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Applications of fluid flow matrix analytic methods
in ruin theory —a review

Andrei L. Badescu and David Landriault

Abstract. In this paper, we present a unified probabilistic approa@ntdyze a wide class of insurance
risk models in a ruin theoretical context. Contrary to tlalitional analytic approach mainly encountered
in the literature, this alternative approach is based omixnaalytic methods (MAMs) that have become
an increasingly popular set of tools in the study of varioppliad probability models. We make use
of the recent advances in the study of fluid queues to analyze snsurance risk processes and their
ruin related quantities. The advantages and disadvant#gd#\Ms over alternative methods are also
discussed.

Métodos analiticos matriciales para flujos fluidos
aplicados a la teoria de la ruina —una revisi  6n

Resumen. Este articulo presenta un enfoque probabilistico unificpara el analisis de una clase
amplia de modelos de riesgo en el contexto de la teoria denla.rContrastando con el enfoque analitico
tradicional que domina en la literatura, nuestro enfoqter@tivo esta basado en métodos analiticos
matriciales (MAMs) que progresivamente han ido haciéadospulares herramientas en el estudio de
diversos modelos de probabilidad aplicada. Utilizamogilomos avances en el estudio de colas fluidas
para analizar algunos procesos de riesgo de seguros y slsl@sde ruina asociadas. Discutimos de las
ventajas y desventajas de los MAMs en comparacion a losdoétalternativos.

1 Introduction

Matrix analytic methods (MAMSs) are a set of powerful toolsveleped to analyze a wide variety of stochas-
tic models that arise in telecommunications, operatiossarch, management science, industrial engineer-
ing, computer engineering, bio-statistics, to name a fele main focus of this review paper is to present
a recent area of applications of MAMs, namelyn theory. By making use of the connection between an
insurer’s surplus process and a particular fluid queue, eganmt a unified methodology for studying a large
class of insurance risk models via the recent developmemniMs for the analysis of fluid queues.

As their name suggests, MAMs are based on matrix calcuktibat often have nice probabilistic
interpretations. The elegant structural forms of thesentjties provide algorithmic tractability, a feature
that most of the traditional analytic techniques do not psss Furthermore, MAMs make no use of the
theory of eigenvalues. Indeed, this is in total accordanitie thie fact that the fundamental matrices have
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probabilistic meanings, as the eigenvalues do not. As wilsbown, the applications of MAMSs in ruin
theory allow the derivation of an expression for certaimsrglated quantities without directly involving
the roots of the so-calledundberg fundamental equationThe reader is referred to e.g. Badescu and
Breuer [L9, (2008)] for a brief discussion of numerical instabilitynsetimes encountered in the calculation
of these roots. The role of the Lundberg equation roots intrthéitional analytic approach is replaced
in MAMs by a matrix quantity representing the Laplace-$ieltransform (LST) of a busy period in a
particular fluid queue. Due to its importance, the LST of thisy period will be the subject matter of
Section2.3.1

But first, two simple examples of MAMs, namely tiphase-type distributiorfisee e.g. Neuts5[l,
(1978)]) and theMarkovian arrival procesgsee e.g. NeutsSp, (1979)]), are briefly discussed in the fol-
lowing two sub-sections.

1.1 Phase-type distribution

The phase-type distribution was introduced by Nebts [1978)] as a generalization of the exponential
distribution. LetZ = { Z; : t > 0 } be a time-homogeneous continuous-time Markov chain (CTWi)

state spacél,...,n,n + 1} and infinitesimal generator
B b

whereB is an x n square matrix an = —Be. Throughout this papeg,is a column vector ofs while0
is a matrix of0s, both of appropriate dimensions. The initial probabwiegtor of the CTMCZ is denoted
by (8, Bn+1) Whereg is a row vector of sizer. The stateq1,...,n,n + 1} of the CTMCZ are referred
to as phases. L&t = inf{¢t > 0, Z; = n + 1} be the time until absorption of the CTME in staten + 1.
The distribution of is calledphase-type (PH) distribution with parameter$s, B).

From its construction, it is easy to see that the PH randomalar (r.v.) 7' consists of a collection of
exponentially distributed time segments among the phaasegds of the CTME. Phase-type distributions
possess several properties that make them a versatileolags, some of them being listed below without
proof. The interested reader is referred to NeGf (1981)] for a detailed description.

Theorem 1 For a PH r.v. T with representatioris, B),
(a) the cumulative distribution function (c.d.f.) is givenbyt) = 1 — 3ePle;
(b) the probability density function (p.d.f.) is given pft) = BeBtb;
(c) the moment generating function (m.g.f.) is giverflify) = Jo et dF(t) = B(—sI-B) " 'b+fny1.

It is easy to observe that the phase-type distribution is ixngeneralization of the exponential distri-
bution. Indeed, by lettin® = —\ ands = 1, one recovers an exponential r.v. with meai. Mixtures
of exponentials/Erlangs are other special cases of thge lelass of distribution functions.

Proposition 1 The class of PH distributions is closed under the formatibfinite mixtures, finite convo-
lutions, finite minima and maxima, and compounding withrdtecphase-type distributions.

Proposition 2 The class of PH distributions is dense in the sense of weakecgence in the class of all
distributions with positive support.

1.2 Markovian arrival process

A second example of MAMs is a versatile class of point proegdsiown as the Markovian arrival pro-
cess (MAP). Am-dimensional MAP is defined through two processes: a coatiattime Markov process
J ={J(t):t >0} with state spacé; = {1,...,m} and a counting proces¥ = {N(¢), t > 0} with
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state spac€0, 1,...}. For the counting proces¥’, the number of marked transitions of the CTMCby
timet is represented by the r¥ (¢). The transition rates which are not marked are describeldédognatrix
Dy, while those that are marked are described by the malgix The initial state distribution is given by
the row vecto ™. The matriced, andD; satisfy the following conditions:

i. Do+D; is the infinitesimal generator of an irreducible CTNIC(the so-called environmental pro-
cess) on the state spaSe

ii. Dgli,i] < 0foralli, andDgli,j] > 0foralli # j with i, j € Sy;
ii. Dq[i,5] > 0foralli,je Sy;

iv. fori # j, Doli, j] is the rate at which a change of the underlying phase fréary occurs without
an arrival (unmarked transition);

v. Dq[i, j] is the rate at which a change of the underlying phase fidm; occurs with an arrival
(marked transition) (herg,= i is allowed).

For a fuller description the interested reader is referoddatouche and Ramaswarvi4, (1999)].

As has been shown by Asmussen and Koalg [1993)], it is possible to model point processes with
a fairly general degree of complexity by MAPs. For this reaéand many others), MAPs have become
extensively used in queueing theory and performance elatueSeveral procedures have been developed
over time to estimate the transition matrid@s andD; from observed data. The so-called EM algorithm
has proven to be a good mean of approximating the maximunihdad estimator (see e.g. Asmussen et
al. [15, (1996)]).

Also, several well-known point processes are special aafstee general MAP:

(a) The Poisson process with interarrival ratis a particular MAP withi ™ = 1, Dy = —X andD; = ).

(b) The renewal point process Wil (3, B) sojourns between arrivals is a MAP wiifi = 3, D, = B
andD; = bg.

(c) The Markov-modulated Poisson process (MMPP) - consadeunderlying Markov process with a
finite number of states, say. Assume that while the system is in statelaims arrive according to a
Poisson process at rake (: = 1, ..., m). Denoting the underlying Markov process generatofby
the MAP representation is given @; = diag{\1,..., \,,} andDg = T — D;.

(d) The PH semi-Markov process - considerindependent PH distributions; ~ PH(3;, B;) with
exit rate vectordb; = —Bjefor j = 1, ..., m. Consider also a background discrete-time Markov
chain{X (n)},>o with m states and lep;; be its one-period transition probability from stateo
statej. Consider a semi-Markov process for which theh interarrival time has distributiof’;
whenX (n) = j. The MAP representation of the formulated PH semi-Markacpss is

B o o0 ... O
01 B2 0 0 pllblﬁl p12b162 v pl'rnblﬁ'rn
Do=1". S cl D; = : : . :

6 0 0 ) B.m Pm1bmBi PmebmfB2 ... PrmmbmBm

In the next sub-section, we define the class of risk modelgsuto analysis via MAMs in this paper.
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1.3 The insurance risk model
In this paper, we consider an insurer for which its surpluepssk = {R(t), t > 0} is defined as

N(t)
R(t) =u+ct — ZXk,
k=1

wherew is the insurer’s initial surplus andis the incoming premium rate. The claim number process
{N(t), t > 0} is assumed to have interclaim timég for k = 1, 2, ... Also, X}, denotes the size of the
k-thclamE=1,2,...).

Traditionally, it has been assumed that the interclaim $if#8, }7° , and the claim size$X,}° , are
mutually independentr.v.’s. Despite the fact that thisipehdence assumption leads to less realistic insur-
ance risk models, risk models of this kind which include tbenpound Poisson risk model and the Sparre
Andersen risk model are analytically tractable (for a dethilescription, see Asmusseri] (2000)]). With
the advance in analytic tools, a new trend has emerged tdifidend study risk models which relax the
stringent independence assumptions of the Sparre Andassemodel. Among others, a popular class of
generalizations is the class of risk models for which thednents of the surplus process from the time of
a claim to its subsequent are all independent (as well asitddly distributed), but where the r.v’E, and
X, are possibly dependent for aky= 1, 2, . ... Risk models that belong to this class preserve the random
structure of the traditional Sparre Andersen risk modek ifiterested reader is referred to e.g. Albrecher
and Teugels9, (2006)], Boudreault et al2B, (2006)] and Cossette et ak4, (2008)] for some examples.

In this paper, we consider a different class of generabpati We assume that the claim number process
{N(t), t > 0} is a MAP with representatiofd*, Dy, D1). We also assume that the claim amounts are PH
distributed. More precisely, for a transition of the CTMICfrom state; to state;j at the time of a claim
(i.e. marked transition), we suppose that the accomparyéig size has a PH distribution with parameters
(Bi5, Bij). Without loss of generality, we assume that all the PH claia distributions are of size. Even
if the class of phase-type distributions is dense among i$teéliitions defined on the non-negative real
line, one should keep in mind that PH distributions are bynitédin light-tailed. Hence a fit to a heavy-
tailed distribution might be poor (especially in the rigtand tail) even for a phase-type distribution with a
relatively large number of phases.

Under these assumptions, we have constructed a very gemeraenewal insurance risk model where
claim sizes and interclaim times are all dependent r.uyrsaddition, many risk models are special cases of
the MAP risk model described above, namely the Sparre Aedaisk model with PH claim sizes and PH
interclaim times, as well as certain dependent risk modalk as the MMPP with PH claim sizes (e.g. Lu
and Li [49, (2009)]) and Albrecher and Boxma’s,[(2005)] semi-Markov risk model with PH claim sizes.
These risk models (without the PH assumption for the clamasjihave generally been analyzed using the
traditional analytic method. In this paper, we review a relyenew methodology as a viable alternative to
analyze these risk models. The use of MAMs together with diisting connections between risk processes
and fluid flow processes allow the analysis of these risk m®Ein a unified and relatively straightforward
way. The next section of the paper will familiarize the read#h some fluid flow models of interest and
their most relevant properties for the study of the surphos@ssi.

2 Fluid flow models

Motivated by their applications in several applied prolipbmodels, the theory of fluid flows has been an
active area of research in recent years. One of the most cormpplications of these stochastic processes is
in telecommunication where fluid flows are used to model &¢revolution in a communication channel.
Another simple example of a fluid flow is given by an infinite aajty buffer with inflow and outflow rates
controlled by a Markov chain. When the buffer is empty, it e#ns empty until the controlling Markov
chain moves to a state with a net inflow rate. Once this happleaduffer level increases until the time at
which the underlying Markov chain transits to a phase witleautflow rate.
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In this section, we define a Markov modulated fluid flow (MMFRYldater establish its connection with
the MAP risk process described in SectihB. Towards the end of the section, we review some fundamental
fluid flow first passage probabilities that are central to thalysis of ruin-related quantities in Sectidn

2.1 The Markov modulated fluid flow model

Let (F, W) = {(F(t), W(t)) : t > 0} be a MMFF whereF'(¢) is the level of a fluid buffer at timéand
the environmental proce3$¥ is a CTMC with state spacg = S; U Ss U S5 and infinitesimal generatar
partitioned as
Tiy1 T2 Tis
T=| Tor T Ta3
T31 Tz Tss

The submatriced;; (¢, j = 1, 2, 3) contain the rates of transition from phasesSjrio phases irt;. The
fluid level processF = { F(¢) : t > 0} is described as follows: during sojourn¥f in statei € 51, the
fluid level increases at rate > 0; during sojourn ofV in statei € S5, the fluid level decreases at rate
¢; > 0; during sojourn oV in statei € Ss, the fluid level remains constant (i€.= 0). Mathematically,
the evolution of the fluid flow can be described through theg@iése linear function

t
L(t)=u+ / cw (v) dv,
0

whereu is the fluid level at timé). The fluid level is then given by

F(t) = L(t) — min (0, L(2)),

wherei(t) = ming<,<; L(v). We denote the canonical fluid flow modélas 7 = F(T,C;,—Cs;)
whereC; = diag(c;, i € S1) andCy = diag(c;, ¢ € S2) are two diagonal matrices containing the rates
of increase and decrease of the fluid fléwespectively.

Three variants of the fluid flow are particularly useful in the analysis of ruin-relatedmfitées for the
surplus procesg:

Finite Buffer Fluid Flow: In relation with the fluid flow.F, we define the finite buffer fluid flokF =
YF(T, C,, —C5) which allows the fluid level to decrease only when it is pesitind to increase only
when it is less than a buffer level> 0.

Reflected Fluid Flow: Associated to the fluid flowF, we also define the reflected fluid flo#" obtained
by reversing the roles of the up and down environment stakdathematically, we writeF" =
F(T,Cy,—Cy).

Reflected Finite Buffer Fluid Flow: In a similar manner, we define the reflected finite buffer fluaavfl
bFr = YF(T, C,, —C;) which is the reflection of the fluid quedg.

2.2 Connection to risk processes

Due to their relatively proximity, several authors —Asmers$L0, (1995)] being the first among them—
analyze risk processes via fluid flows. For instance, the MMFB/A) can be used to analyze a large class
of risk processes (see e.g. Ahn et al. (2007)], Badescu et al2], (2005)] and Ramaswamb}, (2006)]
for several illustrative examples). The main purpose of thibsection is to show how the MMKF, W)
can be used to analyze the surplus prodestescribed in Sectiod.3. Some adjustments to the general
MMFF (F, W) are first required to match the sample paths of the two presess

The first modification relates to the accumulation/deptetitesc; of the MMFF (F,V). Given that
premiums are collected at a constant kaitethe surplus proces’, we shall assume that the linear rates of
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increase/decrease of the fluid flévdo not dependent on the underlying phase of the CTIM{.e.c; = ¢

for all 7). As a consequence, the diagonal matriCesandC, will be replaced by the scalar The second
modification pertains to the fact that the surplus progeéssoes not stay at a constant level over time.
Therefore, we shall assume that the set of phasesf the MMFF (F, ) is empty. Based on those two
adjustments, the resulting MMFF is denoted (&}, W) = {F.(t), W (t)} where the CTMOV has state
spaceS = 57 U S; and infinitesimal generator

Ty Ti2
T= ( To1 Tao ) @
Note that the accumulation/depletion rates of the fluid flqws its indexc.

Finally, paths of the surplus proceBshefore ruin can be obtained from segments of the fluid process
(F.,J) before the fluid level becomes empty by replacing the dowdviaear paths of the fluid flow
by downward jumps of appropriate sizes. To do so, one hagtéopiret a claim of size: as being paid
continuously at rate over a (unobserved) time interval of lengtfic. This artifice changes the clock time
in the fluid model by extracting all the spurious time intéswaf downward linear descents (replacing them
with instantaneous downward jumps). A sample path of thesgtocesses is illustrated in Figute

To analyze the surplus proceBs it remains to specify the parametrization of the fluid flQi., W)
with respect to its generat@ and its state spacg. We recall that, for the surplus procedsclaims arrive
according to a MARGJ ", Dy, D1). A claim that occurs at the time of a transition of the undedyCTMC
from statei to state;j is PH(5;;, B;;) distributed. Letmn be the dimension of the sé&; andn be the
dimension of all the PH claim size distributions. Hence,dBsociated fluid flow mod¢l-., J) has state

spaceS = S; U S, where the dimensions ¢f; and.S; arem andm x n x m respectively. Théi, j)-th
element of the infinitesimal generatd)) @re:

Tll[ivj] = D()[ivj]a
T12[i7 (i7ja k)] = D1[27]]ﬁ1J [k]v

T21,c[(i7ja T),j] = _CZBU[T? 5]’
s=1
T22,c[(i7ja T), (ia.j7 S)] = CB’U [T7 5]

Note that the matrice¥'s; . and T, . contain the premium ratedue to the scaling of the time interval
over which claim occurs continuously at rat¢as discussed above) —see Ramaswaifii (2006)] for
more details. We also define the absorbing rate vastor asts; . = T ce.

We conclude the present section with some important relshiips between first passage times in the
fluid flow F.. and the risk procesB which can be found in e.g. Ramaswarab] (2006)]. To this end, let
Zo.(z,y) be the first passage time of the fluid lev&lfrom levelx to levely avoiding a visit to the levels
in [0,a] U [z, 00) enroute. Note that the argumentsind/orz may be suppressed in the above definition
whenever they are meaningless. For instance, wgais6, ) instead of;o..(0, «) given that the fluid flow
process has to reach levebefore any level ifz, o). Similarly, let?r.(z,y) be the equivalent time in the
risk processR (which is obtained fronjo.(z, y) by eliminating the time intervals in which the fluid flow
F. decreases over this first passage time).

Remark 1 A comparison of some first passage times in the fluid fipand the risk proces® yields the
following observations:

(a) the first passage time from lev&lo level0 in the risk modelR is just half of the equivalent time in
the fluid flowr, i.e.
~ 0.(0,0)

TC(O, 0) 2
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J(t)
Si — — -
Sy @

hi  he hs hy hs he hr hs ho hio h11 hio t
F(t)
u. ...............................

hi  hs hs  he  hs  he hr  hs  hy i hu b M
R(t)
u_

hi hs hs hr he hi "

Figure 1. Connection between risk processes and fluid processes

(b) for the interval of descent frotfx, S2) to (y, S2) with 0 < y < x, we have

oo(z,y) x—y
Tc(xay) - % - 2

(c) for the interval of ascent frorfi, S1) to (y, S1) with0 < z < y, we have

O'C(l‘,y) y—T
2 + 2¢

Te(x,y) =

2.3 First passage probabilities
2.3.1 The Laplace-Stieljes transform of the busy period

Fundamental to the subsequent analysis is the LST of thegrrsydo.(0,0) in the fluid queueF, (see
e.g. Ahn and Ramaswant,[(2004)], Bean et al {7, (2005)]). Let®¥.(§) be this LST, a matrix arising due
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to the relevance of the initial and terminal states of the @M. More precisely®.(4) is a|S1| x |Sz]
matrix with (z, j)-element

(. (0)]ij = Ele™ 70T (W(0.(0,0)) = j) [W(0) =i], €S, je€So, 2)

wherel(A) is the indicator function of the evert Note that, fos = 0, the scalab™ ¥ .(0)e corresponds
to the probability that the fluid queu&. will ever become empty given that.(0) = 0. Clearly, this also
corresponds to the infinite-time ruin probability in the@sated risk modeR when the initial surplus is.
Given that® . (5) plays a central role in the transient analysis of the fluid fléw(and implicitly in the
associated surplus proceB¥ additional results pertaining #.(0) are presented below.

Rogers b8, (1994)] showed tha¥ .(§) (with § > 0) can be obtained from the minimal nonnegative
solution of the Riccati equation

Tio + (T11 — )X + X(Ta2, — 0I) + XT2 . X =0, )

with T being an identity matrix of appropriate dimensions. LaRamaswamif4, (1999)] proved that the
minimal nonnegative solution of the matrix quadratic egurat

Y =As + A Y + AgY?, (4)
with
i1 0
A() - 20 0 )
A, — (2 (1+4(Ty —0T)) 0
%Tm,c 0]
and
A= |° ) 2T 7
_0 (I+E(T22,c - 61))_
is of the form
0 W.(5)
|0 I+ 1IH(6)]
where
H.(6) = ¢ }[Taz,c — 01+ Tay T (0)]. (5)

Note that the constaritin the matricesAy, A, A, andY shall be greater than the largest absolute value
among the diagonal elements of the maffix- 5 I.

Thus, it suffices to solve3] or (4) in order to computel.(6) for anyd > 0. Essentially, two main
families of approaches are available to tackle this problgpectral decompositioanditerative schemes
The procedures developed in e.g. Asmusdén([1995)] and Asmussen et al.7, (2002)] when the arrival
process forms a renewal process belong to the first familgmFour experience, spectral decomposition
and root finding methods tend to be more susceptible to naaignioblem/instability (especially when the
number of roots become large) in comparison with iterataleesmes. The Log-Reduction (LR) algorithm
of Latouche and Ramaswamid, (1993)] for the computation o¥.(¢) is an example of iterative scheme.
The LR algorithm is designed to reduce the number of unnacggisrations needed to obtain the solution
of (4). The algorithm works only for quasi-birth-and-death-qgesses (QBDs) that are the discrete equiva-
lent of the fluid flows presented in this section. For the sdk®mpleteness, we review the LR algorithm in
appendixA. A few years later, Ahn and Ramaswanj (2005)] provided an improved algorithm for com-
puting this first passage probability matrix and demonstthat it converges quadratically fast, yielding
very accurate numerical results.

In the following subsection, additional LSTs of first passdignes are discussed in the fluid flaky.
The LST of a busy perio@..(§) will play a predominant role in most of these newly defined ST
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2.3.2 Other first passage probabilities

In Ahn and Ramaswam8[ 5, (2004, 2006)], the matricdd.(d) andK.(d) are introduced wherH,(9) is
as defined ing) while
KC((S) = Cil[Tll — 51 —+ ‘I’C((S)TQLC].

Both H,.(¢) andK.(5) have nice probabilistic interpretations. Rory > 0, [e*<(9?],; represents the LST
of the first passage time of the fluid flog@.., W) from (z + y, i € Ss) to (y, j € Sa), whereageX<(®z],;
is the LST of the expected number of crossings of the fluid fiéw W) to level z + y, phasej € S,
while avoiding levely enroute, given that the process startethini € S;). Noting that the last quantity of
interest is the LST of a certain Markov renewal kernel, it e be interpreted as the Laplace transform
of the density associated with the relevant taboo crossieg Ahn and Ramaswani, [5, (2004, 2006)] for
a detailed explanation).

In addition, Ramaswambp, (2006)] defined yet another matrix, namely

U.(0,2) = / eHe(0)y —1 To1,c eKey gy, (6)
0

where[U. (6, x)];; represents the LST of the expected number of crossings dfuiteflow (F., W) to

levelz, phasej € S; while avoiding leveD enroute given that the process starte¢hini € S5 ). Note that

the integral in §) can be calculated exactly using Lemma 2 in Ramaswaf®i(R006)].

Analogous to the above matrices pertaining to the fluid fléy 1), we can also introduce the matrices
w7 (0), H.(9), K/.(0), andUZ (4, z) which pertain to the reflected fluid floWF.", 1W'). Their formulae and
probabilistic interpretations are similar to the abovenatitned ones and can also be found in Ahn etAl. |
(2007)]. An important aspect that is common to all of the abguantities is the fact that their calculation
essentially reduces to the evaluation of the first passagfeapility matrix ¥.(6), whose evaluation has
already been discussed in Secti®13.1 We are now ready to review some other useful LSTs of first
passage times.

Fori, j = 1,2, we define théS;| x |.S;| matrix of the LST of the first passage time of the fluid flow
process F,, J) from (z, S;) to (y, ;) while avoiding a visit to the levels i), a] and[z, o) enroute, i.e.

Hije(a,y,0) = Ele™® <oV W (Zo.(x,y)) € S;}W(0) € Si].

We remark that the superscript™will be added to the above quantity in the reflected versibthe fluid
flow (F,, W). The same comment with respect to the suppression of thenamsa and 2 that we have
made earlier applies here as well.

Ramaswami§5, (2006)] obtained formulae for many important first passtges in infinite buffer
fluid flow models. In Tablel, we list the pertinent results. The two formulae stated iblga without
reference immediately follow from equivalent results pating to the fluid flowF?.

We end this section by stating (without proof) several otlsaful LSTs derived in Theorem 1 of Ahn
et al. 2, (2007)]. Indeed, fob < = < vy,

Yy9 o(2,0,8) = [I— WE(8) - V=" (6)] 7 - “Fao (2,0, ), )
Yf19.0(2,0,0) = V"W (6) - VErz o(,0,0), (8)
ofi1, o(r,y,0) = [I*y W (0) - TWL(S)] ! ~0f'1176(0,y7:r,5), )
of21 (@, y,6) ="W(6) - of11,c(=’5,y75)~ (10)

3 Applications of MAMs in ruin theory

In this section, we consider the applications of MAMs in tlomtext of two risk processes: the surplus
processk described in Sectioh.3and its modified version in the presence of a threshold diddgrategy
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in F."

LST First passage time Formula Ref.
A from (z, S2) to (0, S2) H.(5)z Ahn and Ramaswam
£22.0(2,0,0) | 4, F. ¢ [4, (2005)], Th. 3
f,ch(x’ 07 5) from (.I', Sl) to (O, Sl) eHZ(5)I

()fll,c(oazaa)

from (0, S1) to (z, Sh)
avoiding0 enroute inF.

KO [L 4 W (5)U(5,2)]

Ramaswami
[55, (2006)], Th. 1

0f52,c(05 €T, 5)

from (0, S2) to (z, S2)
avoiding0 enroute inf."

K@ [I) 4 w7 (5)UL(5, )]~ ?

OfQI,C(ma T, 6)

avoidingzx enroute inF."

WL (8) — ofgy (0, 2, 6) T (8)eHe (D)

TW.(0) = from (0, .51) to (0, S2) P H.(8)4 Ramaswami

. ) ) U — ofir U c(0)z

“f15.(0,0,9) | avoidingz enroute inF, e(0) = ofin,e(0,2,0) ¥ (d)e [55, (2006)], Th. 2

i from (z, S2) to (0, .52) - Ramaswami
£22,0(2,0,6) avoidingz enroute inF,, 0ff5 0(0,,9) [55, (2006)], Th. 3
*or(§) = | from(0,S2) to (0, S1) Ramaswami

[55, (2008)], Th. 4

Table 1. First passage time results in fluid flow models

(see Sectior8.3 below). We stress that these are only two illustrative eXampf MAMs applications

in ruin theory and by no means represent the full extent of MAdpplications for the study of surplus
processes. The reader is referred to Sectitor further applications of MAMs in frequently analyzedmui
theory problems. But first, a brief review of some populanftélated quantities in ruin theory is presented.

3.1 Ruin-related quantities of interest

For many years, ruin probabilities and many ruin-relateagities such as the marginal and joint defective
distributions of the deficit at ruin, the surplus just priorrtiin and the claim size causing ruin have been
extensively studied in various risk models (see e.g. Dureand Gerber3s, (1988)], Dickson B5, 36,
(1992, 1993)], Gerber and Shidg, (1997)], Dickson and Hippd7, (1998)] and references therein). For
a given surplus process, a common ground seems to exists stuty of a number of these ruin-related
guantities. This idea was brilliantly formalized in Gerlaerd Shiu’s {0, (1998)] seminal paper where the
so-calledexpected discounted penalty functiwas proposed. For a surplus procégsthe Gerber-Shiu
discounted penalty function is defined as

¢5(u) = Ele™*Tw(R(r7), |[R(m))I(r < 00)|R(0) = ul, (11)

wherer = inf{t > 0 : R(t) < 0} is the time of ruin (withr = oo if ruin does not occur)R(7~) is the
surplus immediately before ruihiz(7)| is the deficit at ruin, and: R? — R is a penalty function which
is assumed to satisfy some mild integrability conditions.

The strenght of the new analytic todl]) resides in the fact that it generalizes a number of commonly
analyzed ruin-related quantities (see those mentionededbio addition of providing a platform for the
study of new ones via a proper choice of the penalty funatioSome examples are provided here:

1. forw(xz,y) = 1forallz, y > 0, ¢s(u) corresponds to the Laplace transform of the time to ruin.
Whens = 0, ¢o(u) corresponds to the probability of ruin.

2. forw(z,y) = Az —v)A(y — 2) forall z, y > 0 (whereA is the Dirac delta function)ps(u)
corresponds to the so-called discounted densityit(f-— ), |R(7)|) at (v,z). Whend = 0, ¢o(u)
corresponds to the (defective) density &f(7—), |R(7)|) at (v, z).

3. forw(z,y) = y* forall z, y > 0 ands = 0, ¢s(u) corresponds to the-th moment of the deficit at
ruin.
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Moreover, quantities such as the joint moments of the timeuwf, the surplus prior to ruin and the
deficit at ruin, as well as their associated marginal momandsthe distribution of the claim causing ruin
can easily be derived via a Gerber-Shiu type analysis. Alddtanalysis of some of these quantities in the
classical compound Poisson risk model can be found in emgahd Willmot 48, (1999)].

Due to its flexibility and unifying properties, several anthhave since then characterized Gerber-Shiu’s
discounted penalty function under different risk modeluaggtions. We mention Gerber and Shiti]
(2005)] and Li and Garrido4s, (2005)] in the context of the Sparre Andersen risk modelahd Li [49,
(2009)] and Lu and Tsab[), (2007)] in the Markov-modulated risk model, and Cheungleenadriault [32,
(2009)] in the MAP risk model, among others.

For the MAP risk model, the Gerber-Shiu discounted penaltgfion is defined conditional on the state
of the underlying Markovian environmental process at timelence, let

¢5.1(u) = Ele™*Tw(R(r™), |R(7)|) I(r < 00) | R(0) = u, J(0) =],

be the Gerber-Shiu function with(0) = i (i € Sy).

As pointed out by Gerber and Shiaq, (1997)], Wu et al. §0, (2003)] and Landriault and Willmotip,
(2009)], the joint density of, R(7~) and|R(7)| takes different forms depending on whether ruin occurs
on the first claim (i.eN(7) = 1) or on any subsequent claim to the first (¥(7) > 1). For ruin occurring
on the first claim, leth; ;(x, y|u) be the joint density of R(7), |R(7)|) at (x,y) given thatJ(0) = i
and R(0) = w. In this case, it is clear that = (z — w)/c. If ruin occurs on claims subsequent to the
first, we denote the joint density ¢f, R(7~),|R(7)|) at (¢, z,y) given thatJ(0) = i and R(0) = u by
ho,i(t, z, y|u) for ¢, z, y > 0.

By conditioning on the time of ruim, the surplus immediately prior to ruiR(7—) and the deficit at
ruin |R(7)|, one obtains

¢5,i(u / / = Jw(x,y) hi(z, ylu) dy de

/// w(z,y) hoi(t, z,ylu) dy dz dt.

(12)

Letting

(5.2.9) 9, i@yl + [T e O ho itz ylu) dt, > u
Gu,i\0, T, Y) = )
IS e 0 ha i (t, @, ylu) dt, 0<z<u

for y > 0 be the discounted joint density of the surplus prior to ruingnd the deficit at ruimy), it allows
to rewrite (L2) as

bs,i(u / / w(@, y) gu,i (6, z,y) dy dz. (13)
0 0

For convenience, we also define the following two columneesips(u) = [¢s,:(u)]7, andg, (0, z,y) =
[9u,i (0, 2, y)]i2s -

Note that the discounted joint densgy(0, x, y) does not depend on the penalty functienHence, one
can first identifyg,, (0, z, y). From the knowledge of,, (9, z, y) together with 13), calculations of Gerber-
Shiu functions for different choices of penalty functierimmediately follows. Thus, in the following two
subsections, we identify,, (6, z, y) for two risk processes.

We remark that the discounted joint density of the surplusrpgo ruin and the deficit at ruin has
been studied by e.g. Gerber and SHig,[(1997)], Li and Garrido45, (2005)] and Ren7, (2007)]. A
generalized version of this discounted joint density cao &k found in Breuer3[), (2009)] and Cheung et
al. [33, (2009)].
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3.2 The basic insurance risk model

Using the LST of some first passage times in the MMFE, IVV), we identify the discounted density of the
surplus prior to ruing) and the deficit at ruiny() for the surplus procesB with time to ruint = 7.(u, 0)
(see SectiorR.2). The reader is referred to Badescu et all, [(2005)] for an expression for the non-
discounted (i.ed = 0) version of this joint density. Theoreghhas been first proved by Ramaswalib,[
(2006)].

Theorem 2 The discounted joint density of the surplus prior to ruir) @nd the deficit at ruin ),
g.(0,z,y), is given by:
e for0 < u < zandy > 0,
gu(0,2,y) = e~ 5 ofi o(u, 2, 8/2)[1 — W (5/2)" W7 (5/2)] " (71 Tp) T2 W)y, .
e for0 <z <wandy > 0,

S(u—x) ~

gu(d,z,y) =e = fizc(u—a,0,0/2)" 0 (5/2)[1 ¥ (6/2)" ¥y (5/2)]
X (C 1T12) eTn*l(‘”"'y)tng.

(14)

PROOFE  For an initial surplus: < x, a contribution tog,, (d, z,y) is made only if the surplus process
R reaches levek at least once prior to ruin. Using Rematk the LST of this first passage time is
e~ 2 (@) fy, (u,z,6/2). Now at levelr in an increasing phase, the surplus process can re-visitdev
in an increasing phase an arbitrary number of times priouite iThe LST of this duration of time is given
by [I — ®.(5/2)*®"(5/2)]~ . Finally, from levelz in an increasing phase, the surplus process shall expe-
rience a claim in the next™! d¢ time interval (with contributioril's; ;) of sizex + y to enable a deficit at
ruin of y (with contributionexp{Ta22,1(z + y) }to1.1).

Let us now provel4). For an initial surplus: > x, the equivalent fluid flow process has to make a first
passage to level in a decreasmg phase. Using Remaykhe LST of this first passage time in the surplus
processR is given byezc >f1275(u —,0,0/2). Now at levelz (with a phase inS,) for the first time,
it is possible to re-visit levet (with a phase irt1) an arbitrary number of times prior to ruin. The LST of
this duration of time in the corresponding risk model is giby *®7(5/2) - [I — ®.(§/2) - *®"(5/2)]~*
Finally, as in the proof above, the equivalent fluid flow musitsh immediately from an increasing phase
to a decreasing phase followed by a period of descent (atyafdength(x + y)/c. B

Furthermore, one can derive the LST of the time to raifor the surplus procesk via a double
integration ofg,, (4, z, y), i.e

pu(8) = E [ 1(r < o) [R(0) = u]

// g.(d,z,y)dydx.

Analyses of the Laplace transform (§) were conducted by Badescu et &@0[ (2005)] and Ramaswami
[55, (2006)]. For purposes of completeness, Ramaswam{(006)] has shown that

pu(8) = W (6/2) 3% f15.0(u,0,5/2).

Finally, we refer the reader to Ahn and BadestuP007)] for a more complete discussion on the study of
Gerber-Shiu functions in the present risk process.

364



Applications of fluid flow matrix analytic methods in ruin ty

3.3 The insurance risk model with a threshold strategy

In recent years, risk processes modified by various divigerytinent strategies have received considerable
attention in the actuarial literature on ruin theory. Risiduals with a dividend threshold strategy have been
studied by e.g. Lin and Pavlovd{, (2005)] in the classical compound Poisson risk model, édber et

al. [8, (2006)] in the Sparre Andersen risk model and Lu and9j [2009)] in the Markov-modulated risk
model. The surplus process in the presence of a threshal@égyrat leveb, namely{ R®(¢),t > 0}, is

defined as "
cdt—d(S0Y X)), RME) < b
dRb(t) = N , ; (15)
codt —d(SY Xy ), RM(t)>b

where all the r.v’s in 15) are as defined in Sectidn3. Typically, the premium rates, andc, satisfies the
inequalityc; > co with ¢; — ¢5 being paid as a dividend to the shareholders whenever tpeusuevel lies
above the threshold leveél

Let 7 be the time to ruin for the surplus procesg®(t), t > 0}. An explicit form for the discounted
density of the surplus prior to ruiR®(7°—) and the deficit at ruinR®(r°)| is given below. To this end, let
g’ (8, z,y) be a|S;| x 1 column vector for which its-th elemenig?® (4, x, )], is defined as

850, z,9)]i de dy = Ble™™ I{R"(r"~) € (z,z + d2)}{|R"(T")| € (y,y + dy)}| T (0) = 1]

Several lemmas are first introduced to define additional L8 Tisst passage times in a particular fluid flow
process.

In what follows, we consider a fluid flow that accumulatesldtgs at rate; for levels betweef andx
and at rate:, for levels abover. We defin€f;; ., o, (x,y,-), i, j = 1, 2, to be the|S;| x |S;| matrix of
the LST of the first passage time of this fluid flow process ffaS;) to (y, S;) while avoiding a visit to
the levels in[0, a] and[z, o) enroute. The following first passage time LSTs, analogotisémnes given
in (7), (8), (9), and (L0), are presented in the following lemma.

Lemmal For0 <z <y,

Vg 100 (2,0,8) = [[— 287 (8) - V=78, (8)] 7 -y, (2,0,6), (16)
U9 0100 (2,0,8) = Y728, (8) - Yoz, 00 (2,0, 8), (17)
()fll,cl,cz (z,y,6) = [I=Y""W,(5) - "W, (&t ofu,cz 0,y —x,9), (18)
ofot,er,00(2,9,8) = "W (8) - of11,01,05 (2,9, 6). (19)

PROOF  Starting at levelr (with a phase inSs), it is possible for the fluid flow process to make several
visits back to level: while avoiding leveld) andy enroute. Therefore, the LST of the time until the last
visit to (x, S>) given that the process started(in, S) is given by[I — W7 (§)¥~*®,(§)]~'. Now at
level z (with a phase inSy) for the last time, the fluid flow process must make a first pgessa (0, Ss),
and this LST is given bvfmc1 (x,0,d). This completes the proof olf). Similar arguments lead to the
expressions inl(7), (18) and 19). N

Lettingy = oo in (16) and (L7), one obtains the following identities:
Corollary 1 For0 < z < oo,
I?22701702 (ma 0,0) = [I - x‘I’Zl (5) W, (6)]_1 ’ wf22701 (ma 0,9),
i:‘12701,(;2 (l‘, 07 6) = ‘IJCQ (6) : f‘22,(11,(;2 (l‘, 07 6)

Lemmal and Corollaryl provide the basic tools necessary to construct the follg\iist passage time
LSTs that are essential in the derivation of the main reduthis section. The proofs of the following
lemmas/corollaries can be found in Badescu etZl, (2007)].
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Lemma 2 Consider a fluid flow process which accumulates/depleteataty for levels in(0, z) and at
rate ¢, for levels in[z, 00). For 0 < z < y, the|S;| x |Sz| matrix of the LST of the return time of this fluid
flow from(0, S;) to (0, .S2) avoiding levely enroute is given by

y‘Ill’,Cl,Cz (5) = z‘Ilcl (5) + ()f11,01 (Oa T, 5)yf12751752 (l‘, 0, 5)
The previous result can be further simplified wher> oc.

Corollary 2 Consider the fluid flow described in Lem@with y = co. The|S;| x |Sz| matrix of the LST
of the return time of the fluid flow froi, S;) to (0, S2) is given by

‘Ila:,cl,CQ (5) = I‘I’cl (5) + ()fll,cl (0; z, 5) : le,cl,CQ (l‘, 0; 5)

The last preliminary result concerns the LST of the first pgsstime from(0, .S2) to (0, S1) in the
reflected version of the above fluid flow model.

Lemma 3 Consider the reflected version of the fluid flow described mie2 which accumulates/deple-
tes at ratec, for levels in the interval0, =) and at ratec, for levels in the intervalz, o). For0 < = < y,
the|Ss| x |:S1| matrix of the LST of the return time of the reflected fluid flawrft0, S2) to (0, S1) avoiding
levely enroute is given by ®” . (5) = “W7_(8) + “fag,c, (,0,08) - of21,c,00 (¥ — 2,9, 6).

T,C2,C1

The main result of this section is given in the next theorerncivis due to Badescu et a3, (2007)].
We refer to the original paper for a proof of this result.

Theorem 3 The joint discounted density of the surplus prior to ruir) @nd the deficit at ruin ),
gl (8, z,y), in the surplus procesgR’(t), t > 0} is given by:

1 foru < b,

(@) forb < zandy > 0,

b L ZSw) —se=b) . R
go(0,z,y) =cy e 21 e 22 ofiyc (u,0,0/2) ofi1,c,e,(b,2,6/2)
=W, (5/2) WLy, 0 (8/2)] 7 Tyge T gy,

(b) foru <z < bandy > 0,

o(wu)

gZ(éa T, y) = Cl_le 21 0f11701 (“a T, 6/2)[1 - ‘I’b—l‘,chcé (5/2) : J‘I’; (5/2)]_1

- TygeT22 gy, .

(c) for0 <z <wandy > 0,
-1 b—=x

gu(0,z,y) =y oy “(u—x) O (6/2)[1 — Wy ey ,c,(8/2) - L (6/2)] 7

- TypeT2r (T 0)gy) .

2 for0<b<u,

(a) foru < x andy > 0,

—5(z—u)

go(0,z,y) = cyle” 7 [L—="7"W,(5/2)- "W _, ., . (6/2)]"
' ()f11,02 (Oa T —u, 5/2)[1 - ‘Ilcz (5/2) - sz,cz,cl (5/2)]71

T
C TypeT2r (W) gy) .
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(b) forb < x < wandy > 0,

gZ(é, T,y) = 02_1p67(52 (u - x) - Z—b,@,el (5/2)
I =W, (6/2) - W (6/2)] 7" T1aeT222 00ty .

z—b,c2,c1

(c) for0 <z < bandy > 0,

gu(0z,y) =y lpy “(u—x) WL (6/2)I~ Vpsc,.c,(6/2) - "W, (6/2)] 7"

- TygeTe2a @ g,

The proof of Theorer3 follows along the same line of logic as Theor@mMe remark that the Laplace
transforms of the time to ruips.., (u) and p}~“(u) that appear in Theore® are given in Section 3 of
Badescu et al.Z3, (2007)].

This completes the analysis of the discounted dengity, =, v) in the single threshold surplus process
{Rb(t), t > 0}. Extensions to the more general multi-threshold dividerategy have been considered by
many authors (e.g. Albrecher and Hartinger(R007)], Lin and Sendoval], (2008)], Yang and Zhan@l[l,
(2008)] and Zhou§2, (2006)]). We refer the interested reader to Badescu €t 3I(2007)] for the identifi-
cation of the discounted density of the surplus prior to and the deficit at ruin in a multi-threshold MAP
risk model.

4 Other applications and concluding remarks

So far, our discussion of MAMs applications in ruin theorwéaravitated around the analysis of the
discounted joint density of the surplus immediately primrain and the deficit at ruin. This discounted
joint density is of interest by itself and also plays a vitakrin Gerber-Shiu type analysis of a given surplus
process. However, there exist many more applications of MAMruin theory. Thus, for the reminder of
this review paper, we aim at taking a broader view at theditee by listing other applications of MAMs
in a ruin theoretical context.

A relatively new application of MAMs in ruin theory is the saled Erlangization methodhat has
been mainly developed for the evaluation of finite-time rpinbabilities. The idea was first introduced
by Avram and Usabell[8, (2003)] where the concept of ruin before an exponentidistributed random
horizon is considered in the compound Poisson risk modél phiase-type claim sizes. This idea was fur-
ther extended by Asmussen et dl2] (2002)] to the case of ruin before a phase-type random drorigor
an Erlang-distributed random horizon with a mean equaléadsired finite-time span, an approximation
to the finite-time ruin probability is obtained. FurtherrmpAsmussen et al1p, (2002)] proved that this
approximation converges to the exact finite-time ruin plolits as the shape parameter of the Erlang dis-
tribution approaches infinity. The Erlangization idea iglier used to analyze the general Sparre Andersen
risk model (see e.g. Stanford et &9[ (2005)]) and the Markovian fluid flow model (see e.g. Ramasiva
et al. [56, (2008))).

Risk models with perturbations have also been studied udgiAlyls. In the literature, the analysis
of these perturbed risk models have preferred the spe@calndposition type-analysis to the sample path
analysis presented in Secti@n Asmussen 10, (1995)] studied the stationary distribution of a fluid flow
model with paths which are piecewise linear or Brownianhwibnstant drifts and variances given by an
underlying Markov process. Based on a vector-valued ngatmintroduced by Asmussen and Keliss[
(2000)], Badescu and Breuetd, (2008)] analyzed the LST of the time to ruin in a MAP risk mbd&h
perturbation and phase-type downward jumps. Further génations of MAP risk processes with both
downward and upward phase-type distributed jumps can bedfoguBreuer P9, (2008)]. Among other
things, a numerically stable iteration is proposed to camhe LST of certain first passage times. Also a
generalization of the discounted joint density of the susgdrior to ruin and the deficit at ruin is considered
in Breuer B0, (2009)]. In particular a quintuple law that also includiee tinimum surplus level before
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ruin, the time to reach this minimum and the remaining timel unin is derived under a Markov additive
process with phase-type jumps.

Risk models modified by various dividend payment strateg@mse also been another active research
topic in ruin theory. The reader is referred to Avanizi,[(2009)] for a comprehensive and thorough review
on this topic. Capitalizing on the same MAMs developed fer study of fluid queues, Badescu et al3|[

24, (2007)] have obtained expressions for the expected didedudividend payments before ruin in a
MAP risk model in the presence of a threshold dividend sgipnd a multi-threshold dividend strategy
respectively. For the higher-order moments of the discedidividend payments, a recursive scheme was
later proposed by Badescu and Landriaifi, 26, (2007, 2008)] to allow their calculation. In these papers a
recursive algorithm is developed to compute the momentssadiscounted dividend payments. The starting
point of the recursive procedure is the calculation of themants of the discounted dividend payments
in a threshold-free surplus process consisting of only dipelayer of the risk process. The recursion is
constructed from top to bottom by adding the next lower latexach iteration. The reader is also referred
to a discussion by Cheun@], (2008)] where the dual MAP risk model is studied and the cased
recursive scheme is elegantly derived.

A recent extension of the Sparre Andersen insurance riskeirfod which the joint distribution of
the interclaim time and the subsequent claim size is bitepaase-type (see Assaf et dl6] (1984)]) is
considered in Badescu et a7 (2009)]. Relying on the existing connection between rigkcpsses and
fluid flows, the authors construct an analytically tractahle flow that leads to the analysis of various
ruin-related quantities including the Gerber-Shiu disted penalty function when the penalty function
depends on the deficit at ruin only.

To conclude, we believe that the connection between sugpiocesses and fluid flows has been in-
strumental to the literature in ruin theory. Capitalizingtbe development of MAMs for fluid flows, this
connection has opened up new research directions to ardiff@ent ruin-related problems. More impor-
tantly, it provides an alternative to the traditional anialapproach commonly used in ruin theory. Having
both their own strengths and weaknesses, it is our beliétilieecombination of these two approaches will
result in a better understanding of the risks inherent teetteat “ruin” for an insurer.
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A Appendix

Consider a QBD consisting of three repeating square bldgksA 1, A, which represents the transition
matrices one level up, in the same level, and a level belopeaively. Assume now that the process is
observed when the level changes. The probability that ted ecreases by aftern iterations is given
by A" A,. Taking the sum after all possible iterations, one obtdiegarobability of eventually going one
level down asB, = (I — A1)t A,. In the similar fashion the matrix of probabilities to eveaity go a
level up isBg = (I — A1)~ 1Ay. In this way it is possible to obtain a new Markov chain withansition
matrix with 0 block matrices on the main-diagon#y on the upper main diagonal ai}, on the lower
main diagonal. In this new created Markov chain it is easyemthat:

Y =By + ByY? (20)

(To verify, substitution folB, andB, and rearrangement yield4)( Suppose now that the process starts
in an even level, for example when the insurer receives premmi At the next level, the process will be
automatically in an odd level (e.g. a claim payment periaagjfferent if the step is up or down. This
observation makes it possible to look at the process pigcsgeps from now. If one observes the process
only at even times, the process will be necessarily in an lxeh. If the process goes up, it must go up two
steps, so instead &f, one will haveY () = Y2, This new formed process is again a QBD. The matrix that
gives the probability to go two levels downI? and two levels up i8¢?. The new matrix of transitions
between levels has now the form:

* * 0 0
AL AWM 0

0 AL AL AWM

0 0 AN AWM
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with AV = B2, ALY = B2 andA (V) = ByB, + ByB,. As mentioned before, the matr¥ that
corresponds to the new process is the ma¥iX) of the old process, so equatioBdf applies withY
replaced byy (®), andB, andB; replaced byB") andB¢") given by:

Bo(l) =(I— Al(l))*lAO(l)
Bg(l) =(I- A_l(l))_lA_Q(l)

Equation 20) becomes:
Y® =B, + ]30(1)(Y(2))2

SinceY @ = Y2, one can further obtain:
Y =By + BoB)'V + BOB()(I)(Y(Q))2

If one continues in the same fashion, one can obtain a newdwankain withY ® = Y(®? — y4 and so
on. Continuing the iterations, the matfk will converge quadratically fast to

e’} k—1
Y = Z <H Bo(i)> ]32(16)7
k=0 \i=0

where
B =I-A)'A;, =02

and
—1 —1
B (k1) — (1 _ A1<k+1>) AR = (1 _BMB® — BQ(k)BO(k)) B2, i=0,2.

Once the matriXY is obtained, the upper-right block matrixds(J).
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