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Applications of fluid flow matrix analytic methods
in ruin theory —a review

Andrei L. Badescu and David Landriault

Abstract. In this paper, we present a unified probabilistic approach toanalyze a wide class of insurance
risk models in a ruin theoretical context. Contrary to the traditional analytic approach mainly encountered
in the literature, this alternative approach is based on matrix analytic methods (MAMs) that have become
an increasingly popular set of tools in the study of various applied probability models. We make use
of the recent advances in the study of fluid queues to analyze some insurance risk processes and their
ruin related quantities. The advantages and disadvantagesof MAMs over alternative methods are also
discussed.

Métodos analı́ticos matriciales para flujos fluidos
aplicados a la teorı́a de la ruina —una revisi ón

Resumen. Este artı́culo presenta un enfoque probabilı́stico unificador para el análisis de una clase
amplia de modelos de riesgo en el contexto de la teorı́a de la ruina. Contrastando con el enfoque analı́tico
tradicional que domina en la literatura, nuestro enfoque alternativo está basado en métodos analı́ticos
matriciales (MAMs) que progresivamente han ido haciéndose populares herramientas en el estudio de
diversos modelos de probabilidad aplicada. Utilizamos losúltimos avances en el estudio de colas fluidas
para analizar algunos procesos de riesgo de seguros y sus variables de ruina asociadas. Discutimos de las
ventajas y desventajas de los MAMs en comparación a los métodos alternativos.

1 Introduction

Matrix analytic methods (MAMs) are a set of powerful tools developed to analyze a wide variety of stochas-
tic models that arise in telecommunications, operations research, management science, industrial engineer-
ing, computer engineering, bio-statistics, to name a few. The main focus of this review paper is to present
a recent area of applications of MAMs, namelyruin theory. By making use of the connection between an
insurer’s surplus process and a particular fluid queue, we present a unified methodology for studying a large
class of insurance risk models via the recent developments in MAMs for the analysis of fluid queues.

As their name suggests, MAMs are based on matrix calculations that often have nice probabilistic
interpretations. The elegant structural forms of these quantities provide algorithmic tractability, a feature
that most of the traditional analytic techniques do not possess. Furthermore, MAMs make no use of the
theory of eigenvalues. Indeed, this is in total accordance with the fact that the fundamental matrices have
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probabilistic meanings, as the eigenvalues do not. As will be shown, the applications of MAMs in ruin
theory allow the derivation of an expression for certain ruin-related quantities without directly involving
the roots of the so-calledLundberg fundamental equation. The reader is referred to e.g. Badescu and
Breuer [19, (2008)] for a brief discussion of numerical instability sometimes encountered in the calculation
of these roots. The role of the Lundberg equation roots in thetraditional analytic approach is replaced
in MAMs by a matrix quantity representing the Laplace-Stieljes transform (LST) of a busy period in a
particular fluid queue. Due to its importance, the LST of thisbusy period will be the subject matter of
Section2.3.1.

But first, two simple examples of MAMs, namely thephase-type distribution(see e.g. Neuts [51,
(1978)]) and theMarkovian arrival process(see e.g. Neuts [52, (1979)]), are briefly discussed in the fol-
lowing two sub-sections.

1.1 Phase-type distribution

The phase-type distribution was introduced by Neuts [51, (1978)] as a generalization of the exponential
distribution. LetZ = {Zt : t ≥ 0 } be a time-homogeneous continuous-time Markov chain (CTMC)with
state space{1, . . . , n, n + 1} and infinitesimal generator

Q =

[

B b

0 0

]

,

whereB is an×n square matrix andb = −Be. Throughout this paper,e is a column vector of1s while0

is a matrix of0s, both of appropriate dimensions. The initial probabilityvector of the CTMCZ is denoted
by (β, βn+1) whereβ is a row vector of sizen. The states{1, . . . , n, n + 1} of the CTMCZ are referred
to as phases. LetT = inf{t ≥ 0, Zt = n + 1} be the time until absorption of the CTMCZ in staten + 1.
The distribution ofT is calledphase-type (PH) distributionwith parameters(β,B).

From its construction, it is easy to see that the PH random variable (r.v.) T consists of a collection of
exponentially distributed time segments among the phase changes of the CTMCZ. Phase-type distributions
possess several properties that make them a versatile classof r.v.’s, some of them being listed below without
proof. The interested reader is referred to Neuts [53, (1981)] for a detailed description.

Theorem 1 For a PH r.v.T with representation(β,B),

(a) the cumulative distribution function (c.d.f.) is given byF (t) = 1 − βeBte;

(b) the probability density function (p.d.f.) is given byf(t) = βeBtb;

(c) the moment generating function (m.g.f.) is given byF̃ (s) =
∫∞

0
est dF (t) = β(−sI−B)−1b+βn+1.

It is easy to observe that the phase-type distribution is a matrix generalization of the exponential distri-
bution. Indeed, by lettingB = −λ andβ = 1, one recovers an exponential r.v. with mean1/λ. Mixtures
of exponentials/Erlangs are other special cases of this large class of distribution functions.

Proposition 1 The class of PH distributions is closed under the formation of finite mixtures, finite convo-
lutions, finite minima and maxima, and compounding with discrete phase-type distributions.

Proposition 2 The class of PH distributions is dense in the sense of weak convergence in the class of all
distributions with positive support.

1.2 Markovian arrival process

A second example of MAMs is a versatile class of point processes known as the Markovian arrival pro-
cess (MAP). Am-dimensional MAP is defined through two processes: a continuous-time Markov process
J = { J(t) : t ≥ 0 } with state spaceS1 = {1, . . . , m} and a counting processN = {N(t), t ≥ 0} with
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state space{0, 1, . . .}. For the counting processN , the number of marked transitions of the CTMCJ by
timet is represented by the r.v.N(t). The transition rates which are not marked are described by the matrix
D0, while those that are marked are described by the matrixD1. The initial state distribution is given by
the row vectorδ+. The matricesD0 andD1 satisfy the following conditions:

i. D0+D1 is the infinitesimal generator of an irreducible CTMCJ (the so-called environmental pro-
cess) on the state spaceS1;

ii. D0[i, i] < 0 for all i, andD0[i, j] ≥ 0 for all i 6= j with i, j ∈ S1;

iii. D1[i, j] ≥ 0 for all i, j ∈ S1;

iv. for i 6= j, D0[i, j] is the rate at which a change of the underlying phase fromi to j occurs without
an arrival (unmarked transition);

v. D1[i, j] is the rate at which a change of the underlying phase fromi to j occurs with an arrival
(marked transition) (here,j = i is allowed).

For a fuller description the interested reader is referred to Latouche and Ramaswami [44, (1999)].

As has been shown by Asmussen and Koole [14, (1993)], it is possible to model point processes with
a fairly general degree of complexity by MAPs. For this reason (and many others), MAPs have become
extensively used in queueing theory and performance evaluation. Several procedures have been developed
over time to estimate the transition matricesD0 andD1 from observed data. The so-called EM algorithm
has proven to be a good mean of approximating the maximum likelihood estimator (see e.g. Asmussen et
al. [15, (1996)]).

Also, several well-known point processes are special casesof the general MAP:

(a) The Poisson process with interarrival rateλ is a particular MAP withδ+ = 1, D0 = −λ andD1 = λ.

(b) The renewal point process withPH(β,B) sojourns between arrivals is a MAP withδ+ = β, D0 = B

andD1 = bβ.

(c) The Markov-modulated Poisson process (MMPP) - consideran underlying Markov process with a
finite number of states, saym. Assume that while the system is in statei, claims arrive according to a
Poisson process at rateλi (i = 1, . . ., m). Denoting the underlying Markov process generator byΓ,
the MAP representation is given byD1 = diag{λ1, . . . , λm} andD0 = Γ− D1.

(d) The PH semi-Markov process - considerm independent PH distributions:Fj ∼ PH(βj ,Bj) with
exit rate vectorsbj = −Bje for j = 1, . . ., m. Consider also a background discrete-time Markov
chain{X(n)}n≥0 with m states and letpij be its one-period transition probability from statei to
statej. Consider a semi-Markov process for which then-th interarrival time has distributionFj

whenX(n) = j. The MAP representation of the formulated PH semi-Markov process is

D0 =











B1 0 0 . . . 0

0 B2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Bm











, D1 =







p11b1β1 p12b1β2 . . . p1mb1βm

...
...

. . .
...

pm1bmβ1 pm2bmβ2 . . . pmmbmβm







In the next sub-section, we define the class of risk models subject to analysis via MAMs in this paper.
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1.3 The insurance risk model

In this paper, we consider an insurer for which its surplus processR = {R(t), t ≥ 0} is defined as

R(t) = u + ct −

N(t)
∑

k=1

Xk,

whereu is the insurer’s initial surplus andc is the incoming premium rate. The claim number process
{N(t), t ≥ 0} is assumed to have interclaim timesTk for k = 1, 2, . . . Also, Xk denotes the size of the
k-th claim (k = 1, 2, . . .).

Traditionally, it has been assumed that the interclaim times {Tk}∞k=1 and the claim sizes{Xk}∞k=1 are
mutually independent r.v.’s. Despite the fact that this independence assumption leads to less realistic insur-
ance risk models, risk models of this kind which include the compound Poisson risk model and the Sparre
Andersen risk model are analytically tractable (for a detailed description, see Asmussen [11, (2000)]). With
the advance in analytic tools, a new trend has emerged to identify and study risk models which relax the
stringent independence assumptions of the Sparre Andersenrisk model. Among others, a popular class of
generalizations is the class of risk models for which the increments of the surplus process from the time of
a claim to its subsequent are all independent (as well as identically distributed), but where the r.v.’sTk and
Xk are possibly dependent for anyk = 1, 2, . . .. Risk models that belong to this class preserve the random
structure of the traditional Sparre Andersen risk model. The interested reader is referred to e.g. Albrecher
and Teugels [9, (2006)], Boudreault et al. [28, (2006)] and Cossette et al. [34, (2008)] for some examples.

In this paper, we consider a different class of generalizations. We assume that the claim number process
{N(t), t ≥ 0} is a MAP with representation(δ+,D0,D1). We also assume that the claim amounts are PH
distributed. More precisely, for a transition of the CTMCJ from statei to statej at the time of a claim
(i.e. marked transition), we suppose that the accompanyingclaim size has a PH distribution with parameters
(βij ,Bij). Without loss of generality, we assume that all the PH claim size distributions are of sizen. Even
if the class of phase-type distributions is dense among the distributions defined on the non-negative real
line, one should keep in mind that PH distributions are by definition light-tailed. Hence a fit to a heavy-
tailed distribution might be poor (especially in the right-hand tail) even for a phase-type distribution with a
relatively large number of phases.

Under these assumptions, we have constructed a very generalnon-renewal insurance risk model where
claim sizes and interclaim times are all dependent r.v.’s. In addition, many risk models are special cases of
the MAP risk model described above, namely the Sparre Andersen risk model with PH claim sizes and PH
interclaim times, as well as certain dependent risk models such as the MMPP with PH claim sizes (e.g. Lu
and Li [49, (2009)]) and Albrecher and Boxma’s [6, (2005)] semi-Markov risk model with PH claim sizes.
These risk models (without the PH assumption for the claim sizes) have generally been analyzed using the
traditional analytic method. In this paper, we review a recently new methodology as a viable alternative to
analyze these risk models. The use of MAMs together with the existing connections between risk processes
and fluid flow processes allow the analysis of these risk processes in a unified and relatively straightforward
way. The next section of the paper will familiarize the reader with some fluid flow models of interest and
their most relevant properties for the study of the surplus processR.

2 Fluid flow models

Motivated by their applications in several applied probability models, the theory of fluid flows has been an
active area of research in recent years. One of the most common applications of these stochastic processes is
in telecommunication where fluid flows are used to model the traffic evolution in a communication channel.
Another simple example of a fluid flow is given by an infinite capacity buffer with inflow and outflow rates
controlled by a Markov chain. When the buffer is empty, it remains empty until the controlling Markov
chain moves to a state with a net inflow rate. Once this happens, the buffer level increases until the time at
which the underlying Markov chain transits to a phase with a net outflow rate.
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In this section, we define a Markov modulated fluid flow (MMFF) and later establish its connection with
the MAP risk process described in Section1.3. Towards the end of the section, we review some fundamental
fluid flow first passage probabilities that are central to the analysis of ruin-related quantities in Section3.

2.1 The Markov modulated fluid flow model

Let (F ,W) = { (F (t), W (t)) : t ≥ 0 } be a MMFF whereF (t) is the level of a fluid buffer at timet and
the environmental processW is a CTMC with state spaceS = S1 ∪ S2 ∪ S3 and infinitesimal generatorT
partitioned as

T =





T11 T12 T13

T21 T22 T23

T31 T32 T33



 .

The submatricesTij (i, j = 1, 2, 3) contain the rates of transition from phases inSi to phases inSj . The
fluid level processF = {F (t) : t ≥ 0 } is described as follows: during sojourn ofW in statei ∈ S1, the
fluid level increases at rateci > 0; during sojourn ofW in statei ∈ S2, the fluid level decreases at rate
ci > 0; during sojourn ofW in statei ∈ S3, the fluid level remains constant (i.e.ci = 0). Mathematically,
the evolution of the fluid flow can be described through the piecewise linear function

L(t) = u +

∫ t

0

cW (v) dv,

whereu is the fluid level at time0. The fluid level is then given by

F (t) = L(t) − min
(

0, L̃(t)
)

,

whereL̃(t) = min0≤v≤t L(v). We denote the canonical fluid flow modelF asF = F(T,C1,−C2)
whereC1 = diag(ci, i ∈ S1) andC2 = diag(ci, i ∈ S2) are two diagonal matrices containing the rates
of increase and decrease of the fluid flowF respectively.

Three variants of the fluid flowF are particularly useful in the analysis of ruin-related quantities for the
surplus processR:

Finite Buffer Fluid Flow: In relation with the fluid flowF , we define the finite buffer fluid flowbF =
bF(T,C1,−C2) which allows the fluid level to decrease only when it is positive and to increase only
when it is less than a buffer levelb > 0.

Reflected Fluid Flow: Associated to the fluid flowF , we also define the reflected fluid flowFr obtained
by reversing the roles of the up and down environment states.Mathematically, we writeFr =
F(T,C2,−C1).

Reflected Finite Buffer Fluid Flow: In a similar manner, we define the reflected finite buffer fluid flow
bFr = bF(T,C2,−C1) which is the reflection of the fluid queuebF .

2.2 Connection to risk processes

Due to their relatively proximity, several authors —Asmussen [10, (1995)] being the first among them—
analyze risk processes via fluid flows. For instance, the MMFF(F ,W) can be used to analyze a large class
of risk processes (see e.g. Ahn et al. [2, (2007)], Badescu et al. [20, (2005)] and Ramaswami [55, (2006)]
for several illustrative examples). The main purpose of this subsection is to show how the MMFF(F ,W)
can be used to analyze the surplus processR described in Section1.3. Some adjustments to the general
MMFF (F ,W) are first required to match the sample paths of the two processes.

The first modification relates to the accumulation/depletion ratesci of the MMFF (F ,W). Given that
premiums are collected at a constant ratec in the surplus processR, we shall assume that the linear rates of
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increase/decrease of the fluid flowF do not dependent on the underlying phase of the CTMCW (i.e.ci = c
for all i). As a consequence, the diagonal matricesC1 andC2 will be replaced by the scalarc. The second
modification pertains to the fact that the surplus processR does not stay at a constant level over time.
Therefore, we shall assume that the set of phasesS3 of the MMFF (F ,W) is empty. Based on those two
adjustments, the resulting MMFF is denoted by(Fc, W ) = {Fc(t), W (t)} where the CTMCW has state
spaceS = S1 ∪ S2 and infinitesimal generator

T =

(

T11 T12

T21 T22

)

. (1)

Note that the accumulation/depletion rates of the fluid flowFc is its indexc.
Finally, paths of the surplus processR before ruin can be obtained from segments of the fluid process

(Fc, J) before the fluid level becomes empty by replacing the downward linear paths of the fluid flow
by downward jumps of appropriate sizes. To do so, one has to interpret a claim of sizex as being paid
continuously at ratec over a (unobserved) time interval of lengthx/c. This artifice changes the clock time
in the fluid model by extracting all the spurious time intervals of downward linear descents (replacing them
with instantaneous downward jumps). A sample path of these two processes is illustrated in Figure1.

To analyze the surplus processR, it remains to specify the parametrization of the fluid flow(Fc, W )
with respect to its generatorT and its state spaceS. We recall that, for the surplus processR, claims arrive
according to a MAP(δ+,D0,D1). A claim that occurs at the time of a transition of the underlying CTMC
from statei to statej is PH(βij ,Bij) distributed. Letm be the dimension of the setS1 andn be the
dimension of all the PH claim size distributions. Hence, theassociated fluid flow model(Fc, J) has state
spaceS = S1 ∪ S2 where the dimensions ofS1 andS2 arem andm × n × m respectively. The(i, j)-th
element of the infinitesimal generator (1) are:

T11[i, j] = D0[i, j],

T12[i, (i, j, k)] = D1[i, j]βij [k],

T21,c[(i, j, r), j] = −c

n
∑

s=1

Bij [r, s],

T22,c[(i, j, r), (i, j, s)] = cBij [r, s].

Note that the matricesT21,c andT22,c contain the premium ratec due to the scaling of the time interval
over which claim occurs continuously at ratec (as discussed above) —see Ramaswami [55, (2006)] for
more details. We also define the absorbing rate vectort21,c ast21,c = T21,ce.

We conclude the present section with some important relationships between first passage times in the
fluid flow Fc and the risk processR which can be found in e.g. Ramaswami [55, (2006)]. To this end, let
z
aσc(x, y) be the first passage time of the fluid levelFc from levelx to levely avoiding a visit to the levels
in [0, a] ∪ [z,∞) enroute. Note that the argumentsa and/orz may be suppressed in the above definition
whenever they are meaningless. For instance, we use0σc(0, x) instead ofx0σc(0, x) given that the fluid flow
process has to reach levelx before any level in[x,∞). Similarly, letzaτc(x, y) be the equivalent time in the
risk processR (which is obtained fromz

aσc(x, y) by eliminating the time intervals in which the fluid flow
Fc decreases over this first passage time).

Remark 1 A comparison of some first passage times in the fluid flowFc and the risk processR yields the
following observations:

(a) the first passage time from level0 to level0 in the risk modelR is just half of the equivalent time in
the fluid flowFc, i.e.

τc(0, 0) =
σc(0, 0)

2
.
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Figure 1. Connection between risk processes and fluid processes

(b) for the interval of descent from(x, S2) to (y, S2) with 0 ≤ y < x, we have

τc(x, y) =
σc(x, y)

2
−

x − y

2c
.

(c) for the interval of ascent from(x, S1) to (y, S1) with 0 ≤ x < y, we have

τc(x, y) =
σc(x, y)

2
+

y − x

2c
.

2.3 First passage probabilities

2.3.1 The Laplace-Stieljes transform of the busy period

Fundamental to the subsequent analysis is the LST of the busyperiodσc(0, 0) in the fluid queueFc (see
e.g. Ahn and Ramaswami [3, (2004)], Bean et al. [27, (2005)]). LetΨc(δ) be this LST, a matrix arising due
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to the relevance of the initial and terminal states of the CTMC W . More precisely,Ψc(δ) is a |S1| × |S2|
matrix with (i, j)-element

[Ψc(δ)]ij = E[e−δσc(0,0)I (W (σc(0, 0)) = j) |W (0) = i], i ∈ S1, j ∈ S2, (2)

whereI(A) is the indicator function of the eventA. Note that, forδ = 0, the scalarδ+Ψc(0)e corresponds
to the probability that the fluid queueFc will ever become empty given thatFc(0) = 0. Clearly, this also
corresponds to the infinite-time ruin probability in the associated risk modelR when the initial surplus is0.
Given thatΨc(δ) plays a central role in the transient analysis of the fluid flowFc (and implicitly in the
associated surplus processR), additional results pertaining toΨc(δ) are presented below.

Rogers [58, (1994)] showed thatΨc(δ) (with δ ≥ 0) can be obtained from the minimal nonnegative
solution of the Riccati equation

T12 + (T11 − δI)X + X(T22,c − δI) + XT21,cX = 0, (3)

with I being an identity matrix of appropriate dimensions. Later,Ramaswami [54, (1999)] proved that the
minimal nonnegative solution of the matrix quadratic equation

Y = A2 + A1Y + A0Y
2, (4)

with

A0 =

[

1
2I 0

0 0

]

,

A1 =

[

1
2

(

I+ 1
k
(T11 − δI)

)

0

1
k
T21,c 0

]

and

A2 =

[

0 1
2k

T12

0
(

I+ 1
k
(T22,c − δI)

)

]

,

is of the form

Y =

[

0 Ψc(δ)

0 I + 1
k
Hc(δ)

]

,

where
Hc(δ) = c−1[T22,c − δI + T21,cΨc(δ)]. (5)

Note that the constantk in the matricesA0, A1, A2 andY shall be greater than the largest absolute value
among the diagonal elements of the matrixT − δ I.

Thus, it suffices to solve (3) or (4) in order to computeΨc(δ) for any δ ≥ 0. Essentially, two main
families of approaches are available to tackle this problem: spectral decompositionanditerative schemes.
The procedures developed in e.g. Asmussen [10, (1995)] and Asmussen et al. [12, (2002)] when the arrival
process forms a renewal process belong to the first family. From our experience, spectral decomposition
and root finding methods tend to be more susceptible to numerical problem/instability (especially when the
number of roots become large) in comparison with iterative schemes. The Log-Reduction (LR) algorithm
of Latouche and Ramaswami [43, (1993)] for the computation ofΨc(δ) is an example of iterative scheme.
The LR algorithm is designed to reduce the number of unnecessary iterations needed to obtain the solution
of (4). The algorithm works only for quasi-birth-and-death-processes (QBDs) that are the discrete equiva-
lent of the fluid flows presented in this section. For the sake of completeness, we review the LR algorithm in
appendixA. A few years later, Ahn and Ramaswami [4, (2005)] provided an improved algorithm for com-
puting this first passage probability matrix and demonstrated that it converges quadratically fast, yielding
very accurate numerical results.

In the following subsection, additional LSTs of first passage times are discussed in the fluid flowFc.
The LST of a busy periodΨc(δ) will play a predominant role in most of these newly defined LSTs.

360



Applications of fluid flow matrix analytic methods in ruin theory

2.3.2 Other first passage probabilities

In Ahn and Ramaswami [3, 5, (2004, 2006)], the matricesHc(δ) andKc(δ) are introduced whereHc(δ) is
as defined in (5) while

Kc(δ) = c−1[T11 − δI + Ψc(δ)T21,c].

BothHc(δ) andKc(δ) have nice probabilistic interpretations. Forx, y ≥ 0, [eHc(δ)x]ij represents the LST
of the first passage time of the fluid flow(Fc, W ) from (x + y, i ∈ S2) to (y, j ∈ S2), whereas[eKc(δ)x]ij
is the LST of the expected number of crossings of the fluid flow(Fc, W ) to level x + y, phasej ∈ S1

while avoiding levely enroute, given that the process started in(y, i ∈ S1). Noting that the last quantity of
interest is the LST of a certain Markov renewal kernel, it canalso be interpreted as the Laplace transform
of the density associated with the relevant taboo crossing (see Ahn and Ramaswami [3, 5, (2004, 2006)] for
a detailed explanation).

In addition, Ramaswami [55, (2006)] defined yet another matrix, namely

Uc(δ, x) =

∫ x

0

eHc(δ)y c−1 T21,c eKc(δ)y dy, (6)

where[Uc(δ, x)]ij represents the LST of the expected number of crossings of thefluid flow (Fc, W ) to
levelx, phasej ∈ S1 while avoiding level0 enroute given that the process started in(x, i ∈ S2). Note that
the integral in (6) can be calculated exactly using Lemma 2 in Ramaswami [55, (2006)].

Analogous to the above matrices pertaining to the fluid flow(Fc, W ), we can also introduce the matrices
Ψr

c(δ), H
r
c(δ), K

r
c(δ), andUr

c(δ, x) which pertain to the reflected fluid flow(Fc
r, W ). Their formulae and

probabilistic interpretations are similar to the above-mentioned ones and can also be found in Ahn et al. [2,
(2007)]. An important aspect that is common to all of the above quantities is the fact that their calculation
essentially reduces to the evaluation of the first passage probability matrixΨc(δ), whose evaluation has
already been discussed in Section2.3.1. We are now ready to review some other useful LSTs of first
passage times.

For i, j = 1 ,2, we define the|Si| × |Sj | matrix of the LST of the first passage time of the fluid flow
process(Fc, J) from (x, Si) to (y, Sj) while avoiding a visit to the levels in[0, a] and[z,∞) enroute, i.e.

z
af̂ij,c(x, y, δ) = E[e−δ z

aσc(x,y)I{W (z
aσc(x, y)) ∈ Sj}|W (0) ∈ Si].

We remark that the superscript “r” will be added to the above quantity in the reflected version of the fluid
flow (Fc, W ). The same comment with respect to the suppression of the argumentsa andz that we have
made earlier applies here as well.

Ramaswami [55, (2006)] obtained formulae for many important first passagetimes in infinite buffer
fluid flow models. In Table1, we list the pertinent results. The two formulae stated in Table 1 without
reference immediately follow from equivalent results pertaining to the fluid flowFc.

We end this section by stating (without proof) several otheruseful LSTs derived in Theorem 1 of Ahn
et al. [2, (2007)]. Indeed, for0 ≤ x < y,

y f̂22,c(x, 0, δ) = [I− xΨr
c(δ) ·

y−xΨc(δ)]
−1 · xf̂22,c(x, 0, δ), (7)

y f̂12,c(x, 0, δ) = y−xΨc(δ) ·
y f̂22,c(x, 0, δ), (8)

0f̂11,c(x, y, δ) = [I− y−xΨc(δ) ·
xΨr

c(δ)]
−1 · 0f̂11,c(0, y − x, δ), (9)

0f̂21,c(x, y, δ) = xΨr
c(δ) · 0f̂11,c(x, y, δ). (10)

3 Applications of MAMs in ruin theory

In this section, we consider the applications of MAMs in the context of two risk processes: the surplus
processR described in Section1.3and its modified version in the presence of a threshold dividend strategy
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LST First passage time Formula Ref.

f̂22,c(x, 0, δ)
from (x,S2) to (0, S2)

eHc(δ)x
Ahn and Ramaswami

in Fc [4, (2005)], Th. 3

f̂r
11,c(x, 0, δ)

from (x,S1) to (0, S1)
eH

r
c(δ)x

in Fc

r

0f̂11,c(0, x, δ)
from (0, S1) to (x, S1)

eKc(δ)x[I1 + Ψc(δ)Uc(δ, x)]−1 Ramaswami
avoiding0 enroute inFc [55, (2006)], Th. 1

0f̂
r
22,c(0, x, δ)

from (0, S2) to (x, S2)
eK

r
c(δ)x[I1 + Ψr

c(δ)U
r
c(δ, x)]−1

avoiding0 enroute inFc

r

xΨc(δ) = from (0, S1) to (0, S2)
Ψc(δ) − 0f̂11,c(0, x, δ)Ψc(δ)e

Hc(δ)x Ramaswami
xf̂12,c(0, 0, δ) avoidingx enroute inFc [55, (2006)], Th. 2

xf̂22,c(x, 0, δ)
from (x, S2) to (0, S2)

0f̂
r
22,c(0, x, δ)

Ramaswami
avoidingx enroute inFc [55, (2006)], Th. 3

xΨr
c(δ) = from (0, S2) to (0, S1)

Ψr
c(δ) − 0 f̂

r
22,c(0, x, δ)Ψr

c(δ)e
H

r
c(δ)x Ramaswami

0f̂21,c(x, x, δ) avoidingx enroute inFc

r [55, (2006)], Th. 4

Table 1. First passage time results in fluid flow models

(see Section3.3 below). We stress that these are only two illustrative examples of MAMs applications
in ruin theory and by no means represent the full extent of MAMs applications for the study of surplus
processes. The reader is referred to Section4 for further applications of MAMs in frequently analyzed ruin
theory problems. But first, a brief review of some popular ruin-related quantities in ruin theory is presented.

3.1 Ruin-related quantities of interest

For many years, ruin probabilities and many ruin-related quantities such as the marginal and joint defective
distributions of the deficit at ruin, the surplus just prior to ruin and the claim size causing ruin have been
extensively studied in various risk models (see e.g. Dufresne and Gerber [38, (1988)], Dickson [35, 36,
(1992, 1993)], Gerber and Shiu [39, (1997)], Dickson and Hipp [37, (1998)] and references therein). For
a given surplus process, a common ground seems to exists in the study of a number of these ruin-related
quantities. This idea was brilliantly formalized in Gerberand Shiu’s [40, (1998)] seminal paper where the
so-calledexpected discounted penalty functionwas proposed. For a surplus processR, the Gerber-Shiu
discounted penalty function is defined as

φδ(u) = E[e−δτw(R(τ−), |R(τ)|)I(τ < ∞)|R(0) = u], (11)

whereτ = inf{ t ≥ 0 : R(t) < 0 } is the time of ruin (withτ = ∞ if ruin does not occur),R(τ−) is the
surplus immediately before ruin,|R(τ)| is the deficit at ruin, andw : R

2 → R is a penalty function which
is assumed to satisfy some mild integrability conditions.

The strenght of the new analytic tool (11) resides in the fact that it generalizes a number of commonly
analyzed ruin-related quantities (see those mentioned above) in addition of providing a platform for the
study of new ones via a proper choice of the penalty functionw. Some examples are provided here:

1. for w(x, y) = 1 for all x, y ≥ 0, φδ(u) corresponds to the Laplace transform of the time to ruin.
Whenδ = 0, φ0(u) corresponds to the probability of ruin.

2. for w(x, y) = ∆(x − v)∆(y − z) for all x, y ≥ 0 (where∆ is the Dirac delta function),φδ(u)
corresponds to the so-called discounted density of(R(τ−), |R(τ)|) at (v, z). Whenδ = 0, φ0(u)
corresponds to the (defective) density of(R(τ−), |R(τ)|) at (v, z).

3. for w(x, y) = yk for all x, y ≥ 0 andδ = 0, φδ(u) corresponds to thek-th moment of the deficit at
ruin.
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Moreover, quantities such as the joint moments of the time ofruin, the surplus prior to ruin and the
deficit at ruin, as well as their associated marginal momentsand the distribution of the claim causing ruin
can easily be derived via a Gerber-Shiu type analysis. A detailed analysis of some of these quantities in the
classical compound Poisson risk model can be found in e.g. Lin and Willmot [48, (1999)].

Due to its flexibility and unifying properties, several authors have since then characterized Gerber-Shiu’s
discounted penalty function under different risk model assumptions. We mention Gerber and Shiu [41,
(2005)] and Li and Garrido [45, (2005)] in the context of the Sparre Andersen risk model, Luand Li [49,
(2009)] and Lu and Tsai [50, (2007)] in the Markov-modulated risk model, and Cheung andLandriault [32,
(2009)] in the MAP risk model, among others.

For the MAP risk model, the Gerber-Shiu discounted penalty function is defined conditional on the state
of the underlying Markovian environmental process at time0. Hence, let

φδ,i(u) = E[e−δτw(R(τ−), |R(τ)|) I(τ < ∞) | R(0) = u, J(0) = i],

be the Gerber-Shiu function withJ(0) = i (i ∈ S1).
As pointed out by Gerber and Shiu [39, (1997)], Wu et al. [60, (2003)] and Landriault and Willmot [42,

(2009)], the joint density ofτ , R(τ−) and|R(τ)| takes different forms depending on whether ruin occurs
on the first claim (i.e.N(τ) = 1) or on any subsequent claim to the first (i.e.N(τ) > 1). For ruin occurring
on the first claim, leth1,i(x, y|u) be the joint density of(R(τ−), |R(τ)|) at (x, y) given thatJ(0) = i
andR(0) = u. In this case, it is clear thatτ = (x − u)/c. If ruin occurs on claims subsequent to the
first, we denote the joint density of(τ, R(τ−), |R(τ)|) at (t, x, y) given thatJ(0) = i andR(0) = u by
h2,i(t, x, y|u) for t, x, y > 0.

By conditioning on the time of ruinτ , the surplus immediately prior to ruinR(τ−) and the deficit at
ruin |R(τ)|, one obtains

φδ,i(u) =

∫ ∞

u

∫ ∞

0

e−δ(x−u
c )w(x, y)h1,i(x, y|u) dy dx

+

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−δtw(x, y)h2,i(t, x, y|u) dy dxdt.

(12)

Letting

gu,i(δ, x, y) =







e−δ(x−u
c )h1,i(x, y|u) +

∫∞

0 e−δth2,i(t, x, y|u) dt, x > u
∫∞

0
e−δth2,i(t, x, y|u) dt, 0 < x < u

,

for y > 0 be the discounted joint density of the surplus prior to ruin (x) and the deficit at ruin (y), it allows
to rewrite (12) as

φδ,i(u) =

∫ ∞

0

∫ ∞

0

w(x, y) gu,i(δ, x, y) dy dx. (13)

For convenience, we also define the following two column vectors:φδ(u) = [φδ,i(u)]mi=1 andgu(δ, x, y) =
[gu,i(δ, x, y)]mi=1.

Note that the discounted joint densitygu(δ, x, y) does not depend on the penalty functionw. Hence, one
can first identifygu(δ, x, y). From the knowledge ofgu(δ, x, y) together with (13), calculations of Gerber-
Shiu functions for different choices of penalty functionw immediately follows. Thus, in the following two
subsections, we identifygu(δ, x, y) for two risk processes.

We remark that the discounted joint density of the surplus prior to ruin and the deficit at ruin has
been studied by e.g. Gerber and Shiu [39, (1997)], Li and Garrido [45, (2005)] and Ren [57, (2007)]. A
generalized version of this discounted joint density can also be found in Breuer [30, (2009)] and Cheung et
al. [33, (2009)].

363



A. L. Badescu and D. Landriault

3.2 The basic insurance risk model

Using the LST of some first passage times in the MMFF(Fc, W ), we identify the discounted density of the
surplus prior to ruin (x) and the deficit at ruin (y) for the surplus processR with time to ruinτ ≡ τc(u, 0)
(see Section2.2). The reader is referred to Badescu et al. [21, (2005)] for an expression for the non-
discounted (i.e.δ = 0) version of this joint density. Theorem2 has been first proved by Ramaswami [55,
(2006)].

Theorem 2 The discounted joint density of the surplus prior to ruin (x) and the deficit at ruin (y),
gu(δ, x, y), is given by:

• for 0 < u < x andy ≥ 0,

gu(δ, x, y) = e
−δ(x−u)

2c 0f̂11,c(u, x, δ/2)[I− Ψc(δ/2)xΨr
c(δ/2)]−1

(

c−1T12

)

eT22,1(x+y)t21,1.

• for 0 < x < u andy ≥ 0,

gu(δ, x, y) = e
δ(u−x)

2c f̂12,c(u − x, 0, δ/2)xΨr
c(δ/2)[I − Ψc(δ/2)xΨr

c(δ/2)]−1

×
(

c−1T12

)

eT22,1(x+y)t21,1.
(14)

PROOF. For an initial surplusu < x, a contribution togu(δ, x, y) is made only if the surplus process
R reaches levelx at least once prior to ruin. Using Remark1, the LST of this first passage time is
e−

δ
2c

(x−y)
0f̂11,c(u, x, δ/2). Now at levelx in an increasing phase, the surplus process can re-visit level x

in an increasing phase an arbitrary number of times prior to ruin. The LST of this duration of time is given
by [I−Ψc(δ/2)xΨr

c(δ/2)]−1. Finally, from levelx in an increasing phase, the surplus process shall expe-
rience a claim in the nextc−1 dt time interval (with contributionT21,1) of sizex + y to enable a deficit at
ruin of y (with contributionexp{T22,1(x + y)}t21,1).

Let us now prove (14). For an initial surplusu > x, the equivalent fluid flow process has to make a first
passage to levelx in a decreasing phase. Using Remark1, the LST of this first passage time in the surplus
processR is given bye

δ
2c

(u−x)f̂12,c(u − x, 0, δ/2). Now at levelx (with a phase inS2) for the first time,
it is possible to re-visit levelx (with a phase inS1) an arbitrary number of times prior to ruin. The LST of
this duration of time in the corresponding risk model is given by xΨr

c(δ/2) · [I− Ψc(δ/2) · xΨr
c(δ/2)]−1.

Finally, as in the proof above, the equivalent fluid flow must switch immediately from an increasing phase
to a decreasing phase followed by a period of descent (at ratec) of length(x + y)/c. �

Furthermore, one can derive the LST of the time to ruinτ for the surplus processR via a double
integration ofgu(δ, x, y), i.e.

ρu(δ) ≡ E
[

e−δτ1(τ < ∞) |R(0) = u
]

=

∫ ∞

0

∫ ∞

0

gu(δ, x, y) dy dx.

Analyses of the Laplace transformρu(δ) were conducted by Badescu et al. [20, (2005)] and Ramaswami
[55, (2006)]. For purposes of completeness, Ramaswami [55, (2006)] has shown that

ρu(δ) = Ψc(δ/2) e
δ
2

u
c f̂12,c(u, 0, δ/2).

Finally, we refer the reader to Ahn and Badescu [1, (2007)] for a more complete discussion on the study of
Gerber-Shiu functions in the present risk process.
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3.3 The insurance risk model with a threshold strategy

In recent years, risk processes modified by various dividendpayment strategies have received considerable
attention in the actuarial literature on ruin theory. Risk models with a dividend threshold strategy have been
studied by e.g. Lin and Pavlova [46, (2005)] in the classical compound Poisson risk model, Albrecher et
al. [8, (2006)] in the Sparre Andersen risk model and Lu and Li [49, (2009)] in the Markov-modulated risk
model. The surplus process in the presence of a threshold strategy at levelb, namely{Rb(t), t ≥ 0}, is
defined as

dRb(t) =







c1 dt − d
(

∑N(t)
k=1 Xk

)

, Rb(t) < b

c2 dt − d
(

∑N(t)
k=1 Xk

)

, Rb(t) ≥ b
, (15)

where all the r.v’s in (15) are as defined in Section1.3. Typically, the premium ratesc1 andc2 satisfies the
inequalityc1 ≥ c2 with c1 − c2 being paid as a dividend to the shareholders whenever the surplus level lies
above the threshold levelb.

Let τb be the time to ruin for the surplus process{Rb(t), t ≥ 0}. An explicit form for the discounted
density of the surplus prior to ruinRb(τb−) and the deficit at ruin|Rb(τb)| is given below. To this end, let
gb

u(δ, x, y) be a|S1| × 1 column vector for which itsi-th element[gb
u(δ, x, y)]i is defined as

[gb
u(δ, x, y)]i dxdy = E[e−δτb

I{Rb(τb−) ∈ (x, x + dx)}I{|Rb(τb)| ∈ (y, y + dy)}
∣

∣J(0) = i].

Several lemmas are first introduced to define additional LSTsof first passage times in a particular fluid flow
process.

In what follows, we consider a fluid flow that accumulates/depletes at ratec1 for levels between0 andx
and at ratec2 for levels abovex. We definez

a f̂ij,c1,c2(x, y, ·), i, j = 1, 2, to be the|Si| × |Sj | matrix of
the LST of the first passage time of this fluid flow process from(x, Si) to (y, Sj) while avoiding a visit to
the levels in[0, a] and[z,∞) enroute. The following first passage time LSTs, analogous tothe ones given
in (7), (8), (9), and (10), are presented in the following lemma.

Lemma 1 For 0 ≤ x < y,

y f̂22,c1,c2(x, 0, δ) = [I− xΨr
c1

(δ) · y−xΨc2(δ)]
−1 · xf̂22,c1(x, 0, δ), (16)

y f̂12,c1,c2(x, 0, δ) = y−xΨc2(δ) ·
y f̂22,c1,c2(x, 0, δ), (17)

0f̂11,c1,c2(x, y, δ) = [I− y−xΨc2(δ) ·
xΨr

c1
(δ)]−1 · 0f̂11,c2(0, y − x, δ), (18)

0f̂21,c1,c2(x, y, δ) = xΨr
c1

(δ) · 0 f̂11,c1,c2(x, y, δ). (19)

PROOF. Starting at levelx (with a phase inS2), it is possible for the fluid flow process to make several
visits back to levelx while avoiding levels0 andy enroute. Therefore, the LST of the time until the last
visit to (x, S2) given that the process started in(x, S2) is given by[I − xΨr

c1
(δ)y−xΨc2(δ)]

−1. Now at
level x (with a phase inS2) for the last time, the fluid flow process must make a first passage to(0, S2),
and this LST is given byxf̂22,c1(x, 0, δ). This completes the proof of (16). Similar arguments lead to the
expressions in (17), (18) and (19). �

Lettingy = ∞ in (16) and (17), one obtains the following identities:

Corollary 1 For 0 ≤ x < ∞,

f̂22,c1,c2(x, 0, δ) = [I− xΨr
c1

(δ) ·Ψc2(δ)]
−1 · xf̂22,c1(x, 0, δ),

f̂12,c1,c2(x, 0, δ) = Ψc2(δ) · f̂22,c1,c2(x, 0, δ).

Lemma1 and Corollary1 provide the basic tools necessary to construct the following first passage time
LSTs that are essential in the derivation of the main result of this section. The proofs of the following
lemmas/corollaries can be found in Badescu et al. [23, (2007)].
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Lemma 2 Consider a fluid flow process which accumulates/depletes at ratec1 for levels in(0, x) and at
rate c2 for levels in[x,∞). For 0 < x < y, the|S1| × |S2| matrix of the LST of the return time of this fluid
flow from(0, S1) to (0, S2) avoiding levely enroute is given by

yΨx,c1,c2(δ) = xΨc1(δ) + 0f̂11,c1(0, x, δ)y f̂12,c1,c2(x, 0, δ).

The previous result can be further simplified wheny → ∞.

Corollary 2 Consider the fluid flow described in Lemma2 with y = ∞. The|S1| × |S2| matrix of the LST
of the return time of the fluid flow from(0, S1) to (0, S2) is given by

Ψx,c1,c2(δ) = xΨc1(δ) + 0f̂11,c1(0, x, δ) · f̂12,c1,c2(x, 0, δ).

The last preliminary result concerns the LST of the first passage time from(0, S2) to (0, S1) in the
reflected version of the above fluid flow model.

Lemma 3 Consider the reflected version of the fluid flow described in Lemma2 which accumulates/deple-
tes at ratec2 for levels in the interval(0, x) and at ratec1 for levels in the interval[x,∞). For 0 < x < y,
the|S2|× |S1| matrix of the LST of the return time of the reflected fluid flow from(0, S2) to (0, S1) avoiding
levely enroute is given byyΨr

x,c2,c1
(δ) = xΨr

c2
(δ) + xf̂22,c2(x, 0, δ) · 0 f̂21,c1,c2(y − x, y, δ).

The main result of this section is given in the next theorem which is due to Badescu et al. [23, (2007)].
We refer to the original paper for a proof of this result.

Theorem 3 The joint discounted density of the surplus prior to ruin (x) and the deficit at ruin (y),
gb

u(δ, x, y), in the surplus process{Rb(t), t ≥ 0} is given by:

1 for u ≤ b,

(a) for b < x andy > 0,

gb
u(δ, x, y) = c−1

2 e
−δ(b−u)

2c1 e
−δ(x−b)

2c2 0 f̂11,c1(u, b, δ/2) · 0f̂11,c1,c2(b, x, δ/2)

· [I − Ψc2(δ/2) · xΨr
x−b,c2,c1

(δ/2)]−1 · T12e
T22,1(x+y)t21,1.

(b) for u < x < b andy > 0,

gb
u(δ, x, y) = c−1

1 e
−δ(x−u)

2c1 0f̂11,c1(u, x, δ/2)[I− Ψb−x,c1,c2(δ/2) · xΨr
c1

(δ/2)]−1

· T12e
T22,1(x+y)t21,1.

(c) for 0 < x < u andy > 0,

gb
u(δ, x, y) = c−1

1 ρb−x
δ (u − x) · xΨr

c1
(δ/2)[I − Ψb−x,c1,c2(δ/2) · xΨr

c1
(δ/2)]−1

· T12e
T22,1(x+y)t21,1.

2 for 0 < b < u,

(a) for u < x andy > 0,

gb
u(δ, x, y) = c−1

2 e
−δ(x−u)

2c2 [I− x−uΨc2(δ/2) · uΨr
u−b,c2,c1

(δ/2)]−1

· 0f̂11,c2(0, x − u, δ/2)[I− Ψc2(δ/2) · xΨr
x−b,c2,c1

(δ/2)]−1

· T12e
T22,1(x+y)t21,1.
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(b) for b < x < u andy > 0,

gb
u(δ, x, y) = c−1

2 ρδ,c2(u − x) · xΨr
x−b,c2,c1

(δ/2)

· [I − Ψc2(δ/2) · xΨr
x−b,c2,c1

(δ/2)]−1 · T12e
T22,1(x+y)t21,1.

(c) for 0 < x < b andy > 0,

gb
u(δ, x, y) = c−1

1 ρb−x
δ (u − x) · xΨr

c1
(δ/2)[I− Ψb−x,c1,c2(δ/2) · xΨr

c1
(δ/2)]−1

· T12e
T22,1(x+y)t21,1.

The proof of Theorem3 follows along the same line of logic as Theorem2. We remark that the Laplace
transforms of the time to ruinρδ,c2(u) andρb−x

δ (u) that appear in Theorem3 are given in Section 3 of
Badescu et al. [23, (2007)].

This completes the analysis of the discounted densitygb
u(δ, x, y) in the single threshold surplus process

{Rb(t), t ≥ 0}. Extensions to the more general multi-threshold dividend strategy have been considered by
many authors (e.g. Albrecher and Hartinger [7, (2007)], Lin and Sendova [47, (2008)], Yang and Zhang [61,
(2008)] and Zhou [62, (2006)]). We refer the interested reader to Badescu et al. [23, (2007)] for the identifi-
cation of the discounted density of the surplus prior to ruinand the deficit at ruin in a multi-threshold MAP
risk model.

4 Other applications and concluding remarks

So far, our discussion of MAMs applications in ruin theory have gravitated around the analysis of the
discounted joint density of the surplus immediately prior to ruin and the deficit at ruin. This discounted
joint density is of interest by itself and also plays a vital role in Gerber-Shiu type analysis of a given surplus
process. However, there exist many more applications of MAMs in ruin theory. Thus, for the reminder of
this review paper, we aim at taking a broader view at the literature by listing other applications of MAMs
in a ruin theoretical context.

A relatively new application of MAMs in ruin theory is the so-calledErlangization methodthat has
been mainly developed for the evaluation of finite-time ruinprobabilities. The idea was first introduced
by Avram and Usabel [18, (2003)] where the concept of ruin before an exponentially-distributed random
horizon is considered in the compound Poisson risk model with phase-type claim sizes. This idea was fur-
ther extended by Asmussen et al. [12, (2002)] to the case of ruin before a phase-type random horizon. For
an Erlang-distributed random horizon with a mean equal to the desired finite-time span, an approximation
to the finite-time ruin probability is obtained. Furthermore, Asmussen et al. [12, (2002)] proved that this
approximation converges to the exact finite-time ruin probability as the shape parameter of the Erlang dis-
tribution approaches infinity. The Erlangization idea is further used to analyze the general Sparre Andersen
risk model (see e.g. Stanford et al. [59, (2005)]) and the Markovian fluid flow model (see e.g. Ramaswami
et al. [56, (2008)]).

Risk models with perturbations have also been studied usingMAMs. In the literature, the analysis
of these perturbed risk models have preferred the spectral decomposition type-analysis to the sample path
analysis presented in Section3. Asmussen [10, (1995)] studied the stationary distribution of a fluid flow
model with paths which are piecewise linear or Brownian, with constant drifts and variances given by an
underlying Markov process. Based on a vector-valued martingale introduced by Asmussen and Kella [13,
(2000)], Badescu and Breuer [19, (2008)] analyzed the LST of the time to ruin in a MAP risk model with
perturbation and phase-type downward jumps. Further generalizations of MAP risk processes with both
downward and upward phase-type distributed jumps can be found in Breuer [29, (2008)]. Among other
things, a numerically stable iteration is proposed to compute the LST of certain first passage times. Also a
generalization of the discounted joint density of the surplus prior to ruin and the deficit at ruin is considered
in Breuer [30, (2009)]. In particular a quintuple law that also includes the minimum surplus level before
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ruin, the time to reach this minimum and the remaining time until ruin is derived under a Markov additive
process with phase-type jumps.

Risk models modified by various dividend payment strategieshave also been another active research
topic in ruin theory. The reader is referred to Avanzi [17, (2009)] for a comprehensive and thorough review
on this topic. Capitalizing on the same MAMs developed for the study of fluid queues, Badescu et al. [23,
24, (2007)] have obtained expressions for the expected discounted dividend payments before ruin in a
MAP risk model in the presence of a threshold dividend strategy and a multi-threshold dividend strategy
respectively. For the higher-order moments of the discounted dividend payments, a recursive scheme was
later proposed by Badescu and Landriault [25, 26, (2007, 2008)] to allow their calculation. In these papers a
recursive algorithm is developed to compute the moments of the discounted dividend payments. The starting
point of the recursive procedure is the calculation of the moments of the discounted dividend payments
in a threshold-free surplus process consisting of only the top layer of the risk process. The recursion is
constructed from top to bottom by adding the next lower layerat each iteration. The reader is also referred
to a discussion by Cheung [31, (2008)] where the dual MAP risk model is studied and the associated
recursive scheme is elegantly derived.

A recent extension of the Sparre Andersen insurance risk model for which the joint distribution of
the interclaim time and the subsequent claim size is bivariate phase-type (see Assaf et al. [16, (1984)]) is
considered in Badescu et al. [22, (2009)]. Relying on the existing connection between risk processes and
fluid flows, the authors construct an analytically tractablefluid flow that leads to the analysis of various
ruin-related quantities including the Gerber-Shiu discounted penalty function when the penalty function
depends on the deficit at ruin only.

To conclude, we believe that the connection between surplusprocesses and fluid flows has been in-
strumental to the literature in ruin theory. Capitalizing on the development of MAMs for fluid flows, this
connection has opened up new research directions to analyzedifferent ruin-related problems. More impor-
tantly, it provides an alternative to the traditional analytic approach commonly used in ruin theory. Having
both their own strengths and weaknesses, it is our belief that the combination of these two approaches will
result in a better understanding of the risks inherent to theevent “ruin” for an insurer.
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A Appendix

Consider a QBD consisting of three repeating square blocksA0, A1, A2 which represents the transition
matrices one level up, in the same level, and a level below respectively. Assume now that the process is
observed when the level changes. The probability that the level decreases by1 aftern iterations is given
by A1

nA2. Taking the sum after all possible iterations, one obtains the probability of eventually going one
level down asB2 = (I − A1)

−1A2. In the similar fashion the matrix of probabilities to eventually go a
level up isB0 = (I − A1)

−1A0. In this way it is possible to obtain a new Markov chain with a transition
matrix with 0 block matrices on the main-diagonal,B0 on the upper main diagonal andB2 on the lower
main diagonal. In this new created Markov chain it is easy to see that:

Y = B2 + B0Y
2 (20)

(To verify, substitution forB2 andB0 and rearrangement yields (4). Suppose now that the process starts
in an even level, for example when the insurer receives premiums. At the next level, the process will be
automatically in an odd level (e.g. a claim payment period),indifferent if the step is up or down. This
observation makes it possible to look at the process precisely 2 steps from now. If one observes the process
only at even times, the process will be necessarily in an evenlevel. If the process goes up, it must go up two
steps, so instead ofY, one will haveY(2) = Y2. This new formed process is again a QBD. The matrix that
gives the probability to go two levels down isB2

2 and two levels up isB0
2. The new matrix of transitions

between levels has now the form:


















∗ ∗ 0 0 . . .

A1
(1) A0

(1) 0 . . .
0 A2

(1) A1
(1) A0

(1) . . .

0 0 A2
(1) A1

(1) . . .
...

...
...

...
. . .


















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with A0
(1) = B0

2, A2
(1) = B2

2 andA1
(1) = B0B2 + B2B0. As mentioned before, the matrixY that

corresponds to the new process is the matrixY(2) of the old process, so equation (20) applies withY

replaced byY(2), andB0 andB2 replaced byB0
(1) andB0

(1) given by:

B0
(1) = (I − A1

(1))−1A0
(1)

B2
(1) = (I − A1

(1))−1A2
(1)

Equation (20) becomes:
Y(2) = B2

(1) + B0
(1)(Y(2))2

SinceY(2) = Y2, one can further obtain:

Y = B2 + B0B2
(1) + B0B0

(1)(Y(2))2

If one continues in the same fashion, one can obtain a new Markov chain withY(4) = Y(2)2 = Y4 and so
on. Continuing the iterations, the matrixY will converge quadratically fast to

Y =

∞
∑

k=0

(

k−1
∏

i=0

B0
(i)

)

B2
(k),

where
Bi

(0) = (I − A1)
−1Ai, i = 0, 2.

and

Bi
(k+1) =

(

I − A1
(k+1)

)−1

Ai
(k+1) =

(

I− B0
(k)B2

(k) − B2
(k)B0

(k)
)−1

(Bi
(k))2, i = 0, 2.

Once the matrixY is obtained, the upper-right block matrix isΨ(δ).
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