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A review of discrete-time risk models

Shuanming Li, Yi Lu and Jos é Garrido

Abstract. In this paper, we present a review of results for discrete-time risk models, including the
compound binomial risk model and some of its extensions. While most theoretical risk models use the
concept of time continuity, the practical reality is discrete. For instance, recursive formulas for discrete-
time models can be obtained without assuming a claim severity distribution and are readily programmable
in practice. Hence the models, techniques used, and resultsreviewed here for discrete-time risk models are
of independent scientific interest. Yet, results for discrete-time risk models can give, in addition, a simpler
understanding of their continuous-time analogue. For example, these results can serve as approximations
or bounds for the corresponding results in continuous-timemodels. This paper will serve as a detailed
reference for the study of discrete-time risk models.

Una revista de modelos de riesgo en tiempo discreto

Resumen. En este artı́culo hacemos un repaso de los resultados para modelos de riesgo en tiempo dis-
creto, incluyendo el modelo de riesgo binomial-compuesto,ası́ como algunas de sus extensiones. Aunque
gran parte de los modelos teóricos de riesgo se basen en el concepto de continuidad del tiempo, la reali-
dad práctica es en sı́ discreta. Por ejemplo, en la práctica actuarial se programan fórmulas recursivas para
modelos en tiempo discreto, sin necesidad de suponer una distribución de pérdidas conocida. Con lo cual
estos modelos, las técnicas y los resultados que listamos para modelos de riesgo en tiempo discreto, ge-
neran un cierto interés cientı́fico propio. Pero más alláde sus aplicaciones directas, estos resultados para
modelos en tiempo discreto también proporcionan un caminomás simple hacia los modelos de riesgo
análogos en tiempo continuo. Por ejemplo, los resultados en tiempo discreto pueden servir de aproxima-
ciones o de cotas para sus resultados correspondientes en tiempo continuo. El propósito de este artı́culo
es que pueda servir de referencia detallada para el estudio de modelos de riesgo en tiempo discreto.

1 Introduction

Problems associated with the calculation of ruin probabilities and ruin related quantities, for the continuous-
time classical or Sparre Andersen risk model (Andersen [1, (1957)]), have received considerable attention
in recent years, e.g., Dickson and Hipp [13, (2001)], Gerber and Shiu [15, 16, (1998, 2005)], Lin and Will-
mot [24, 25, (1999, 2000)], Willmot [33, (1999)], Li and Garrido [22, 23, (2004, 2005)], and references
therein. These include studies of the distribution of the ruin time (finite-time ruin probabilities), the sur-
plus before ruin, the deficit at ruin, the claim causing ruin,as well as moments of these variables. These
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quantities can be analyzed in a unified way through the expected discounted penalty function (Gerber-Shiu)
function which was first introduced in Gerber and Shiu [15, (1998)] and is now one of the main research
problems in ruin theory.

The compound binomial model, first proposed by Gerber [14, (1988)], is a discrete analog of the com-
pound Poisson model in risk theory. It is a fully discrete-time model where premiums, claim amounts, and
the initial surplus are assumed to be integer valued, but canbe used as an approximation to the continuous-
time compound Poisson model. Gerber [14, (1988)] and Shiu [30, (1989)] considered the ultimate ruin
probability for the model, while Willmot [32, (1993)] studied finite-time ruin probabilities. Other refer-
ences on the related topics, see, for example, Michel [26, (1989)], Dickson [11, (1994)], Cheng et al. [6,
(2000)], Li and Garrido [21, (2002)], and Pavlova and Willmot [29, (2004)]. Several extensions to the
compound binomial risk model can be found in Yuen and Guo [37, 38, (2001, 2006)], Cossette et al. [7, 8,
(2003, 2004)], Li [19, 20, (2005)], Landriault [17, (2008)], Yang et al. [36, (2009)], and references therein.

Unlike continuous-time risk models, discrete-time risk models have not attracted much attention and the
literature counts fewer contributions. Yet discrete-timerisk models also have their special features and are
closer to reality, results for discrete-time risk models can be simpler to understand than their analogue in the
continuous-time setting. They are also of independent interest since formulas for discrete-time models are
of a recursive nature and readily programmable in practice,while still reproducing the continuous analogue
results as limiting cases. It is well known that explicit expressions for some ruin related quantities do not
exist in continuous-time risk models with heavy tailed claims. Results for the discrete-time risk models
can be used as approximations or bounds for the corresponding results in continuous time, see Dickson et
al. [12, (1995)] and Cossette et al. [8, (2004)] for the approximating procedures.

The purpose of this paper is to review some of the results for discrete-time risk models in the actuarial
literature. We focus on results on the expected discounted penalty functions and their special cases in the
compound binomial model and its extensions, in particular the discrete-time Sparre Andersen model. The
rest of the paper is structured as follows: in Section2, we give the description of the compound binomial
model and review results on ruin probabilities and ruin related quantities. Sections3 and4 review some
results in the Sparre Andersen model withKm inter-claim times and general inter-claim times, respectively.
Finally, in Section5, we review other extensions to the compound binomial model including time-correlated
claims and general premium rates, the compound Markov binomial risk model, and the compound binomial
model defined in a Markovian environment.

2 The compound binomial model

We start with the description of the compound binomial model. Assume that the premium income for each
period is one and the number of claims up to timet ∈ N (or periodt) is governed by a binomial process
{N(t); t ∈ N } with

N(t) = I1 + I2 + · · · + It, t ∈ N
+, (1)

with N(0) = 0, whereI1, I2, . . ., are i.i.d. Bernoulli random variables with meanq ∈ (0, 1). That is, in
any time period there is at most one claim; the probability ofhaving a claim isq and the probability of no
claim is1− q. The occurrence of the claims in different time periods are assumed to be independent events.
The claim amountsXi are mutually independent, identically distributed positive integer-valued random
variables with common probability function (p.f.)p(x) = P(X = x), for x = 1, 2, . . ., with cumulative
distribution function (c.d.f.)P (x), probability generating function (p.g.f.)̂p(z) =

∑∞
k=1 p(k)z

k and finite
meanµ; they are also independent of{N(t); t ∈ N }. Then the surplus of an insurance company at timet
is described as

U(t) = u+ t−

N(t)
∑

i=1

Xi, t ∈ N
+, (2)

whereU(0) = u ∈ N is the initial surplus. We further assume thatqµ < 1; providing a positive loading
condition. This is the so-called discrete-time compound binomial risk model first proposed by Gerber [14,
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(1988)]. The compound binomial risk model defined in (2) can be rewritten as

U(t) = u+ t−

t
∑

i=1

Yi, t ∈ N
+, (3)

whereYi = IiXi is the claim amount in periodi with p.f. b(0) = 1 − q andb(x) = q p(x) for x ∈ N+.
We define the random variableT = min{ t ∈ N+; U(t) ≤ 0 } to be the time (period) of ruin and

ψ(u) = P{T <∞|U(0) = u }, u ∈ N,

to be the ultimate ruin probability (also known as the eventual ruin probability, infinite-time ruin probabil-
ity). By conditioning on what happened in the first period, itis easy to have that

ψ(0) = (1 − q)ψ(1) + q (4)

and

ψ(u) = (1 − q)ψ(u + 1) + q
u

∑

x=1

ψ(u+ 1 − x) p(x) + q
∞
∑

x=u+1

p(x), u ∈ N
+, (5)

by the law of total probability. Note that if we knowψ(0) the ruin probability with zero initial surplus, then
equations (4) and (5) can be used to calculate the ruin probabilitiesψ(u), for u ∈ N

+, recursively.
Based on the probabilistic argument thatψ(u) is the ultimate probability of a visit at0, Gerber [14,

(1988)] derived the following results for the probability of ruin as well as the joint distribution of the
surpluses immediately before and at ruin. The notationa(k) = k!

(

a
k

)

for the factorial powers ofa is used
below. Further, letS0 = 0 andSk = X1 + · · · + Xk be the total claims in the firstk periods. For
k ∈ N, denote bygx(k) = P{Sk = x} its probability function and byGx(k) =

∑x

l=0 gl(k) its cumulative
distribution function.

Theorem 1 (Gerber [ 14, (1988)]) The ultimate ruin probability for the compound binomial model in (2)
can be expressed as

ψ(0) = qµ,

ψ(u) = (1 − qµ)

∞
∑

k=1

1

k!

(

q

1 − q

)k

E

[

(Sk − u)
(k)
+ (1 − q)Sk−u

]

, u ∈ N
+.

Theorem 2 (Gerber [ 14, (1988)]) For y = 0, 1, 2, . . ., the joint probabilities of the surplus immediately
before and at ruin for the compound binomial model in(2) is

P
{

T <∞, U(T − 1) = x, U(T ) = −y |U(0) = 0
}

= q p(x+ 1 + y), x ∈ N
+.

Furthermore, the probability function of the surplus at ruin is simply

P
{

T <∞, U(T ) = −y |U(0) = 0
}

= q [1 − P (y)], y ∈ N.

The proofs of Theorems1 and2 essentially follow results developed by Gerber for sums of derivatives
of probability generating functions and known martingale results.

Now let ψ̄(u) = 1 − ψ(u) be the corresponding non-ruin probability, with initial surplus u ∈ N.
Shiu [30, (1989)] derived following formulas for̄ψ(u), corresponding to those in Theorem1, by alternative
methods. Note that Shiu [30, (1989)] defines ruin as the event that the surplusU(t) becomes strictly
negative, whereas in Gerber [14, (1988)] the ruin is defined when the surplusU(t) being negative or0
(i.e. non-positive), for somet ∈ N

+.
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Theorem 3 (Shiu [ 30, (1989)]) The non-ruin probabilities for the compound binomial modelin (2) can
be expressed as

ψ̄(0) =
1 − qµ

1 − q
,

ψ̄(u) = φ(0)

∞
∑

k=0

(

−q

1 − q

)k

E

[(

u+ k − Sk
k

)

(1 − q)Sk−u1+(u − Sk)

]

, u ∈ N
+,

where1+(k) = 1, for k ∈ N, and0 otherwise.

This particular result is obtained through the solution of aVolterra equation of the second kind.
Now we consider the finite time survival probability before timek with an integer-valued initial surplus

u, defined by

ψ̄(u; k) = P{U(j) ≥ 0 ; j = 0, 1, 2, . . . , k |U(0) = u }, k, u ∈ N. (6)

The ultimate survival probabilitȳψ(u) is the limiting case of (6), i.e.,

ψ̄(u) = lim
k→∞

ψ̄(u; k), u ∈ N.

Explicit formulas are derived by Willmot [32, (1993)] for finite time survival probabilities using analytical
techniques, such as Lagrange’s expansions of generating functions. Note that for the theorem below the
definition of ruin follows that of Shiu [30, (1989)] rather than Gerber [14, (1988)].

Theorem 4 (Willmot [ 32, (1993)]) The finite time survival probabilities for the compound binomial
model in(2) can be expressed as

ψ̄(0; k) =

∑k

l=0(k − l + 1) gl(k + 1)

(1 − q)(k + 1)
, k ∈ N,

ψ̄(u; k) = Gu+k(k) − (1 − q)

k−1
∑

l=0

ψ̄(0, k − 1 − l) gu+l+1(l), k, u ∈ N
+.

Now for x, y ∈ N andt ∈ N+, define

f3(x, y, t |u) = P {U(T − 1) = x, U(T ) = −y, T = t |U(0) = u },

which is the joint probability distribution of the time of ruin, T , the surplus just before ruin,U(T − 1), and
the surplus at ruin,U(T ). Let v (0 < v < 1) be a discount factor and define

f2(x, y |u) =

∞
∑

t=1

vtf3(x, y, t |u), x, y, u ∈ N, (7)

to be the “discounted” probability of ruin for an initial surplusu, such that the surplus before ruin isx and
the deficit at ruin isy. Further, define the following two functions:

f1(x |u) =
∞
∑

y=0

f2(x, y |u), x, u ∈ N,

g(y |u) =

∞
∑

x=0

f2(x, y |u), y, u ∈ N.

(8)

Willmot points out that the results in Theorem4 can also be obtained through probabilistic arguments, such
as those of Gerber and Shiu for Theorems1–3.
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Cheng, Gerber and Shiu [6, (2000)] introduced Lundberg’s fundamental equation for the compound
binomial risk model in (2), that is,

q E[rX−1] + (1 − q) r−1 = v−1, r > 0. (9)

It can be shown that equation (9) has a solutionr = ρ ∈ (0, 1), and under some regularity conditions on the
tail of the probability function, it has another solutionr = R > 1.

An explicit formula forf2(x, y | 0) is obtained in Cheng, Gerber and Shiu [6, (2000)] where they show
thatf2(x, y |u) can be expressed in terms off2(x, y | 0) and an auxiliary functionh(u). Note that in the
results that follow, ruin is the event thatU(t) ≤ 0, for somet ≥ 1, which coincides with Gerber [14,
(1988)].

Theorem 5 (Cheng, Gerber and Shiu [ 6, (2000)]) For the compound binomial model in(2),

f2(x, y | 0) = q v ρxp(x+ y + 1), x, y ∈ N, (10)

f2(x, y |u) = f2(x, y | 0) [h(u) − ρ−xh(u− x)I(u > x)], x ∈ N
+, y ∈ N, (11)

whereh(u) is defined as the solution of

h(u) =

u−1
∑

z=0

h(u− z) g(z | 0) + ρu, u ∈ N
+,

andg(z | 0) =
∑∞

x=0 f2(x, z | 0) = q v
∑∞

x=0 ρ
x p(x+ y + 1), for z ∈ N.

For the risk model described in (3), Li and Garrido [21, (2002)] further explored the following expected
discounted penalty at ruin. Letw(x, y), x, y ∈ N be the non-negative values of a penalty function payable
at ruin. For0 < v < 1, define

φ(u) = E
[

vTw
(

U(T − 1), |U(T )|
)

I(T <∞)
∣

∣U(0) = u
]

, u ∈ N, (12)

where the time of ruinT is the first time that the surplus in (3) becomes non-positive. The quantity
w

(

U(T − 1), |U1(T )|
)

can be interpreted as the penalty, payable at the time of ruin, for a surplus of
U(T − 1) and a deficit of|U(T )|. Thenφ is the expected discounted penalty (Gerber-Shiu) function,
if v is viewed as a discount rate. The following results are proved using finite differences and probability
generating functions.

Theorem 6 (Li and Garrido [ 21, (2002)]) For the discrete-time risk model in(3),

φ(0) = v

∞
∑

x=0

∞
∑

y=0

ρx w(x, y) b(x + y + 1),

φ(u) = v

u−1
∑

x=0

φ(u − x)

∞
∑

y=0

ρy b(x+ y + 1) + v ρ−u
∞
∑

x=u

ρx
∞
∑

y=0

w(x, y) b(x + y + 1),

whereu ∈ N+ and0 < ρ < 1 is the root of Lundberg’s equation̂b(s)/s = 1/v.

Now define the compound geometric p.f.k(u) =
∑∞

n=0
β

1+β

(

1
1+β

)n
l∗n(u), for u ∈ N. Hereβ is

defined as1/(1 + β) :=
∑∞

z=0 g(z|0) = (v − ρ)/(1 − ρ), by (8) and (10), while l(z) = (1 + β) g(z|0),
which is a proper p.f. onN. Then the following explicit formula can be given forφ(u).

Theorem 7 (Li and Garrido [ 21, (2002)])

φ(u) =
1

β

u−1
∑

z=0

M(u− z) k(z), u ∈ N
+, (13)
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whereM(u) = (1 + β)A(u) and

A(u) = φ(0) − v ρ−u
u−1
∑

z=0

ρz
∞
∑

y=0

w(z, y) b(z + y + 1), u ∈ N
+,

withA(0) = φ(0).

Forx ∈ N+ andy ∈ N fixed, set

w(t, s) =

{

1, if t = x, s = y,

0, otherwise,

then, in this particular case,φ(u) in (13) becomes (7). An application of Theorem7 yields an alternative
expression to (11), given in the following corollary.

Corollary 1 (Li and Garrido [ 21, (2002)])

f2(x, y|u) = γ(u) f2(x, y|0), x, u ∈ N
+, y ∈ N, (14)

wheref2(x, y|0) is given by(10) and

γ(u) =

{

1
β

∑u−1
z=0 (1 + β) ρz−uk(z), if 1 ≤ u ≤ x,

1
β

∑u−1
z=u−x(1 + β) ρz−uk(z) if u > x.

In particular, if v = 1, γ(u) simplifies to

γ(u) =







1−ψ(u)
1−ψ(0) , 1 ≤ u ≤ x,

ψ(u−x)−ψ(u)
1−ψ(u) , u > x.

Then(14) simplifies to Dickson’s formula in the compound binomial model. See Dickson[10, (1992)]for
the continuous version of this formula.

Denote byφT (u) = E
[

vT I(T < ∞) |U(0) = u
]

, the p.g.f. of the ruin timeT with initial reserve
u ∈ N

+. Clearly, φT (u) is a special case of (12) whenw(x, y) = 1. An application of Theorem6
gives in the corollary below a recursive formula or discretedefective renewal equation forφT (u). Li and
Garrido [21, (2002)] further shows in the theorem below thatφT (u) can be expressed as a compound
geometric tail.

Corollary 2 (Li and Garrido [ 21, (2002)])

φT (u) =

u−1
∑

z=0

φT (u− z) g(z|0) +H(u), u ∈ N
+, (15)

whereg(z|0) =
∑∞

x=0 v ρ
x p(x+ z+1), andH(u) = φT (0)−

∑u−1
z=0 g(z|0) with φT (0) = H(0) = v−ρ

1−ρ .

Theorem 8 (Li and Garrido [ 21, (2002)]) The solution to equation(15) can be expressed as a com-
pound geometric sum

φT (u) =
β

1 + β

∞
∑

n=1

(

1

1 + β

)n

L̄∗n(u− 1), u ∈ N,

whereL̄(u) =
∑∞

z=u+1 l(z) is the tail probability ofl, while L̄∗n and l∗n are then-th convolutions of̄L
andl, respectively with̄L(−1) = L̄∗n(−1) = 1.
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Note that Theorem8 gives a generalized Beekman’s convolution formula for the discrete-time model.
If v = ρ = 1, then it simplifies to Beekman’s classical convolution formula for the ruin probability
ψ(u) = (1 − qµ)

∑∞
n=1(qµ)nB̄∗n

1 (u − 1), whereB̄1 is the tail probability ofb1, whereb1 is the equi-
librium distribution ofb, defined as

b1(x) =

∑∞
y=x+1 b(y)

∑∞
x=0 B̄(x)

, x ∈ N.

See Li and Garrido [21, (2002)] for the definition of the higher order equilibrium distributions and their
properties.

3 The discrete-time Sparre Andersen model with Km inter-
claim times

As an extension of the compound binomial risk model, the discrete-time Sparre Andersen model has been
studied recently. Li [19, 20, (2005)] investigate the discounted penalty function in a Sparre Andersen risk
model with discreteKm inter-claim times. Pavlova and Willmot [29, (2004)] gives an expression of the
expected discounted penalty function in the discrete-timestationary renewal risk model in terms of that in
the corresponding ordinary renewal risk model, while Wu andLi [ 35, (2009)] considers the same function
in a Sparre Andersen risk model with general inter-claim times. Wu and Li [34, (2008)] derives some results
for the latter model with phase-type claims. We review here these results.

Consider a discrete-time compound renewal (Sparre Andersen) risk model in which the surplus can be
described as

U(t) = u+ t−

N(t)
∑

i=1

Xi, t ∈ N
+, (16)

whereU(0) = u ∈ N is the initial surplus. The counting process{N(t) ; t ∈ N } denotes the number
of claims up to timet and is defined asN(t) = max{ k : W1 + W2 + · · · + Wk ≤ t }, where the
claim waiting times,Wi, are assumed to be i.i.d. positive integer-valued random variables with common
p.f. k(x) = P {W = x}, for x = 1, 2, . . .. Denote bŷk(s) =

∑∞
i=1 s

i k(i), s ∈ C, its p.g.f..
All other assumptions are as in the compound binomial risk model, with the addition that{Wi ; i ∈ N+}

and{Xi ; i ∈ N+} are independent, andE[W ] = (1 + θ) E[X ] = (1 + θ)µ, θ > 0, in order to have a
positive loading factor. In the literature, the time of ruinT for the Sparre Andersen model is defined to
be the first time when the surplus falls below zero, withT = ∞ if ruin does not occur. Note that when
k(x) = q (1 − q)x−1, x = 1, 2, . . ., the Sparre Andersen model in (16) reduces to the compound binomial
model in (2).

We start with the results from Li [19, 20, (2005)] for a class of compound renewal risk process with
inter-claim times having a discreteKm distribution, i.e., the p.g.f. of the distribution function is a ratio of
two polynomials of orderm ∈ N+. More precisely, the p.g.f. ofk(x), x ∈ N+, can be expressed as

k̂(s) =
s
[
∏m

i=1(1 − qi) +
∑m−1

j=1 βj (s− 1)j
]

∏m
i=1(1 − s qi)

, ℜ(s) < min

{

1

qi
; 1 ≤ i ≤ m

}

,

where0 < qi < 1, for i = 1, 2, . . ., m, and the coefficientsβ1, β2, . . ., βm−1 are such thatk is a p.f.. In
particular, ifq1, q2, . . ., qm are distinct, by partial fractions,k can be expressed as a linear combination of
m geometric distributions with parametersqi:

k(x) =

m
∑

i=1

ζi (1 − qi) q
x−1
i , x = 1, 2, . . . ,
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whereζ1, ζ2, . . ., ζm are such that
∑m

i=1 ζi = 1 and given explicitly by

ζi =

∑m−1
k=1 βk(1/qi − 1)k +

∏m

j=1(1 − qj)

(1 − qi)
[

∏m

j=1, j 6=i(1 − qj/qi)
] , i = 1, 2, . . . ,m.

This class of distributions includes, as special cases, theshifted geometric, shifted or truncated negative
binomial, discrete phase-type distributions, as well as linear combinations (including mixture) of these.
Especially, the classical compound binomial risk model is aspecial case whenm = 1.

By using the martingale arguments, Li [19, (2005)] obtains the generalized version of Lundberg’s equa-
tion in (9), which is,

k̂
(v

s

)

p̂(s) = 1, s ∈ C, (17)

and proves that for0 < v < 1 andm ∈ N+, equation (17) has exactlym roots, sayρi(v), i = 1, 2, . . .,m,
with 0 < |ρi| < 1. For simplicity, in what follows we assume thatρ1, ρ2, . . ., ρm are distinct.

DefineTr to be an operator on any real-valued functionf(x), x ∈ N+, by

Trf(y) =
∞
∑

x=y

rx−yf(x) =
∞
∑

x=0

rxf(x+ y), r ∈ C, y ∈ N
+. (18)

The continuous version of this operator can be found Dicksonand Hipp [13, (2001)].
A recursive formula is derived for the expected discounted penalty (Gerber-Shiu) function defined as

in (12), which can be used to analyze many quantities associated with the time of ruin, e.g., the surplus
before ruin, the deficit at ruin, and the claim causing ruin. Furthermore, an explicit formula for the Gerber-
Shiu function is given in terms of a compound geometric distribution function in Li [20, (2005)]. These
results are given in the following theorems and corollaries.

Theorem 9 (Li [ 19, (2005)]) For the discrete-time Sparre Andersen model(16),

φ(u) =

u
∑

y=1

φ(u − y) g(y|0) +H(u), u ∈ N
+, (19)

φ(0) =

[

m
∏

i=1

ρi
vqi

]

m
∑

j=1

cj

∞
∑

x=0

∞
∑

y=1

ρxj w(x, y) p(x + y + 1), (20)

wherecj = v
ρm−1
j

∏m

i=1(1 − qi) +
∑m−1
t=1 βtρ

m−1−t
j (v − ρj)

t

∏m

k=1,k 6=j(ρj − ρk)
, g(y|0) =

∑∞
x=0 f2(x, y|0) is given by

g(y|0) =

[

m
∏

i=1

ρi
vqi

]

m
∑

j=1

cjTρj
p(y + 1), y ∈ N

+, (21)

in whichTr is an operator defined by(18), and

H(u) =

[

m
∏

i=1

ρi
vqi

]

m
∑

j=1

cjTρj
ω(u+ 1), u ∈ N

+,

with ω(u) =
∑∞
x=1 w(u − 1, x)p(u+ t).

Expression (19) is a recursive formula forφ(u) with the starting pointφ(0), given by (20). In particular,
if w(x, y) = 1, thenφ(u) simplifies to the p.g.f. of the time of ruinT , with respect to the discount factorv,
defined byφT (u). Similar to Corollary2 for the discrete-time risk model, Li [19, (2005)] derives the
following result for the discrete-time Sparre Andersen model.
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Corollary 3 (Li [ 19, (2005)]) For the discrete-time Sparre Andersen model(16),

φT (u) =

u
∑

y=1

φT (u− y) g(y|0) +

∞
∑

y=u+1

g(y|0), u ∈ N
+,

whereg(y|0) is given by(21). The starting value of the above recursion is

φT (0) = 1 −
[

1 − k̂(v)
]

m
∏

i=1

[

ρi(1 − v qi)

v qi(1 − ρi)

]

.

Furthermore,φT (u) can be expressed as the following compound geometric tail

φT (u) =
β

1 + β

∞
∑

n=1

(

1

1 + β

)n

L̄∗n(u), u ∈ N,

whereβ is such as that1/(1 + β) = φT (0), L̄∗n is then-th convolutions of̄L, while L̄(u) =
∑∞
z=u+1 l(z)

is the tail probability ofl with definitionl(y) = (1 + β)g(y|0).

Note that Theorem7 is still true for the surplusU(t) in the discrete-time Sparre Andersen model case.
In particular, the discounted joint p.f.f2(x, y|u) can be obtained as a special case as follows.

Theorem 10 (Li [ 20, (2005)]) For x ∈ N, andy ∈ N+,

f2(x, y |u) =







(

1+β
β

)(

Qm
i=1

ρi
Q

m
i=1

vqi

)

p(x+ y + 1)
∑m

j=1 cj ρ
x−u
j

∑u

n=0 ρ
n
j a(n), 0 ≤ u ≤ x,

(

1+β
β

)(

Q

m
i=1

ρi
Q

m
i=1

vqi

)

p(x+ y + 1)
∑m
j=1 cj ρ

x−u
j

∑u
n=u−x ρ

n
j a(n), u > x,

wherea(u) is a compound geometric p.f. with

a(u) =
β

1 + β

∞
∑

n=1

(

1

1 + β

)n

l∗n(u), u ∈ N.

Li [ 20, (2005)] shows that the distributions of the surplus beforeruin, the deficit at ruin, and the claim
causing ruin, can also be obtained through the compound geometric p.f.a(u). Furthermore,a(u) is in closed
form when the claim amounts distribution belongs to theKm family or the claim amounts distribution has
a finite support.

Pavlova and Willmot [29, (2004)] considers the discrete stationary or discrete equilibrium renewal
model, which is a generalization of the discrete renewal (orSparre Andersen) risk model. For the discrete
(ordinary) renewal process, we have the same assumptions asdescribed at the beginning of this section. In
the equilibrium renewal model case, we assume thatW1, independent of{W2,W3, . . .} and{X1, X2, . . .},
has c.d.f.K1(x) = 1−K̄1(x) and p.f.k1(x) = K̄(x−1)/E[W2] for x ∈ N+. The insurer’s surplus at timet
is described by (16), and the relative security loadingθ > 0 is assumed to satisfy(1+θ)E[W2]/E[X2] = 1.

Let T = inf{ t ∈ N+ : U(t) < 0 } be the ruin time in the ordinary discrete renewal model, and its
discounted penalty (Gerber-Shiu) function is defined by (12). Furthermore, denote byTe the time of ruin
and byφe(u) the discounted penalty function in the discrete equilibrium renewal risk model, defined as
follows:

φe(u) = E
[

vTew
(

U(Te − 1), |U(Te)|
)

I(Te <∞)
∣

∣U(0) = u
]

, u ∈ N.

The main result in Pavlova and Willmot [29, (2004)] is given by the following theorem, which describes
the relationship between the Gerber-Shiu discounted penalty functions in the ordinary and the stationary
discrete renewal risk models.
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Theorem 11 (Pavlova and Willmot [ 29,(2004)]) The Gerber-Shiu discounted penalty functions in the
ordinary and the stationary (equilibrium) discrete renewal risk models are related by

φe(u) =
1

1 + θ

u
∑

y=0

φ(u− y) p1(y + 1) + νv(u), u ∈ N
+,

where

νv(u) =

∞
∑

j=u+1

vj−u τ(j) −
1 − v

1 + θ

∞
∑

j=u+1

vj−u−1

j
∑

y=1

φ(j − y) p1(y), u ∈ N
+,

with τ(j) =
[
∑∞
y=j+1 w(j, y − j) p(y)

]

/E[W2], j ∈ N andp1(x) = P̄ (x− 1)/µ.

Pavlova and Willmot [29, (2004)] further considers a special case whenk(x) = q(1 − q)x−1, x ∈ N+.
ThenK̄(x) = (1 − q)x andE[W2] = 1/q, yielding thatk1(x) = k(x), x ∈ N+ andφe(u) = φ(u). The
defective renewal equation forφ(u), stated in Theorem6, can also be obtained through Theorem11.

4 Discrete-time Sparre Andersen model with general inter–
claim times

In this section, we shall review some recent results in the discrete-time Sparre Andersen model with general
inter-claim times. We assume that the inter-claim times have a common p.f.k(x) for x = 1, 2, . . . with
p.g.f. k̂(z) =

∑∞
x=1 z

xk(x).
Wu and Li [35, (2009)] shows that the recursive formula (defective renewal equation) for the Gerber-

Shiu function given in Theorem9 can be extended for the Sparre Andersen model withKm inter-claim
times to general inter-claim times as follows.

Theorem 12 (Wu and Li [ 35, (2009)])

φ(u) =

u
∑

y=1

φ(u− y) g(y|0) +H(u), u ∈ N
+,

whereg(y|0) =
∑∞

x=0 px(y) f1(x|0) with px(y) = p(x+ y + 1)/P̄ (x+ 1), and

H(u) =

∞
∑

y=u+1

∞
∑

x=0

w(x + u, y − u)px(y)f1(x|0).

In particular, if w(x, y) = 1, φT (u) satisfies the following recursive formula

φT (u) =

u
∑

y=1

φT (u− y)g(y|0) +

∞
∑

y=u+1

g(y|0)

and has the following explicit expression

φT (u) = (1 − ξv)
∞
∑

n=1

ξnv L̄
∗n
1 (u), u ∈ N,

whereξv = φT (0) =
∑∞
x=0 f1(x|0) is to be determined,L∗n

1 (u) = 1 − L̄∗n
1 (u) is the d.f. of then-fold

convolution ofL1(u) =
∑u

y=0 g(y|0)/ξv.
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Althoughφ(u) andφT (u) satisfy a defective renewal equation and in particularφT (u) can be expressed
as a compound geometric tail for the Sparre Andersen model with general inter-claim times, however, unlike
those results for the Sparre Andersen model withKm inter-claim times,ξv, g(y|0) andH(u) are unknown
for general claim severity distributions and unspecified penalty functions. Wu and Li [35, (2009)] derives
explicit results for the Gerber-Shiu function with some specially chosen penalty functions when claim
amounts follow a zero-truncated geometric distribution, adegenerate distribution at a constant size of2,
and the mixture ofn geometric distributions. Wu and Li [34, (2008)] derives compact matrix expressions
for the ruin probability and the distribution of the deficit at ruin.

4.1 Constant claims

In this subsection, we assume that claim amounts are constant and of size2, i.e., p(x) = I(x = 2) for
x = 1, 2, . . .. It follows from Wu and Li [35, (2009)] that the p.g.f. of the time of ruinT has the following
expression

φT (u) = ξu+1
v , u ∈ N,

where0 < ξv < 1 is the unique solution of the equationξ2v = k̂(vξv). In particular, the ruin probability

ψ(u) = ξu+1
1 , u ∈ N,

whereξ1 = limv→1 ξv is the solution ofξ21 = k̂(ξ1). In general, the Gerber-Shiu functionφ(u) has the
following expression

φ(u) = φ(0)ξuv = w(0, 1)ξu+1
v , u ∈ N.

4.2 Zero-truncated geometric claims

Now assume that claim amounts have a zero-truncated geometric distribution withp(x) = (1 − π)πx−1,
for x ∈ N+, and0 < π < 1. Then Wu and Li [35, (2009)] shows that

φT (u) = ξv
[

π + ξv (1 − π)
]u
, u ∈ N, (22)

where0 < ξv < 1 is the unique solution of the following equation

ξv = k̂
{

v
[

π + ξv(1 − π)
]}

.

In particular, the ruin probability

ψ(u) = ξ1 [π + ξ1(1 − π)]
u
, u ∈ N, (23)

where0 < ξ1 < 1 is the unique solution of the following equationξ1 = k̂
{

π + ξ1(1 − π)
}

.
The moment of the time of ruin given that ruin has occurred maybe calculated by differentiating (22)

and settingv = 1 as follows

E
[

T |T <∞, U(0) = u
]

=
k̂′

{

π + ξ1(1 − π)
}[

π/ξ1 + (1 − π)(1 + u)
]

1 − (1 − π) k̂′
{

π + ξ1 (1 − π)
} .

For the following specially chosen penalty function

w(x, y) = sxw1(y), 0 < s ≤ 1,

with w1(y) being a univariate function, the Gerber-Shiu function withthe following new notation

φv,s(u) = E
[

vT sU(T−1)w1

(

|U(T )|
)

I(T <∞) |U(0) = u
]

, u ∈ N, (24)
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has the following expression

φv,s(u) = ηv(s)
{

ξvα(πs)u + (1 − α)φT (u)
}

, u ∈ N,

where

α =
π(1 − s)

π(1 − s) + ξv(1 − π)
,

ηv(s) =
E

[

w1(X1)
]

k̂(vπs)s−1

αξv + (1 − α)k̂(vπs)
.

In particular, ifv = 1 andw1(y) = 1, then

φ1,s(u) = E
[

sU(T−1)I(T <∞) |U(0) = u
]

=
k̂(πs)s−1

αψ(0) + (1 − α)k̂(πs)

[

ψ(0)α (πs)u + (1 − α)ψ(u)
]

, u ∈ N.

The first moment of the surplus before ruin can be calculated by

E
[

U(T − 1) I(T <∞) |U(0) = u
]

= lim
s→1−

∂

∂s
φ1,s(u) =

π

1 − π

[

ψ(u)

k̂(π)
− πu

]

− ψ(u), u ∈ N.

In this case, the literature does not yet give results for theGerber-Shiu function with more general
penalty functionsw(x, y).

4.3 Mixed geometric claim amounts

In this section let the claim amounts have a mixed geometric distribution with coefficients0 < χj < 1,
such that

∑n

j=1 χj = 1, i.e.,

p(x) =

n
∑

j=1

χj̟j(x), x ∈ N
+,

where̟j(x) = (1−πj)π
x−1
j , j = 1, 2, . . ., n, is a geometric p.f. with parameter0 < πj < 1. The p.g.f. of

p(x) is given by

p̂(z) =

n
∑

j=1

χj
(1 − πj)z

1 − πjz
.

Lemma 1 of Wu and Li [35, (2009)] shows that the following generalized Lundberg’s equation

k̂(v/z) p̂(z) = 1

hasn roots, say,R1,R2, . . .,Rn, with |Ri| > 1. For simplicity, we assume thatR1,R2, . . .,Rn are distinct.
Wu and Li [35, (2009)] shows that the generating function of the Gerber-Shiu function defined in (24)

has the following form:

φ̂v,s(z) =
∞
∑

u=0

suφv,s(u) =
β̂v,s(z)

∏n

l=1Rl
∏n

j=1(Rj − z)
∏n

i=1(1 − πisz)
, (25)

where

β̂v,s(z) =

[

n
∏

l=1

(1 − πlz)

]

n
∑

j=1

α̂v,s(Rj)

n
∏

i=1,i6=j

Ri − z

(Ri −Rj)
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is a polynomial of degree2n− 1, with

α̂v,s(z) =

n
∑

j=1

δj(s)







n
∏

i=1
i6=j

(1 − πisz)






E
[

w1(Zj)
]

,

δj(s) =

∞
∑

x=0

sx
χjπ

x+1
j

P̄ (x+ 1)
f1(x|0),

andZj being a discrete r.v. that has p.f.̟j(x) for j = 1, 2, . . ., n.
Using partial fractions, (25) is rewritten as

φ̂v,s(z) =

n
∑

j=1

γv,s(j)
Rj

(Rj − z)
+

n
∑

j=1

κv,s(j)
1

(1 − πjsz)
, (26)

where

γv,s(j) =
β̂v,s(Rj)

∏n
l=1,l 6=j Rl

∏n

i=1,i6=j(Ri −Rj)
∏n

k=1(1 − πksRj)
,

κv,s(j) =
β̂v,s

(

(πjs)
−1

)
∏n

l=1 Rl
∏n

i=1

[

Ri − (πjs)−1
]
∏n

i=1,i6=j(1 − πi/πj)
.

Finally, the inversion of (26) yields

φv,s(u) =

n
∑

j=1

γv,s(j)R
−u
j +

n
∑

j=1

κv,s(j)(πjs)
u, u ∈ N.

Note thatγv,s(j) andκv,s(j) are unknown coefficients aŝβv,s(z) depends onf1(x|0) which has not been
determined. Wu and Li [35, (2009)] shows that

κv,s(j) =
χj k̂(vπjs) E

[

w1(Zj)
]

/s

1 −
∑n

i=1 χi(1 − πi)/(πjs− πi) k̂(vπjs)
, j = 1, . . . , n.

Let A = (ai,j)n×n and B(s) = (bi,j(s))n×n be two matrices, whereai,j = ˆ̟ i(Rj) and bi,j(s) =
(1 − πi)/(πi − πjs). Denote~γv,s = (γv,s(1), . . . , γv,s(n))⊤ and~κv,s = (κv,s(1), . . . , κv,s(n))⊤ as two
n-dimensional column vectors. Then

~γv,s = A
−1

B(s)~κv,s.

4.4 Phase-type claims

In this subsection, we assume that the distribution of claimamounts is a discrete phase-type (PH) distribu-
tion with representation(~α,T), where~α = (α1, . . . , αn), see Asmussen [4, (2000)] for an introduction to
PH distributions. Here the claim amounts take values onN+, which implies that

∑n

i=1 αi = 1. Then the
probability function ofX , is then given by

p(x) = ~αT
x−1~t⊤, x ∈ N

+,

whereT = (ti,j)n×n is a sub-stochastic matrix and~t⊤ = (t1,0, t2,0, . . . , tn,0)
⊤ = (I−T)~1⊤ with I being

then× n identity matrix and~1 = (1, 1, . . . , 1) being ann× 1 row vector. The corresponding distribution
function ofX is given byP (x) = 1 − ~αT

x ~1⊤ and thek-th factorial moment ofX is then

E[X(k)] = k! ~α (I − T)−k T
k−1 ~1⊤,
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wherew(k) = w(w − 1)(w − 2) · · · (w − k + 1) is thek-th factorial power ofw. The p.g.f. ofX is

p̂(z) = z~α (I − zT)−1~t
⊤

=
a1z + a2z

2 + · · · + amz
m

1 + b1z + b2z2 + · · · + bmzm
. (27)

Note that the discrete phase-type distributions belong to theKm family as the p.g.f. in (27) is the ratio of
two polynomials of orderm.

Formal definitions of discrete phase-type distributions date back to the mid 1970’s, see Neuts [27,
(1975)]. By in large, however, research has focused more on the study of continuous phase-type distribu-
tions. Detailed discussions of continuous phase-type distributions can be found in Neuts [28, (1981)] and
Latouche and Ramaswami [18, (1999)]. Brief overviews of either discrete or continuousphase-type dis-
tributions and their properties can be found in Asmussen [3, 4, (1992, 2000)], Stanford and Stroiński [31,
(1994)], Bobbio et al. [5, (2003)].

As surveyed in the following theorems, Wu and Li [34, (2008)] gives a matrix expression for the ruin
probability and the distribution of the deficit at ruin for the Sparre Andersen model with general inter-claim
times and phase-type claims in the following theorems.

Theorem 13 (Wu and Li [ 34, (2008)]) For a discrete-time Sparre Andersen risk model, as defined in
(16), if the claim severity distribution is a discrete phase-type with representation(~α,T), then

ψ(u) = ~α+(T +~t⊤ ~α+)u ~1⊤, u ∈ N
+, (28)

where the row vector~α+ satisfies equation~α+ = ϕ(~α+), with

ϕ(~α+) = ~α k̂
(

T +~t⊤ ~α+

)

.

Here~α+ can be computed as~α+ = limn→∞ ~α
(n)
+ , where

~α
(0)
+ = ~0 and ~α

(n)
+ = ϕ(~α

(n−1)
+ ), n ∈ N

+.

Note that whenn = 1, i.e., the claim amounts have a truncated geometric distribution, then the ruin
probability in (28) simplifies to the expression in (23).

DefineF (u, y)=P(T <∞, |U(T )| ≤ y |U(0) = u) andψ(u, y)=P(T <∞, |U(T )| > y|U(0) = u).
Then it is obvious thatF (u, y) = ψ(u) − ψ(u, y), for u, y ∈ N.

Theorem 14 (Wu and Li [ 34, (2008)])

ψ(u, y) = ~α+

(

T +~t⊤ ~α+

)u
T
y ~1⊤, u, y ∈ N.

Open problems for the discrete-time Sparre Andersen model with general inter-claim times and phase-
type claims, include finding compact matrix expressions forthe Gerber-Shiu functions with some special
choices of the penalty functions such asw(x, y) = 1 andw(x, y) = sxw1(y).

For general inter-claim times, Cossette et al. [9, (2006)] gives an upper bound and an asymptotic expres-
sions for the ruin probability, and study how to use the discrete-time Sparre Andersen model to approximate
the continuous-time one.

5 Other discrete-time risk models

In this section, we give a brief review of the literature of other discrete-time risk models that extend the
compound binomial risk model.

Yuen and Guo [37, (2001)] studies the ruin probability in the compound binomial risk model with time
correlated claims. In each unit time period, there is a main claim with a probability0 < q < 1. This main
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claim can produce a by-claim, that may be settled in the same period with probability0 < θ < 1, or may
be delayed to the next period with probability1 − θ.

Unlike the classical compound Poisson risk model in which a unit premium rate can be assumed without
loss of generality (by appropriately rescaling the time unit as well as the claim sizes), it is clear that such
reasoning does not hold for the compound binomial model. Landriault [17, (2008)] studies the evaluation
of the generalized expected discounted penalty function inthe compound binomial risk model in which the
premium rate per unit time isc ∈ N+, rather than1 as in the classical setting.

Cossette et al. [7, (2003)] presents a compound Markov binomial model, as another extension of the
compound binomial model. Here, the binomial process{N(t) ; t ∈ N} defined in (1) is extended to a
Markov binomial process for which{ It ; t ∈ N } is a stationary homogeneous Markov chain with state
space{0, 1} and transition probability matrix

P =

(

p00 p01

p10 p11

)

,

wherepij = P(It+1 = j | It = i), for t = 0, 1, 2, . . . andi, j ∈ {0, 1}. The positive loading condition is
µp01 < p01 + p10. Whenp01 = p11 = q, the Markov binomial process simplifies to the binomial process.

For the compound Markov binomial risk model, Cossette et al.[7, (2003)] provides recursive formulas
for the computation of ruin probabilities over finite and infinite time horizons. A Lundberg exponential
bound for the ruin probability is derived. Yuen and Guo [38, (2006)] studies the expected discounted
penalty functions and the joint distribution of the surplusbefore ruin and the deficit at ruin conditional on
the initial state of the Markov chain.

Cossette et al. [8, (2004)] proposes a compound binomial model defined in a Markovian environment as
an extension to the compound binomial model. This model is a discrete analogue of the Markov-modulated
compound Poisson risk model which was proposed by Asmussen [2, (1989)]. In the compound binomial
model defined in a Markovian environment, the claim occurrences and the claim amounts are both regulated
by an underlying Markov environment process, denoted by{Jt ; t ∈ N}, which is a homogeneous and
irreducible discrete-time Markov process with state space{1, 2, . . . , n}. The one step transition probability
matrix is given byΓ = (γi,j)

n
i,j=1, whereγi,j = P(Jt+1 = j | Jt = i). The sequence of claim occurrences

{It ; t ∈ N} and the sequence of claim amounts{Xi ; i ∈ N+} in the compound binomial model in (2) are
governed by{ Jt ; t ∈ N } such that, given[Jt = i], It is Bernoulli distributed with meanqi ∈ (0, 1), the
claim amountXt has a p.f.pi(x) for x ∈ N+ andi = 1, 2, . . ., n. Furthermore, given[Jt = i], It andXt

are independent.
For the above compound binomial model defined in a Markovian environment, Cossette et al. [8, (2004)]

presents an algorithm for the computation of the ruin probability and the distribution of aggregate claims
for a fixed time period. Moreover, Cossette et al. [8, (2004)] shows that the compound binomial model
defined in a Markovian environment can be used to approximatethe continuous-time Markov-modulated
risk model. For the same model, Yang et al. [36, (2009)] studies the discounted joint distribution of the
surplus before ruin and the deficit at ruin.

6 Concluding Remarks

There are several motivations to this brief review of results for discrete-time risk models, including the
compound binomial risk model and some of its extensions. First, because most theoretical risk models
use the concept of time continuity, and yet practical reality is discrete. Recursive formulas for discrete-
time models are obtained without assuming a claim severity distribution and are readily programmable in
practice. This review wants to serve as a reminder that thesemodels can be useful.

Also, although the techniques used and the results obtainedfor discrete-time risk models are of inde-
pendent scientific interest, in addition they provide a simpler understanding of continuous-time risk models.
For instance, these results can serve as approximations or bounds for the corresponding results in analogue
continuous-time models.
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Finally, the review highlights the problems that remain open in the theory, and provides an exhaustive
bibliography of recent results, that should facilitate andencourage future research work in this area.
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