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A review of discrete-time risk models

Shuanming Li, Yi Lu and Jos €& Garrido

Abstract.  In this paper, we present a review of results for discretetrisk models, including the
compound binomial risk model and some of its extensions. I&\thbst theoretical risk models use the
concept of time continuity, the practical reality is digereFor instance, recursive formulas for discrete-
time models can be obtained without assuming a claim sg\sitribution and are readily programmable
in practice. Hence the models, techniques used, and resultsved here for discrete-time risk models are
of independent scientific interest. Yet, results for dissitéme risk models can give, in addition, a simpler
understanding of their continuous-time analogue. For gk@nthese results can serve as approximations
or bounds for the corresponding results in continuous-tinoelels. This paper will serve as a detailed
reference for the study of discrete-time risk models.

Una revista de modelos de riesgo en tiempo discreto

Resumen. En este articulo hacemos un repaso de los resultados pdelonale riesgo en tiempo dis-
creto, incluyendo el modelo de riesgo binomial-compuestocomo algunas de sus extensiones. Aunque
gran parte de los modelos tebricos de riesgo se basen enaglpto de continuidad del tiempo, la reali-
dad practica es en si discreta. Por ejemplo, en la peaatitiarial se programan formulas recursivas para
modelos en tiempo discreto, sin necesidad de suponer uniaulison de pérdidas conocida. Con lo cual
estos modelos, las técnicas y los resultados que listaarasipodelos de riesgo en tiempo discreto, ge-
neran un cierto interés cientifico propio. Pero masddlaus aplicaciones directas, estos resultados para
modelos en tiempo discreto también proporcionan un cammas simple hacia los modelos de riesgo
analogos en tiempo continuo. Por ejemplo, los resultadd®mpo discreto pueden servir de aproxima-
ciones o de cotas para sus resultados correspondienteygotcontinuo. El proposito de este articulo
es que pueda servir de referencia detallada para el esteidimdelos de riesgo en tiempo discreto.

1 Introduction

Problems associated with the calculation of ruin probtédiand ruin related quantities, for the continuous-
time classical or Sparre Andersen risk model (Andergefl[957)]), have received considerable attention
in recent years, e.g., Dickson and Hip®[ (2001)], Gerber and Shid p, 16, (1998, 2005)], Lin and Will-
mot [24, 25, (1999, 2000)], Willmot B3, (1999)], Li and Garrido42, 23, (2004, 2005)], and references
therein. These include studies of the distribution of thie time (finite-time ruin probabilities), the sur-
plus before ruin, the deficit at ruin, the claim causing rais well as moments of these variables. These
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guantities can be analyzed in a unified way through the egpetiscounted penalty function (Gerber-Shiu)
function which was first introduced in Gerber and SHig,[(1998)] and is now one of the main research
problems in ruin theory.

The compound binomial model, first proposed by Gerhéy (1988)], is a discrete analog of the com-
pound Poisson model in risk theory. It is a fully discreteg¢imodel where premiums, claim amounts, and
the initial surplus are assumed to be integer valued, bubearsed as an approximation to the continuous-
time compound Poisson model. Gerb@&#,[(1988)] and ShiuJ0, (1989)] considered the ultimate ruin
probability for the model, while Willmot32, (1993)] studied finite-time ruin probabilities. Othereef
ences on the related topics, see, for example, Mich&l([1989)], Dickson 11, (1994)], Cheng et al g
(2000)], Li and Garrido 21, (2002)], and Pavlova and Willmo2p, (2004)]. Several extensions to the
compound binomial risk model can be found in Yuen and Gl 38, (2001, 2006)], Cossette et al., |3,
(2003, 2004)], Li [L9, 20, (2005)], Landriault 17, (2008)], Yang et al.36, (2009)], and references therein.

Unlike continuous-time risk models, discrete-time riskdats have not attracted much attention and the
literature counts fewer contributions. Yet discrete-tins& models also have their special features and are
closer to reality, results for discrete-time risk models ba simpler to understand than their analogue in the
continuous-time setting. They are also of independentéstesince formulas for discrete-time models are
of a recursive nature and readily programmable in practibde still reproducing the continuous analogue
results as limiting cases. It is well known that explicit esgsions for some ruin related quantities do not
exist in continuous-time risk models with heavy tailed lai Results for the discrete-time risk models
can be used as approximations or bounds for the corresppreBalts in continuous time, see Dickson et
al. [12, (1995)] and Cossette et ag, [(2004)] for the approximating procedures.

The purpose of this paper is to review some of the resultsigarete-time risk models in the actuarial
literature. We focus on results on the expected discourgedlfy functions and their special cases in the
compound binomial model and its extensions, in particiilardiscrete-time Sparre Andersen model. The
rest of the paper is structured as follows: in Secpmwe give the description of the compound binomial
model and review results on ruin probabilities and ruintedlaguantities. Sectioridand4 review some
results in the Sparre Andersen model wigh, inter-claim times and general inter-claim times, respetyi
Finally, in Sectiorb, we review other extensions to the compound binomial maadéliding time-correlated
claims and general premium rates, the compound Markov hadaisk model, and the compound binomial
model defined in a Markovian environment.

2 The compound binomial model

We start with the description of the compound binomial modskume that the premium income for each
period is one and the number of claims up to titne N (or periodt) is governed by a binomial process
{N(t); t € N} with

Nt)=hL+1I+--+1I teNt, (1)

with N(0) = 0, wherely, I, ..., are i.i.d. Bernoulli random variables with meare (0,1). Thatis, in
any time period there is at most one claim; the probabilith@afing a claim is; and the probability of no
claimis1 — g. The occurrence of the claims in different time periods aseiened to be independent events.
The claim amountsX; are mutually independent, identically distributed pwesitinteger-valued random
variables with common probability function (p.fp(z) = P(X = z), forz = 1, 2, ..., with cumulative
distribution function (c.d.f.)P(x), probability generating function (p.g.fz) = >_7- , p(k)z* and finite
meany; they are also independentpiV(¢); t € N }. Then the surplus of an insurance company at time
is described as

(t)
Ut)=u+t—» X,  teN' (2)
=1

whereU (0) = u € N is the initial surplus. We further assume that < 1; providing a positive loading
condition. This is the so-called discrete-time compoumabhbiial risk model first proposed by Gerbér]
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(1988)]. The compound binomial risk model defined2h¢an be rewritten as
t
Ut)=u+t—>» Y, teNt, 3)
=1
whereY; = I, X, is the claim amount in periodwith p.f. 5(0) = 1 — g andb(x) = ¢ p(z) for z € N*.
We define the random variablée= min{ ¢ € N*; U(¢) < 0 } to be the time (period) of ruin and
YY) =P{T <oo|U0)=u}, u e N,

to be the ultimate ruin probability (also known as the evehtuin probability, infinite-time ruin probabil-
ity). By conditioning on what happened in the first periodsieasy to have that

Y(0)=(1—-q)¥(1)+q (4)
and
d(u)=(1=q)p(u+1)+qY dutl-z)p)+q Y pl), uweN, (5)
r=1 r=u+1

by the law of total probability. Note that if we knoww(0) the ruin probability with zero initial surplus, then
equations4) and 6) can be used to calculate the ruin probabilitig€s), for u € NT, recursively.

Based on the probabilistic argument thigt) is the ultimate probability of a visit &1, Gerber [L4,
(1988)] derived the following results for the probability min as well as the joint distribution of the
surpluses immediately before and at ruin. The notatiéh = k! (Z) for the factorial powers od is used
below. Further, letS, = 0 andS; = X; + --- + X} be the total claims in the first periods. For
k € N, denote by, (k) = P{S; = =} its probability function and by, (k) = "/, ¢:(k) its cumulative
distribution function.

Theorem 1 (Gerber [ 14, (1988)]) The ultimate ruin probability for the compound binomial rebich (2)
can be expressed as

¥(0) = qpu,
P = -y o (L> B[S -wl 1-9% ], uwent,
Theorem 2 (Gerber [ 14, (1988)]) Fory =0, 1, 2, ..., the joint probabilities of the surplus immediately
before and at ruin for the compound binomial mode{2his
P{T <00, UT—1)=2,U(T)=-y|UW0)=0}=gplx+1+y), zeN".
Furthermore, the probability function of the surplus atmis simply
P{T < oo, U(T)=—y|U0) =0} =q[1-P(y), yeN

The proofs of Theoremkand?2 essentially follow results developed by Gerber for sumsarivatives
of probability generating functions and known martingasuits.

Now let¢)(u) = 1 — v(u) be the corresponding non-ruin probability, with initialrglus v € N.
Shiu [30, (1989)] derived following formulas far(u), corresponding to those in Theoréirby alternative
methods. Note that ShiB(, (1989)] defines ruin as the event that the surdli(s) becomes strictly
negative, whereas in Gerbet4 (1988)] the ruin is defined when the surplli$t) being negative of
(i.e. non-positive), for somee N,
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Theorem 3 (Shiu [ 30, (1989)]) The non-ruin probabilities for the compound binomial madgP) can
be expressed as

0(0) = T2,
o) —¢<o>§<%)kﬁ (T am o - s0), wen,

wherel, (k) = 1, for k € N, and0 otherwise.

This particular result is obtained through the solution db#erra equation of the second kind.
Now we consider the finite time survival probability befoirae & with an integer-valued initial surplus
u, defined by

P(us k) =P{U(j) >0;j=0,1,2,....k[U(0)=u},  kueN (6)
The ultimate survival probability(u) is the limiting case of8), i.e.,
¥(u) = klim V(u; k), u e N.

Explicit formulas are derived by Willmot2, (1993)] for finite time survival probabilities using anabal
techniques, such as Lagrange’s expansions of generatingidas. Note that for the theorem below the
definition of ruin follows that of Shiuj0, (1989)] rather than Gerbet 4, (1988)].

Theorem 4 (Willmot [ 32, (1993)]) The finite time survival probabilities for the compound bimal
model in(2) can be expressed as

Yok =1+ gk +1)

L e T I R

keN,

1/_)(“; k) = Gquk(k) - (1 - q) ZJ)(OJ{ -1- l) gu+l+1(l)7 kau S NJr'

Now for z, y € N andt € NT, define

fa(@,y,t|u) = PLU(T = 1) =2, U(T) = —y, T = | U(0) = u},

which is the joint probability distribution of the time ofiry T, the surplus just before ruitj (7" — 1), and
the surplus at ruinl/ (7'). Letv (0 < v < 1) be a discount factor and define

fa(z,y|u) = Z falw,y,tlu), oz oy, ueN, (7)

to be the “discounted” probability of ruin for an initial glusu, such that the surplus before ruinisand
the deficit at ruin ig;. Further, define the following two functions:

filz|u) = ng:ry|u r,u €N
(8)
gy |u) = Zfz:vylu y,u€N.

Willmot points out that the results in Theorehtan also be obtained through probabilistic arguments, such
as those of Gerber and Shiu for Theorelns.
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Cheng, Gerber and Shi,[ (2000)] introduced Lundberg’s fundamental equation fer tompound
binomial risk model in ), that is,

qErX " N+Q—-q¢)rt=0v1t, r > 0. 9)

It can be shown that equatio8)(has a solutiom = p € (0, 1), and under some regularity conditions on the
tail of the probability function, it has another solutior= R > 1.

An explicit formula for f2(x, v | 0) is obtained in Cheng, Gerber and Shi (2000)] where they show
that fo(x, y | u) can be expressed in terms ff(z, y | 0) and an auxiliary functiork(u). Note that in the
results that follow, ruin is the event that(t) < 0, for somet > 1, which coincides with Gerberl,
(1988)].

Theorem 5 (Cheng, Gerber and Shiu [ 6, (2000)]) For the compound binomial model (&),
fo(z,y]0) =qup'pz+y+1), xyeN, (10)
j}(x,y|u)::j}(z,y|0)[h(u)——pfmh(u——x)IQL>>x)L 17€-N+Gy E]Nv (11)

whereh(u) is defined as the solution of
Zhu—z 2[0)+p%  weNTt,

andg(z]0) =>"07 fo(z,2|0) = qud "y p"plz +y + 1), forz e N.

For the risk model described iB) Li and Garrido P1, (2002)] further explored the following expected
discounted penalty at ruin. Let(z, y), «, y € N be the non-negative values of a penalty function payable
atruin. For0 < v < 1, define

¢(u) =E [v"w(U(T - 1), |UT)|) I(T < 00) | U(0) = u] u €N, (12)

where the time of ruiril’ is the first time that the surplus ir8)( becomes non-positive. The quantity
w(U(T —1),|U1(T)|) can be interpreted as the penalty, payable at the time of fama surplus of
U(T — 1) and a deficit of{U(T")|. Then¢ is the expected discounted penalty (Gerber-Shiu) function
if v is viewed as a discount rate. The following results are ptawgng finite differences and probability
generating functions.

Theorem 6 (Li and Garrido [ 21, (2002)]) For the discrete-time risk model {i3),

O)ZUZZpr(:C,y)b(:E—i-y—i—l),

m*Oy*O

—vZ¢u—x Zpybx+y+1 +op” Zp Z )bz +y+1),

y=0 T=u y=0

whereu € Nt and0 < p < 1 is the root of Lundberg’s equatidris) /s = 1/v.

Now define the compound geometric pu) = 377 %5 (45) """ (u), for u € N. Hereg is

defined ast /(1 + ) := 322° g(2|0) = (v — p)/(1 - p), by (8) and (L0), while i(z) = (1 + ) g(=0),
which is a proper p.f. oiN. Then the following explicit formula can be given fofu).

Theorem 7 (Li and Garrido [ 21, (2002)])

$(u) == M(u—-=2)k(z), uweNT, (13)
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whereM (u) = (1 + 5)A(u) and

u—1 e’}
Aw) =¢(0) —vp ™Y p* > w(zy)bz+y+1), uweN,
z=0 y=0

with A(0) = $(0).
Forz € NT andy € N fixed, set

(t3) 1, ft=xs=uy,
w(t,s) = .
0, otherwise,

then, in this particular caseu) in (13) becomes¥). An application of Theorer yields an alternative
expression toX1), given in the following corollary.

Corollary 1 (Li and Garrido [ 21, (2002)])
fo(z,ylu) = v(u) f2(2,yl0), 2, ue N, yeN, (14)
wherefs(x, y|0) is given by(10) and
IS+ B) 7 k(z), i 1<u<u,
= {% SITL A4 B)p T R(z) i u>
In particular, if v = 1, y(u) simplifies to
Y(u) = { = e

P(u—z)—p(u)
1—1p(u)

, u>ux.

Then(14) simplifies to Dickson’s formula in the compound binomial slo&ee Dicksofl0, (1992)]for
the continuous version of this formula.

Denote bygr(u) = E[vTI(T < o0)|U(0) = u], the p.g.f. of the ruin tim&" with initial reserve
u € NT. Clearly, ¢r(u) is a special case ofl@) whenw(x,y) = 1. An application of Theoren
gives in the corollary below a recursive formula or discrééective renewal equation fgr-(u). Li and
Garrido 1, (2002)] further shows in the theorem below that(u) can be expressed as a compound
geometric tail.

Corollary 2 (Liand Garrido [ 21, (2002)])

u—1
dr(u) = ZQST(u—z) 9(2]0) + H(u), u € Nt (15)
z=0

whereg(z(0) = 3°2° v p” p(z+ 2+ 1), and H (u) = ¢7(0) — 322 g(2(0) with ¢ (0) = H(0) = 3=2.

Theorem 8 (Li and Garrido [ 21, (2002)]) The solution to equatiofil5) can be expressed as a com-
pound geometric sum

o ﬁ > 1 n_*n
¢T(u)—1+6;<1+6> L (u — 1), u €N,

whereL(u) = Y37, I(z) is the tail probability ofl, while L*" and*" are then-th convolutions of_
andl, respectively with,(—1) = L**(—1) = 1.
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Note that Theorem gives a generalized Beekman'’s convolution formula for tiseréte-time model.
If v = p = 1, then it simplifies to Beekman’s classical convolution fatenfor the ruin probability
Y(u) = (1 —qu)>o7 (qu)"Bi"(u — 1), where B is the tail probability ofv;, whereb, is the equi-
librium distribution ofb, defined as

Zzinrl b(y)
Zf:oB(w) ’

See Li and Garrido1, (2002)] for the definition of the higher order equilibriuristlibutions and their
properties.

bi(z) = xz € N.

3 The discrete-time Sparre Andersen model with K,, inter-
claim times

As an extension of the compound binomial risk model, therdisetime Sparre Andersen model has been
studied recently. Li]9, 20, (2005)] investigate the discounted penalty function imparg Andersen risk
model with discrete(,,, inter-claim times. Pavlova and Willmo2§, (2004)] gives an expression of the
expected discounted penalty function in the discrete-8tagonary renewal risk model in terms of that in
the corresponding ordinary renewal risk model, while Wu Bnd35, (2009)] considers the same function
in a Sparre Andersen risk model with general inter-clainesmNu and Li B4, (2008)] derives some results
for the latter model with phase-type claims. We review heesé results.

Consider a discrete-time compound renewal (Sparre Anders model in which the surplus can be
described as

(t)
Ut)=u+t—>» X,  teNt, (16)
=1

whereU(0) = w € N is the initial surplus. The counting proceS¥V (¢); ¢ € N} denotes the number
of claims up to timet and is defined asVv(t) = max{k : Wy + Wa + --- + W, < t}, where the

claim waiting times,I¥;, are assumed to be i.i.d. positive integer-valued randamahias with common

p.f.k(z) = P{W =z}, forz = 1,2,.... Denote byk(s) = 3.°°, s k(i), s € C, its p.g.f..

All other assumptions are as in the compound binomial risdehavith the addition thafV; ; i € Nt}
and{X;; i € N*} are independent, arlf{W] = (1 + ) E[X] = (1 + 0)p, 6 > 0, in order to have a
positive loading factor. In the literature, the time of rdihfor the Sparre Andersen model is defined to
be the first time when the surplus falls below zero, viith= oo if ruin does not occur. Note that when
k(x) =q(1—q)* ',z =1,2,..., the Sparre Andersen model ibgj reduces to the compound binomial
model in Q).

We start with the results from Lil, 20, (2005)] for a class of compound renewal risk process with
inter-claim times having a discref€,,, distribution, i.e., the p.g.f. of the distribution funatiés a ratio of
two polynomials of ordern € N*. More precisely, the p.g.f. df(x), € NT, can be expressed as

A s[TI (1 — ) + 7 By (s — 1) 1
k(s) = RUEE qm) 2o Bl )}, §R(S)<min{—;1§i§m},
Hi:l(l — 84i) i
where0 < ¢; < 1, fori =1, 2, ..., m, and the coefficients;, fo, ..., B,,—1 are such thak is a p.f.. In
particular, ifq1, g2, - . ., g, are distinct, by partial fractiong, can be expressed as a linear combination of

m geometric distributions with parametegs
k(x):ZCi(l—qi)qf_l, r=12 ...,
i=1
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where(y, (s, . .., (m are such thal_ ;- | ¢; = 1 and given explicitly by

_ S Be(1/qi — 1F + [, (1 —q)
(I—q) H;nzl,j;éi(l —4j/%)

This class of distributions includes, as special casestitited geometric, shifted or truncated negative
binomial, discrete phase-type distributions, as well asdir combinations (including mixture) of these.
Especially, the classical compound binomial risk modelspecial case whem = 1.

By using the martingale arguments, [1ig, (2005)] obtains the generalized version of Lundberg'ssequ
tion in (9), which is,

Gi

i =1,2,...,m.

2 (3) ps)=1, seC, (17)

S

and proves that fob < v < 1 andm € N*, equation 17) has exactlyn roots, say;(v),i = 1,2, ..., m,
with 0 < |p;| < 1. For simplicity, in what follows we assume that, ps, . . ., p., are distinct.
DefineT;. to be an operator on any real-valued functjgm), = € N*, by

o0 o0

Tof(y) =Y " Vf(@) =Y r"flx+y), reC, yeN©. (18)

T=y =0

The continuous version of this operator can be found DicksahHipp [L3, (2001)].

A recursive formula is derived for the expected discountedatty (Gerber-Shiu) function defined as
in (12), which can be used to analyze many quantities associatbdtié time of ruin, e.g., the surplus
before ruin, the deficit at ruin, and the claim causing ruimtfrermore, an explicit formula for the Gerber-
Shiu function is given in terms of a compound geometric itigtion function in Li [20, (2005)]. These
results are given in the following theorems and corollaries

Theorem 9 (Li [ 19, (2005)]) For the discrete-time Sparre Andersen modd),

du) =Y d(u—y)gylo)+ H(u),  uweN', (19)

$(0) = [H ﬁ] S Y piwzy)pla+y+1), (20)

Va:
i1 Vdi j=1 z=0y=1

m— m m—1 m—1—
Py ! Hi:l(l —q)+ Zt:l ﬁtp_j ! t(” - Pj)t

wherec; = v - , g(yl0) =327 f2(z, |0) is given by
J Hk:Lk;ﬁj(pj —Pk) ( | Z 0 2( | )
9(ylo) = lH vp—] > ¢T,ply+1), yeNT, (21)
i=1 '] j=1

in whichT,. is an operator defined b{18), and

ﬁ&] ichpjw(u—i—l), u€NT,

H(u) =
=1 V| T

withw(u) =307 w(u — 1, z)p(u + t).

Expression19) is a recursive formula fop(u) with the starting point(0), given by 0). In particular,
if w(z,y) =1, theng(u) simplifies to the p.g.f. of the time of ruifi, with respect to the discount factor
defined by¢r(u). Similar to Corollary2 for the discrete-time risk model, Lilp, (2005)] derives the
following result for the discrete-time Sparre Andersen elod
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Corollary 3 (Li[ 19, (2005)]) For the discrete-time Sparre Andersen mods),

or(u) =Y ér(u—y)gul0)+ > g(l0), uweNT,
y=1 y=u+1

whereg(y|0) is given by(21). The starting value of the above recursion is

or(0) =1 [1=k@)] ] [%] '

Furthermore ¢ (u) can be expressed as the following compound geometric tail

B ﬁ o0 1 n —n
¢T(u>_—1+5n¥1(—1+5) L™ (u), u €N,
whereg is such as that /(1 + 8) = ¢ (0), L*" is then-th convolutions of., while L(u) = Y222 | I(2)
is the tail probability of with definitionl(y) = (1 + 3)g(|0).

Note that Theorend is still true for the surplu$/(¢) in the discrete-time Sparre Andersen model case.
In particular, the discounted joint p.fz(x, y|u) can be obtained as a special case as follows.

Theorem 10 (Li [ 20, (2005)]) Forz € N, andy € N1,

(M) (T (e +y+ DS ¢ o) " Sisopfa(n),  0<u<a,
+

fz(wayIU)={

(H2) (fE L) p(a+y+ DSy ¢ S, P aln), u >,

wherea(u) is a compound geometric p.f. with

B~ 1\
a(u)=1+ﬁ;<1+ﬁ> "™ (u), ueN.

Li [20, (2005)] shows that the distributions of the surplus befaie, the deficit at ruin, and the claim
causing ruin, can also be obtained through the compoundegeiorp.f.a(u). Furthermoreg(u) is in closed
form when the claim amounts distribution belongs to iyg family or the claim amounts distribution has
a finite support.

Pavlova and Willmot 29, (2004)] considers the discrete stationary or discretélibum renewal
model, which is a generalization of the discrete renewaSfmarre Andersen) risk model. For the discrete
(ordinary) renewal process, we have the same assumptiaiesagbed at the beginning of this section. In
the equilibrium renewal model case, we assumelfigtindependent of Wy, W, ...} and{ Xy, Xo, ...},
has c.d.fK;(z) = 1— K;(z) and p.f.ki (v) = K(z—1)/E[W>] forz € N*. The insurer’s surplus at tinte
is described byX6), and the relative security loadifig> 0 is assumed to satisfyl + 0)E[IV,]|/E[X3] = 1.

LetT = inf{¢t € Nt : U(t) < 0} be the ruin time in the ordinary discrete renewal model, &d i
discounted penalty (Gerber-Shiu) function is defined 18).( Furthermore, denote b¥j. the time of ruin
and by¢.(u) the discounted penalty function in the discrete equilitoritenewal risk model, defined as
follows:

de(u) =E [ w(U(T. = 1),|U(T.)|) I(T. < 00) |U(0) = u], u € N,

The main resultin Pavlova and Willmat9, (2004)] is given by the following theorem, which describes
the relationship between the Gerber-Shiu discounted pehaictions in the ordinary and the stationary
discrete renewal risk models.
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Theorem 11 (Pavlova and Willmot [ 29,(2004)]) The Gerber-Shiu discounted penalty functions in the
ordinary and the stationary (equilibrium) discrete rendwiak models are related by

e (u) 1+92¢ ypi(y +1) +w(u),  uweNT,
where _
i 1 & .
vy (u) = Z v’ T(])—m v’ 12¢(J—H)P1(y), ueNT,
Jj=u+1 Jj=u+1 y=1

with 7(j) = [ 32,2 ;11 w(i,y — 5) p(y) ] /E[W2], j € Nandpy(z) = P(z — 1)/p.

Pavlova and Willmot 19, (2004)] further considers a special case whén) = ¢(1 — q)* 1, x € NT.
ThenK(z) = (1 — q)* andE[Ws] = 1/q, yielding thatk, (z) = k(z), x € N* and¢.(u) = ¢(u). The
defective renewal equation faw), stated in Theorer, can also be obtained through Theorgin

4 Discrete-time Sparre Andersen model with general inter—
claim times

In this section, we shall review some recent results in teerdie-time Sparre Andersen model with general
inter-claim times. We assume that the inter-claim timeshteecommon p.fk(z) for = 1, 2, ... with

p.g.f.k(z) =307 27k(x).

Wu and Li [35, (2009)] shows that the recursive formula (defective realequation) for the Gerber-
Shiu function given in Theorer@ can be extended for the Sparre Andersen model With inter-claim
times to general inter-claim times as follows.

Theorem 12 (Wu and Li [ 35, (2009)])
Z¢u— 9(y|0) + H(u), u€eNT,

whereg(y[0) = Y207 pe(y) f1(2]0) with p..(y) = p(z +y +1)/P(x + 1), and

Z Z w(z +u,y — u)pe(y) f1(x]0).

y=u+1z=0

In particular, if w(z,y) = 1, ¢r(u) satisfies the following recursive formula

Z¢T (w=y)g(l0)+ > 9(yl0)

y=u-+1

and has the following explicit expression
or(u) = (1-&)> &'Li"(uw), uweN,
n=1

where¢, = ¢7(0) = Y°7 ) fi(z]0) is to be determined;"(u) = 1 — Li"(u) is the d.f. of then-fold
convolution ofZ; (u) = Y~ g(y0)/&,.
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Although¢(u) andgr(u) satisfy a defective renewal equation and in particulafu) can be expressed
as a compound geometric tail for the Sparre Andersen modebeneral inter-claim times, however, unlike
those results for the Sparre Andersen model \iith inter-claim times¢,,, g(y|0) and H (v) are unknown
for general claim severity distributions and unspecifiedgtty functions. Wu and Li35, (2009)] derives
explicit results for the Gerber-Shiu function with some @plly chosen penalty functions when claim
amounts follow a zero-truncated geometric distributiolegenerate distribution at a constant size,of
and the mixture ofi geometric distributions. Wu and LBJ}, (2008)] derives compact matrix expressions
for the ruin probability and the distribution of the deficitrain.

4.1 Constant claims

In this subsection, we assume that claim amounts are cdrestdrof size2, i.e.,p(z) = I(z = 2) for
x=1,2,.... It follows from Wu and Li 5, (2009)] that the p.g.f. of the time of ruifi has the following
expression

¢T(u):§g+la u €N,

where0 < &, < 1 is the unique solution of the equatigh = /%(vgv). In particular, the ruin probability
Y(u) = u €N,

where¢; = lim, . &, is the solution oft? = 12:(51). In general, the Gerber-Shiu functigriu) has the
following expression

$(u) = ¢(0)&, = w(0,1)&*,  uweN

4.2 Zero-truncated geometric claims

Now assume that claim amounts have a zero-truncated geomistribution withp(z) = (1 — )71,
forz € N*, and0 < 7 < 1. Then Wu and Li 5, (2009)] shows that

or(u)=&[r+& (1 -m]",  uweN, (22)
where0 < &, < 1is the unique solution of the following equation
& = k{v[r+ &1 -m)]}.
In particular, the ruin probability
v(u) =& r+al-m]", weN, (23)

where0 < & < 1is the unique solution of the following equatign= l%{w +&(1—m)}.
The moment of the time of ruin given that ruin has occurred tmaygalculated by differentiatin@®)
and setting = 1 as follows

E[T|T < o0,U(0) = u] = Hr+ &0 = m)[r/6 + (L= m)+w)]
1-(1-mk{r+& (01—}
For the following specially chosen penalty function
w(z,y) = s"wi (y), 0<s<1,
with w1 (y) being a univariate function, the Gerber-Shiu function vtfita following new notation

bos(u) = E [vTsV T, (JU(T)]) (T < o0) |U(0) = ul, u €N, (24)
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has the following expression

Pu,s(u) =10 (s {gv ms)" + (1 — Oz)ng(u)}, u €N,

where
o m(l —s)
7T(1 - S) +§v(1 _W)7
n(s) = E [wl(Xl)]l%(vﬂ's)s’l

oy + (1 — a)k(vrs)
In particular, ifv = 1 andw, (y) = 1, then
pr,s(u) = E[s"T V(T < 00) |U(0) = u]
_ k(ms)s™!
a(0) + (1 — a)k(rs)

The first moment of the surplus before ruin can be calculayed b

E[U(T - 1)I(T < 00) |U(0) = u = lim. gfbls( )= 1iw [%_wu] —(u), weN.

[(0)a (rs)" + (1 —a)¥(u)], weN.

In this case, the literature does not yet give results forGleeber-Shiu function with more general
penalty functionsu(x, y).

4.3 Mixed geometric claim amounts

In this section let the claim amounts have a mixed geometsitilbution with coefficients) < x; < 1,
suchthad ™7, x; =1, i.e,

z) =Y x;mj(x), weNT,
wherew; (z) = (1 —wj)wf_l,j =1,2,...,n,isageometric p.f. with parameter< =; < 1. The p.g.f. of

p(x) is given by
Z 1 — 7T]
XJ -7z

Lemma 1 of Wu and Li35, (2009)] shows that the following generalized Lundbergfsation
k(v/2) p(z) =

hasn roots, sayRi, Ra, . .., Ry, with |R;| > 1. For simplicity, we assume th&,, Rs, . . ., R, are distinct.
Wu and Li [35, (2009)] shows that the generating function of the Gerbieu-8inction defined inZ4)
has the following form:

)= S v, (u) = Bus () T, Ry N
Bu,s(2) Z:% 0s() = T S G =) (25)

where
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is a polynomial of degre2n — 1, with

n

Gy s Z d;(s H (1 —msz) | Elwi(Z5)],

=t 27&3
[e%e} X m-l—l
J
d;(s) = ZS P(TZ—U f1(z]0),

=0

andZ, being a discrete r.v. that has pof,; (z) for j = 1,2,...,n
Using partial fractions,q5) is rewritten as

(b’US 2’71}5 —Z +g"<‘;’08 1—7TJSZ)7 (26)

where
(j) = Bv,s(Rj) H?:l,l;éj Ry
ot H?:l,i;éj(Ri - Ry) HZ:l(l — mesR;)’
o) = Bus () ) Ty B .
o I, [R (mjs)~ 1] H?:l,i;&j(l = 7i/m;5)

Finally, the inversion ofZ6) yields

(bvs Z’sz R +Z:‘ivs “, u € N.

Note thaty, () andx, (j) are unknown coefficients a&, .(z) depends orf; (x|0) which has not been
determined. Wu and Lid5, (2009)] shows that

o () = X; k(vm;s) E [wi(Z;)] /s 1
veld) 1= xi(L—m)/(mjs —m;) k(vﬂ'js)7 J o
Let A = (QZJ)an andB(s) = (b; ;(s))nxn be two matrices, where; ; = w;(R;) andb; ;(s) =

(1 —m)/(m — m;s). Denotey, , = (%75(1), s Yos() T andi, s = (kys(1),...,k5(n)) " as two
n-dimensional cqumn vectors. Then

’?v,s = A_IB(S)E:U;S

4.4 Phase-type claims

In this subsection, we assume that the distribution of clmounts is a discrete phase-type (PH) distribu-
tion with representatiof, T), wherea = (ax, . . ., ay,), See Asmusserd] (2000)] for an introduction to
PH distributions. Here the claim amounts take value®&on which implies tha®"" ; o; = 1. Then the
probability function ofX, is then given by

plz) =aT* 1t r € Nt

whereT = (t; ;)nxn is @ sub-stochastic matrix and = (.0, t2.0,--.,tn0) = (I—T) 1" with I being
then x n identity matrix andl = (1,1,...,1) being ann x 1 row vector. The corresponding distribution
function of X is given byP(z) =1 —aT® 1T and thek-th factorial moment ofX is then

EX®] =kla@—T)FTrk 11T,
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wherew™® = w(w — 1)(w — 2)--- (w — k + 1) is thek-th factorial power ofv. The p.g.f. ofX is

R ~ T a1z 4 a2z® + -+ apz™
_ I—-T)f = . 27
p(z) = za(I-2T) L4b1z +bo2? + -+ byz™ @D

Note that the discrete phase-type distributions belonbedsi,, family as the p.g.f. inZ7) is the ratio of
two polynomials of ordem.

Formal definitions of discrete phase-type distributionsedaack to the mid 1970’s, see Neuts/[
(1975)]. By in large, however, research has focused mor&é@istudy of continuous phase-type distribu-
tions. Detailed discussions of continuous phase-typeilligions can be found in Neut&§, (1981)] and
Latouche and Ramaswaniig, (1999)]. Brief overviews of either discrete or continuqlese-type dis-
tributions and their properties can be found in Asmus$e#,[(1992, 2000)], Stanford and Stroifskil]
(1994)], Bobbio et al., (2003)].

As surveyed in the following theorems, Wu and B#[ (2008)] gives a matrix expression for the ruin
probability and the distribution of the deficit at ruin foet®parre Andersen model with general inter-claim
times and phase-type claims in the following theorems.

Theorem 13 (Wu and Li [ 34, (2008)]) For a discrete-time Sparre Andersen risk model, as defined in
(16), if the claim severity distribution is a discrete phaseetyyith representatiofia, T), then

Yw)=a4 (T+t @ )*1", weN*, (28)
where the row vectod . satisfies equation = p(a), with
p(@y)=ak(T+t"ay).
Herea, can be computed as; = lim,, ., &Sf), where
a? =0 and @V =p@""), nent.

Note that whem = 1, i.e., the claim amounts have a truncated geometric digioib, then the ruin
probability in 28) simplifies to the expression i238).

DefineF(u,y)=P(T < oo, |U(T)| <y |U(0) = u) andy(u, y) =P(T < oo, |U(T)| > y|U(0) = u).
Then it is obvious thaf'(u, y) = ¥ (u) — ¥ (u,y), foru, y € N.

Theorem 14 (Wu and Li [ 34, (2008)])
Y(u,y) = a4 (T+t" @) TvIT, u,y € N.

Open problems for the discrete-time Sparre Andersen moitlelggneral inter-claim times and phase-
type claims, include finding compact matrix expressionstier Gerber-Shiu functions with some special
choices of the penalty functions suchwaie, y) = 1 andw(z, y) = s%wi (y).

For general inter-claim times, Cossette et@|(R006)] gives an upper bound and an asymptotic expres-
sions for the ruin probability, and study how to use the diteitime Sparre Andersen model to approximate
the continuous-time one.

5 Other discrete-time risk models

In this section, we give a brief review of the literature ofi@t discrete-time risk models that extend the
compound binomial risk model.

Yuen and Guo37, (2001)] studies the ruin probability in the compound bin@msk model with time
correlated claims. In each unit time period, there is a miimcwith a probability) < ¢ < 1. This main
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claim can produce a by-claim, that may be settled in the samiegwith probabilityd0 < 6 < 1, or may
be delayed to the next period with probability- 6.

Unlike the classical compound Poisson risk model in whichiapremium rate can be assumed without
loss of generality (by appropriately rescaling the timet asiwell as the claim sizes), it is clear that such
reasoning does not hold for the compound binomial modeldtianlt [17, (2008)] studies the evaluation
of the generalized expected discounted penalty functitindrcompound binomial risk model in which the
premium rate per unit time is€ N7, rather thanl as in the classical setting.

Cossette et al.7, (2003)] presents a compound Markov binomial model, astataxtension of the
compound binomial model. Here, the binomial procé3§¢); ¢t € N} defined in () is extended to a
Markov binomial process for whicki; ; ¢ € N} is a stationary homogeneous Markov chain with state
space{0, 1} and transition probability matrix

P- ( Poo  Po1 > 7
P10 P11
wherep;; = P(l;41 = j| I, = i), fort =0, 1,2,...ands, j € {0,1}. The positive loading condition is
1po1 < po1 + pro- Whenpg, = p11 = ¢, the Markov binomial process simplifies to the binomial e

For the compound Markov binomial risk model, Cossette €t7al2003)] provides recursive formulas
for the computation of ruin probabilities over finite and mitie time horizons. A Lundberg exponential
bound for the ruin probability is derived. Yuen and Gui®,[ (2006)] studies the expected discounted
penalty functions and the joint distribution of the surphegore ruin and the deficit at ruin conditional on
the initial state of the Markov chain.

Cossette et al3] (2004)] proposes a compound binomial model defined in a Maak environment as
an extension to the compound binomial model. This model isaete analogue of the Markov-modulated
compound Poisson risk model which was proposed by Asmugs€f©989)]. In the compound binomial
model defined in a Markovian environment, the claim occwesrand the claim amounts are both regulated
by an underlying Markov environment process, denoted fy: ¢t € N}, which is a homogeneous and
irreducible discrete-time Markov process with state sgace, ..., n}. The one step transition probability
matrix is given byI' = (v, ;)*;_1, wherey; ; = P(J;41 = j | J; = 7). The sequence of claim occurrences
{I;; t € N} and the sequence of claim amoufif; ; i € N*} in the compound binomial model i) are
governed by{ J; ; ¢t € N} such that, giveiJ; = i|, I, is Bernoulli distributed with meag; € (0, 1), the
claim amountX; has a p.fp;(z) for z € NT andi = 1, 2, ..., n. Furthermore, givenJ; = 4|, I; and X;
are independent.

For the above compound binomial model defined in a Markoui@irenment, Cossette et a&,[(2004)]
presents an algorithm for the computation of the ruin prditand the distribution of aggregate claims
for a fixed time period. Moreover, Cossette et &l. (2004)] shows that the compound binomial model
defined in a Markovian environment can be used to approxithateontinuous-time Markov-modulated
risk model. For the same model, Yang et &l5,[(2009)] studies the discounted joint distribution of the
surplus before ruin and the deficit at ruin.

6 Concluding Remarks

There are several motivations to this brief review of resfdtr discrete-time risk models, including the
compound binomial risk model and some of its extensionsstFirecause most theoretical risk models
use the concept of time continuity, and yet practical rgaditdiscrete. Recursive formulas for discrete-
time models are obtained without assuming a claim seveistyildution and are readily programmable in
practice. This review wants to serve as a reminder that tmeskels can be useful.

Also, although the techniques used and the results obtdimetiscrete-time risk models are of inde-
pendent scientific interest, in addition they provide a $anpnderstanding of continuous-time risk models.
For instance, these results can serve as approximatiommsiodb for the corresponding results in analogue
continuous-time models.
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Finally, the review highlights the problems that remainmpethe theory, and provides an exhaustive
iography of recent results, that should facilitate @ndourage future research work in this area.
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