 1 ≥ |A(e1 + e2 + ej , e1 + e2 ± ej)| = |1 ± ajj |, we have ajj = 0.
Since 1 ≥ |A(e1 + e2 + ej , e1 − e2 ± ej)| = |1 ± 2a1j |, we have a1j = 0,
so a2j = 0.
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Theorem 3. expBLs(2l2∞) = extBLs(2l2∞).

Proof. It suffices to show that every extreme point of BLs(2l2∞) is an ex-
posed point. Note that {x1y1, x2y2, x1y2 + x2y1} is a basis for Ls(2l2∞).

Claim 1: ±x1y1,±x2y2 ∈ expBLs(2l2∞).
Let f ∈ Ls(2l2∞)∗ be such that

f(x1y1) = 1 , f(x2y2) = 0 = f(x1y2 + x2y1) .

By Theorem 1, we have ‖f‖ = 1 = f(x1y1). It is easy to show that f exposes
x1y1.

Claim 2: ± 1
2

[
x1y1 − x2y2 ± (x1y2 + x2y1)

] ∈ expBLs(2l2∞).

Let f ∈ Ls(2l2∞)∗ be such that

f(x1y1) =
2
3

= f(x1y2 + x2y1) , f(x2y2) = −2
3

.

Clearly f
(

1
2x1y1 − 1

2x2y2 + 1
2(x1y2 + x2y1)

)
= 1. We will show that ‖f‖ = 1

and f exposes x1y1. By Theorem 1, it follows that

‖f‖ = sup
{
|f(ax1y1 + bx2y2 + c(x1y2 + x2y1))| :

ax1y1 + bx2y2 + c(x1y2 + x2y1) ∈ BLs(2l2∞)

}

≤ 2
3

sup
{
|a− b|+ |c| : (∗)

ax1y1 + bx2y2 + c(x1y2 + x2y1) ∈ BLs(2l2∞)

}

≤ 2
3

(
1 +

1
2

)
= 1 .

Suppose that f(ax1y1 + bx2y2 + c(x1y2 + x2y1)) = 1 for some ax1y1 + bx2y2 +
c(x1y2+x2y1) ∈ BLs(2l2∞). By the argument in (∗), we have |a−b| = 1, |c| = 1

2 .
By Theorem 1, we have |a + b| = 0, so a = 1

2 , b = −1
2 , c = 1

2 . We complete
the proof.

Theorem 4. Let f ∈ Ls(2l2∞)∗. Then we have

‖f‖ = max
{
|α| , |β| , 1

2
(|α− β|+ |γ|)

}
,

where α = f(x1y1), β = f(x2y2), γ = f(x1y2 + x2y1).
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Proof. By Theorem 2, we have

‖f‖ = max
{|f(L)| : L ∈ extBLs(2l2∞)

}

= max
{
|f(x1y1)| , |f(x2y2)| ,

∣∣∣∣f
(

1
2
x1y1 − 1

2
x2y2 ± 1

2
(x1y2 + x2y1)

)∣∣∣∣
}

= max
{
|α| , |β| , 1

2
(|α− β|+ |γ|)

}
.

Theorem 5. We have

smBLs(2l2∞) ={
± [

ax1y1 + (a− 1)x2y2

]
(0 < a < 1) ,

±
[
ax1y1 + bx2y2 +

1− (a + b)
2

(x1y2 + x2y1)
]

(a > 0, b > 0, a + b < 1) ,

± [
ax1y1 + (a− 1)x2y2 + c(x1y2 + x2y1)

]
(|2a− 1|+ 2|c| < 1, c 6= 0)

}
.

Proof. Claim 1: ±[ax1y1 + (a− 1)x2y2] ∈ smBLs(2l2∞) (0 < a < 1).
Let L := ax1y1 + (a − 1)x2y2 (0 < a < 1) and f ∈ Ls(2l2∞)∗ satisfying

f(L) = 1 = ‖f‖. Let α = f(x1y1), β = f(x2y2), γ = f(x1y2 + x2y1). It
follows that

1 = f(L) = aα + (a− 1)β ≤ a|α|+ (1− a)|β| ≤ a + (1− a) = 1 ,

so α = 1, β = −1. Since

1 = ‖f‖ = max
{

1,
1
2
(2 + |γ|)

}
≥ 1

2
(2 + |γ|) ,

so γ = 0. Thus f is uniquely determined.
Claim 2: ±[ax1y1 + (1− a)x2y2] /∈ smBLs(2l2∞) (0 ≤ a ≤ 1).
It follows that if we choose f, g ∈ Ls(2l2∞)∗ satisfying f(x1y1) = 1 =

f(x2y2), f(x1y2 + x2y1) = 0 and g(x1y1) = 1 = g(x2y2) = g(x1y2 + x2y1).

Claim 3: L := ±
[
ax1y1 + bx2y2 ± 1−(a+b)

2 (x1y2 + x2y1)
]
∈ smBLs(2l2∞)

(a > 0, b > 0, a + b < 1).
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Let L := ax1y1 +bx2y2± 1−(a+b)
2 (x1y2 + x2y1) and f ∈ Ls(2l2∞)∗ satisfying

f(L) = 1 = ‖f‖. Let α = f(x1y1), β = f(x2y2), γ = f(x1y2 + x2y1). It
follows that

1 = f(L) = aα + bβ ± 1− (a + b)
2

γ

≤ a|α|+ b|β|+ 1− (a + b)
2

|γ|

≤ (a + b) + 2
1− (a + b)

2
= 1 ,

so α = 1 = β, γ = ±2. Thus f is uniquely determined.
Claim 4: ±[ax1y1 +(a− 1)x2y2 + c(x1y2 +x2y1)] /∈ smBLs(2l2∞) (|2a− 1|+

2|c| = 1).
Clearly ab < 0. We may assume that a > 0, b < 0, c > 0. If a + b ≥ 0,

the claim follows that if we choose f, g ∈ Ls(2l2∞)∗ satisfying f(x1y1) = 1,
f(x2y2) = −1, f(x1y2+x2y1) = 0 and g(x1y1) = 1 = g(x2y2), g(x1y2+x2y1) =
2. If a + b < 0, the claim follows that if we choose f, g ∈ Ls(2l2∞)∗ satisfying
f(x1y1) = 1, f(x2y2) = −1, f(x1y2 + x2y1) = 0 and g(x1y1) = −1 = g(x2y2),
g(x1y2 + x2y1) = 2.

Claim 5: ±[ax1y1 +(a− 1)x2y2 + c(x1y2 +x2y1)] ∈ smBLs(2l2∞) (|2a− 1|+
2|c| < 1, c 6= 0).

Let L := ax1y1+(a−1)x2y2+c(x1y2+x2y1) for 0 < a < 1, |2a−1|+2|c| < 1
and f ∈ Ls(2l2∞)∗ satisfying f(L) = 1 = ‖f‖. Let α = f(x1y1), β = f(x2y2),
γ = f(x1y2+x2y1). We will show that α = 1, β = −1, γ = 0. We may assume
that γ 6= 0. Then we will get a contradiction.

Case 1: 0 < a ≤ 1
2 .

Note that |c| < a. First, we claim that β < 0. Otherwise. Assume that
β > 0. It follows that

1 = f(L) = aα + (a− 1)β + cγ ≤ a|α|+ (a− 1)|β|+ |c||γ|
< a|α|+ (a− 1)|β|+ a|γ| (because |c| < a, γ 6= 0)

≤ a
(
|α|+

(
1− 1

a

)
|β|+ |γ|

)

≤ a(|α| − |β|+ |γ|) (
because 1− 1

a ≤ −1
)

≤ a(|α− β|+ |γ|)
≤ 2a (by Theorem 4)

≤ 1 ,
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which is a contradiction. Thus β ≤ 0. If β = 0, it follows that

1 = f(L) = aα + cγ

≤ a|α|+ |c||γ|
< a|α|+ a|γ| (because |c| < a, γ 6= 0)

= a(|α− β|+ |γ|)
≤ 2a (by Theorem 4)

≤ 1 ,

which is a contradiction. Thus β < 0. We claim that α > 0. Otherwise.
Assume that α < 0. If |α| ≥ |β|, it follows that

1 = f(L) = aα + (a− 1)β + cγ

≤ −a|α|+ (1− a)|β|+ |c||γ| (because β > 0)

< −a|α|+ (1− a)|β|+ a|γ| (because |c| < a, γ 6= 0)

≤ −a|α|+ (1− a)|β|+ a(2− |α|+ |β|)
(because |α− β|+ |γ| = |α| − |β|+ |γ| ≤ 2)

= 2a− 2a|α|+ |β|
≤ 1 (because |α| ≥ |β|) ,

which is a contradiction. Thus α ≥ 0. If α < 0 and |α| ≤ |β|, it follows that

1 = f(L) = aα + (a− 1)β + cγ

≤ −a|α|+ (1− a)|β|+ |c||γ| (because β > 0)

< −a|α|+ (1− a)|β|+ a|γ| (because |c| < a, γ 6= 0)

≤ −a|α|+ (1− a)|β|+ a(2 + |α| − |β|)
(because |α− β|+ |γ| = |β| − |α|+ |γ| ≤ 2)

= 2a + (1− 2a)|β|
≤ 1 ,
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which is a contradiction. Thus α ≥ 0. If α = 0, it follows that

1 = f(L) = (a− 1)β + cγ

≤ (1− a)|β|+ |c||γ|
< (1− a)|β|+ a|γ| (because |c| < a, γ 6= 0)

≤ (1− a)|β|+ a(2− |β|) (because |α− β|+ |γ| = |β|+ |γ| ≤ 2)

≤ 2a + (1− 2a)|β|
≤ 1 ,

which is a contradiction. Thus α > 0. By Theorem 4,

‖f‖ = 1 =
1
2
(|α− β|+ |γ|) =

1
2
(|α|+ |β|+ |γ|) .

It follows that

1 = f(L) = aα + (a− 1)β + cγ

≤ a|α|+ (1− a)|β|+ |c||γ|
< a|α|+ (1− a)|β|+ a|γ| (because |c| < a, γ 6= 0)

= a|α|+ (1− a)|β|+ a(2− |α| − |β|) (because |α|+ |β|+ |γ| = 2)

≤ 2a + (1− 2a)|β|
≤ 1 ,

which is a contradiction. Thus γ = 0. It follows that

1 = f(L) = aα + (a− 1)β ≤ a|α|+ (1− a)|β| ≤ 1 ,

which implies that α = 1, β = −1, which complete the proof of Case 1.

Case 2: 1
2 < a < 1.

Note that |c| < 1−a. First, we claim that β < 0. Otherwise. Assume that
β > 0. It follows that

1 = f(L) = aα + (a− 1)β + cγ

≤ a|α| − (1− a)|β|+ |c||γ|
< a|α| − (1− a)|β|+ (1− a)|γ| (because |c| < 1− a, γ 6= 0)
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≤ a|α| − (1− a)|β|+ (1− a)(2− |α− β|)
≤ a|α| − (1− a)(|β| − 2 + |α− β|)
≤ a|α| − (1− a)(|β| − 2 + |α| − |β|)
= a|α| − (1− a)(−2 + |α|)
= a|α|+ 2(1− a)− (1− a)|α|
= (2a− 1)|α|+ 2(1− a)

≤ (2a− 1) + 2(1− a)

= 1 ,

which is a contradiction. Thus β ≤ 0. If β = 0, it follows that

1 = f(L) = aα + cγ

≤ a|α|+ |c||γ|
< a|α|+ (1− a)|γ| (because |c| < 1− a, γ 6= 0)

= (2a− 1)|α|+ (1− a)(|α|+ |γ|)
= (2a− 1)|α|+ 2(1− a)

≤ 1 ,

which is a contradiction. Thus β < 0. We claim that α > 0. Otherwise.
Assume that α < 0. If |α| ≥ |β|, it follows that

1 = f(L) = aα + (a− 1)β + cγ

≤ −a|α|+ (1− a)|β|+ |c||γ| (because β > 0)

< −a|α|+ (1− a)|β|+ (1− a)|γ| (because |c| < 1− a, γ 6= 0)

≤ −a|α|+ (1− a)|β|+ (1− a)(2− |α|+ |β|)
(because |α− β|+ |γ| = |α| − |β|+ |γ| ≤ 2)

= 2(1− a)− |α|+ 2(1− a)|β|
≤ 1 (because |α| ≥ |β|) ,

which is a contradiction. Thus α ≥ 0. If α < 0 and |α| ≤ |β|, it follows that
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1 = f(L) = aα + (a− 1)β + cγ

≤ −a|α|+ (1− a)|β|+ |c||γ| (because β > 0)

< −a|α|+ (1− a)|β|+ (1− a)|γ| (because |c| < 1− a, γ 6= 0)

≤ −a|α|+ (1− a)|β|+ (1− a)(2 + |α| − |β|)
(because |α− β|+ |γ| = |β| − |α|+ |γ| ≤ 2)

= 2(1− a) + (1− 2a)|α|
≤ 2(1− a)

≤ 1 ,

which is a contradiction. Thus α ≥ 0. If α = 0, it follows that

1 = f(L) = (a− 1)β + cγ

≤ (1− a)|β|+ |c||γ|
< (1− a)|β|+ (1− a)|γ| (because |c| < 1− a, γ 6= 0)

≤ (1− a)(|β|+ |γ|)
= (1− a)(|α− β|+ |γ|)
≤ 2(1− a)

≤ 1 ,

which is a contradiction. Thus α > 0. By Theorem 4,

‖f‖ = 1 =
1
2
(|α− β|+ |γ|) =

1
2
(|α|+ |β|+ |γ|) .

It follows that

1 = f(L) = aα + (a− 1)β + cγ

≤ a|α|+ (1− a)|β|+ |c||γ|
< a|α|+ (1− a)|β|+ (1− a)|γ| (because |c| < 1− a, γ 6= 0)

= (1− a)(|α|+ |β|+ |γ|) + (2a− 1)|α|
= (1− a)(|α− β|+ |γ|) + (2a− 1)|α|
≤ 2(1− a) + (2a− 1)|α|
≤ 1 ,
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which is a contradiction. Thus γ = 0. It follows that

1 = f(L) = aα + (a− 1)β ≤ a|α|+ (1− a)|β| ≤ 1 ,

which implies that α = 1, β = −1, which complete the proof of Case 2.
Therefore, we complete the proof.
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