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Optimality results for dividend problems in insurance

Hansj örg Albrecher and Stefan Thonhauser

Abstract. This paper is a survey of some classical contributions and recent progress in identifying
optimal dividend payment strategies in the framework of collective risk theory. In particular, available
mathematical tools are discussed and some challenges are described that occur under various objective
functions and model assumptions. Finally, some open research problems in this field are stated.

Resultados de optimalidad para problemas de dividendos en s eguros

Resumen. Este artı́culo es una revista de algunos resultados clásicos y avances recientes en la iden-
tificación de estrategias óptimas de pago de dividendos enel marco de la teorı́a de riesgo para modelos
colectivos. En particular, describimos las herramientas matemáticas disponibles y discutimos algunos de
los retos que se presentan bajo diferentes funciones objetivo y supuestos del modelo. Finalmente, presen-
tamos problemas abiertos de investigación en esta área.

1 Introduction

After the introduction of the classical collective risk model in 1903 by Lundberg [92] to describe the free
surplus process of an insurance portfolio, the probabilityof ruin of such a portfolio was among the prime
quantities of interest in this field. However, a trajectory of the surplus process that does not lead to ruin
in this model will exceed every finite level, which is typically unrealistic in practice. That is why in 1957
de Finetti [39] proposed another, economically motivated, criterion to the actuarial world. Instead of fo-
cussing on the safety aspect (measured by the probability ofruin) he proposed to measure the performance
of an insurance portfolio by the maximal dividend payout that can be achieved over the lifetime of the
portfolio. In particular, he proposed to look for the expected discounted sum of dividend payments until
the time of ruin, where the discounting is with respect to some constant discount rateδ > 0. Whereas
de Finetti himself solved the problem to identify the optimal such dividend strategy in a very simple dis-
crete random walk model, since then many research groups have tried to address this optimality question
under more general and more realistic model assumptions anduntil nowadays this turns out to be a rich and
challenging field of research that needs the combination of tools from analysis, probability and stochastic
control. In contrast to typical control (and consumption) problems in finance, in this insurance context a
control action changes the value of the underlying, as the dividend payments are subtracted from the current
surplus, so that the problems have a quite different flavor from their counterparts in mathematical finance.
In this survey we would like to collect some crucial ideas anddevelopments in this field and in particular
highlight the type of mathematical techniques and challenges that occur in this field. Rather than attempting
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Recibido / Received: January 20, 2009.Aceptado / Accepted: March 4, 2009.
Palabras clave / Keywords: Stochastic control, dynamic programming, Hamilton–Jacobi–Bellman equation, risk theory, dividends.
Mathematics Subject Classifications: 93E20, 62P05, 91B30, 60J25.
c© 2009 Real Academia de Ciencias, España.

295



H. Albrecher and S. Thonhauser

to provide an encyclopedic list of references we will ratherfocus on methodological aspects and give links
to some classical and recent pertinent references. For a recent quite extensive collection of references under
a slightly different focus see Avanzi [14].

The above classical criterion is in line with the so-called Gordon model [58] which uses discounted
future dividend payments as an alternative to the general discounted cashflows method for valuating a
company. At the same time this approach also was at debate. Miller & Modigliani [94] showed in a simple
model with quite restrictive assumptions on the market, that when knowing exactly the investment strategy
of the company, the knowledge about future dividends is not needed for evaluating the value of the company.
However, the variety and complexity of more sophisticated stochastic models for an insurance portfolio
does not fit into the simple framework of [94] (see also DeAngelo & DeAngelo [40, 41], Handley [61] and
Frankfurter and Wood [45]) and it is widely believed that the discounted dividends approach (and variants
of it) are still useful also from an economic point of view.

In Section2 we will briefly describe the classical collective risk modelbased on a compound Poisson
process and the diffusion model. These two models are the cornerstones of tractable continuous-time pro-
cesses to solve stochastic control problems in this context. Although the diffusion model is not directly
appealing as a model for insurance purposes, where clearly claims will cause jumps in the surplus process,
we indicate an argument why it is sometimes useful in a certain approximative sense. Both the compound
Poisson model and the diffusion model are Markovian and hence the dynamic programming approach can
be used directly to address the problem of determining the optimal dividend strategy. In fact, it seems
that all established solutions of optimal dividend problems in the literature rely in one way or the other on
the dynamic programming principle. This solution procedure and its application are going to be described
in Section5 and Section6. A potential alternative could be thedual method, introduced for a stochastic
framework by Bismut [26], which works well for portfolio optimization problems in finance (see Kramkov
& Schachermayer [76] for the general case). But due to the intervention of the control into the underlying
surplus process, it seems that the resulting set of possibletrajectories is too restricted to make the dual
method work for insurance problems.

The dynamic programming approach leads to the so-called Hamilton-Jacobi-Bellman equation, which
(depending on the underlying risk model) contains elementsof a differential, partial differential or integro-
differential equation. A solution to this equation is then not yet automatically the optimal solution of the
optimization problem, but a good guess for it that then has tobe verified in a separate step. The equation
itself can be interpreted as the natural continuous limit ofthe dynamic programming principle from discrete
optimization (see Whittle [122]) which postulates that an optimal policy for the whole timespan also has
to be the optimal one in each small time step. A reference for discrete-time stochastic optimization is
Bertsekas & Shreve [25]. For further references on optimal dividend results in discrete-time models we
refer to Avanzi [14].

The remainder of this survey is organized as follows. Section 2 introduces the type of continuous-time
insurance risk models for which optimal dividend problems can typically be solved. Section3 first discusses
several possibilities of control actions on the insurance portfolio surplus process and then introduces various
kinds of dividend strategies that later turn out to be optimal under certain objective functions. Furthermore
references to literature that studies properties of the resulting controlled surplus process are given. Section4
deals with various criteria to measure the value of dividendstrategies and gives links to results that establish
the optimality of respective strategies. In Section5 we then discuss the dynamic programming principle
and typical mathematical approaches to derive an equation for the value function of interest. Section6
subsequently summarizes the mathematical challenges in the step of verifying whether a candidate solution
is indeed the optimal solution. Finally, in Section7 we conclude and state some open problems in the field.

2 Collective Risk Models

In the following we will always use a probability space(Ω,F , P ) on which all stochastic quantities are
defined.

296



Optimality results for dividend problems in insurance

2.1 Cramér-Lundberg Model

The Cramér-Lundberg risk model (also called the classicalrisk model or compound Poisson model) de-
scribes the free reserveR = (Rt)t≥0 in an insurance portfolio by a stochastic process of the form

Rt = x+ c t−

Nt
∑

k=1

Yk. (1)

The first ingredient is the deterministic initial capitalx ≥ 0. The premiums are assumed to be collected
continuously over time with constant intensityc and the total claim amount at timet is given by a compound
Poisson processS = (St)t≥0 with St =

∑Nt

j=1 Yj , where the number(Nt)t≥0 of claim occurrences up to
time t ≥ 0 is a homogeneous Poisson processN = (Nt)t≥0 with intensityλ > 0, i.e.Nt ∼ Poi(λt).
The claims are a sequence of positive independent and identically distributed random variables{Yi}i∈N

with distribution functionFY . One crucial assumption in the classical risk model is the independence of
N and{Yi}i∈N. As a consequence of the Poisson assumption for the claim counting processN , the inter-
occurrence times{Wi}i∈N with Wi = Ti − Ti−1 are independent and identically exponentially distributed,

{Wi}i∈N

iid
∼ exp(λ).

The processR as given in (1) lies in the intersection of the class of spectrally negative Lévy processes
and the class of Piecewise Deterministic Markov Processes (PDMP’s, see Davis [38]). As a consequence it
is itself a strong Markov process. Some of the results forR mentioned later on will have mathematically
natural extensions to the class of spectrally negative Lévy processes. Whereas for actuarial applications
the practical interpretation of this more general process class is somewhat limited, using the general theory
sometimes leads to a quite convenient analysis (for instance in terms of scale functions), which is also
applicable in the special case of the Cramér-Lundberg model.

Definition 1 The time of ruinτ denotes the first entrance time of the reserve processR to (−∞, 0),

τ = τ(x) = inf{ t > 0 such thatRt < 0 | R0 = x }.

The probability of ultimate ruin is defined as

ψ(x) = P (τ(x) <∞).

The survival probability isU(x) = 1 − ψ(x).

The so-callednet profit conditionrequires to choose the premium intensity larger than the expected loss
in a time interval of length1, c > λµ = E(S1) whereµ = E(Y1). A result from the theory of random
walks [106] shows that ifc ≤ λµ = E(S1), ruin occurs almost surely,ψ(x) = 1. If c > λµ, then
P (limt→∞Rt = ∞) = 1. The following operator which is applied to a suitable function g (for details
see [38] or [106]) is called the infinitesimal generator of the Markov processR,

Lg(x, t) = c
∂g

∂x
(x, t) I{x≥0} +

∂g

∂t
(x, t) + I{x≥0}λ

(
∫ ∞

0

g(x− y, t) dFY (y) − g(x, t)

)

, (2)

which will be needed later on.

2.2 Diffusion Approximation of the Model

We will only give a brief illustration of the ideas of diffusion approximations for risk reserve processes.
Overviews and numerical comparisons of different types of approximations are given in Grandell [59],
Asmussen [12] and Schmidli [110].

Let b > 0 anda ∈ R be two constants, then a Markov processX which, for smallh, fulfills

E (Xt+h −Xt | Ft) = ha,

E
(

(Xt+h −Xt − ha)2 | Ft

)

= hb2,
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with inifinitesimal drift a and varianceb2, is of the formXt = at + bWt for a Brownian motionWt.
ThereforeX is called a Brownian motion with drift, or, loosely speaking, a diffusion process with constant
drift and volatility. The basic idea behind such an approximation is to define a sequence of classical reserve
processes, which converge weakly to some Brownian motion with drift. Since for that special type of
process explicit results for distributions of first hittingtimes exist, these can be used as an approximation
of the ruin probability of the classical reserve process. But in addition to their tractability, also from an
optimal stochastic control point of view such approximations seem to be interesting. In [18] Bäuerle proves
the convergence of values and strategies of solutions to a dividend maximization problem solved by Schäl
in [107] for a PDMP risk reserve process to the value and optimal strategy of its diffusion approximation.

The following basic construction is due to Iglehart [72]. He defines a sequence of classical reserve
processes{R(n)}n∈N, where the components of thenth process are given by the initial capitalxn > 0,

the premium intensitycn > 0 and independent identically distributed claim amounts{Y
(n)
i }i∈N with

E(Y
(n)
i ) := µn > 0 andVar(Y

(n)
i ) := σ2

n > 0. The claim counting processN is given by a renewal
process with interclaim times{Wi}i∈N, see [59] or [106], for which E(Wi) = 1/λ > 0 and

R
(n)
t = xn + cnnt− S

(n)
nt , t ∈ [0, 1],

S
(n)
nt =

Nnt
∑

i=1

Y
(n)
i .

Note, that the distribution of the claim amounts may vary with n, whereas the claim counting process stays
the same for everyR(n). The reference reserve processR for which the approximation is valid is

Rt = x+ ct−

Nt
∑

i=1

Yi,

with E(Yi) := µ > 0 andVar(Yi) := σ2 > 0. Under some technical conditions (see [72]) the sequence of
classical reserve processes converges weakly to a stochastic process of the form

x+ Γ + σλ1/2W,

whereΓ = (Γt)t≥0 with Γt = (c − λµ)t andW = (Wt)t≥0 is a standard Brownian motion. Later on
we will sometimes refer togeneraldiffusion processes, which will be solutions of stochasticdifferential
equations of the following type

dxt = µ(xt, t) dt+ σ(xt, t) dWt, x0 = x.

The infinitesimal generator for such a process is then given by

Lg(x, t) =
∂g

∂t
(x, t) + µ(x, t)

∂g

∂x
(x, t) +

σ(x, t)2

2

∂2g

∂x2
(x, t). (3)

3 Model Extensions and Possibilities of Control

The classical risk model in Section2.1 and its diffusion approximations in Section2.2 suggest two pos-
sibilities for an insurer to intervene in the surplus process, namely the choice of the initial capitalx and
the choice of the premium intensityc (respectively the drift in the diffusion approximation). In practice
there will be more possibilities to influence and control theperformance of the insurance portfolio. In the
following we will outline some of them.
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3.1 Reinsurance and Investment

In 1995, Browne [31] started to apply methods from the theory of stochastic optimal control of diffusion
processes in the context of insurance. He considered a Brownian motion with drift as a model for the surplus
process and included the possibility for the insurer to invest some fraction of the reserve dynamically over
time into a financial asset, where the price of that financial asset is modelled by a geometric Brownian
motion (cf. Black and Scholes [27]). The goal is to identify an investment strategy such that the probability
of ruin of the controlled reserve process is minimized. Hippand Plum consider the same problem for a
classical compound Poisson risk reserve process in [64] and in a more general framework in [65]. In the
context of the classical model, the control variable is a real-valued càdlàg processA = (At)t≥0 adapted
to the history of the aggregate claims processS = (St)t≥0 andW = (Wt)t≥0, which is the standard
Brownian motion describing the priceP of the financial asset withdPt = Pt(m dt+ σ dWt) andP0 = p.
The controlled reserve processRA (strategyA) is determined by the stochastic differential equation

dRA
t = (c+Atm) dt+Atσ dWt − dSt, RA

0 = x.

The asymptotic behavior of the probability of ruin under theoptimal investment strategy is e.g. considered
in Hipp and Schmidli [66], Gaier and Grandits [47] and Gaier et al. [48]. Another possibility to reduce
the probability of ruin in the classical model is to use reinsurance. Here the insurer passes on some of its
premium income to a reinsurer, who in turn covers a certain fraction of the occurred claims. Let a function
b : [0,∞) → [0,∞) with 0 < b(z) ≤ z denote the retained amount of the insurer for a claim of sizez (such
that the amountz − b(z) is covered by the reinsurer). This constitutes a per-risk reinsurance coverage. The
premium income kept by the insurer is thencb(t) ≤ ct and depends on the specification ofb. The controlled
processRb is in this case given by

Rb
t = x+ cb(t) −

Nt
∑

i=1

b(Yi).

Two well-studied types of reinsurance are proportional reinsurance, whereb(z) = γz for someγ ∈ (0, 1],
and excess-of-loss (XL) reinsurance, whereb(z) = min{z,M} for a retention levelM > 0. Schmidli [108]
uses modern stochastic control theory to study the optimal choice of dynamic proportional reinsurance to
reduce the probability of ruin in the (otherwise) classicalrisk model. Heredynamicrefers to a strategy
where the proportionγ = (γt)t≥0 is a predictable process, adapted to{FRb

t− }t≥0, with respect to the history
of Rb, e.g. at claim timeTi the proportion has to be fixed using information only up to time Ti−. In [67]
the same problem is studied for dynamic XL-reinsurance by Hipp and Vogt. Schmidli [109] uses the results
from [64] and [108] to combine investment and dynamic reinsurance for the minimization of the probability
of ruin. While in the diffusion setup it is sometimes possible to calculate quantities of interest explicitly
(see [31]), this is not the case in models including jumps of the reserve process. The above mentioned
papers dealing with the classical model give proofs of the existence of a minimal probability of ruin and the
existence of an optimal strategy, but only provide ideas fortheir numerical evaluation.

3.2 Dividends

Let us now define the so-calledadmissible dividend strategies. The filtrationF = (Ft≥0), which we are
going to use, is always the one generated by the uncontrolledprocesses (in the diffusion case by the driving
Brownian motion, in the classical case by the compound Poisson process). The basic idea for modeling
a dividend policy is to introduce a stochastic processL = (Lt)t≥0 representing the cumulated dividend
payments up to timet. From the interpretation as a dividend strategy, it is natural to impose the following
four conditions onL:

(i) ruin does not occur due to dividend payments, i.e.∆Lt ≤ RL
t (whereRL

t denotes the controlled risk
process)
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(ii) L0 = 0 and the paths ofL are non-decreasing,

(iii) payments have to stop after the event of ruin,

(iv) decisions have to be fixed in a predictable way.

Condition(iv) gives reason to look at càglàd processesL, which are left-continuous with existing limits
from the right (Lt− = Lt). We hence call a dividend strategyL = {Lt}t≥0 admissibleif it is càglàd for
all t ≥ 0 and fulfills (i), (ii) and(iii) above (in particular,Lt then is previsible, i.e.Ft−-measurable). The
controlled process in the compound Poisson model is defined via

RL
t = x+ ct−

Nt
∑

k=1

Yk − Lt.

The càdlàg property of the reserve process and the càglàd property of the dividend process imply that
RL

t− 6= RL
t is always due to a claim andRL

t+ 6= RL
t is due to some (singular) dividend payment. This càglàd

assumption is for instance used in Azcue & Muler [16] and Albrecher & Thonhauser [9] in a compound
Poisson framework. Alternatively, it is also possible to consider previsible càdlàg strategiesL, which
preserve the càdlàg property of the risk process for the controlled process. But then —in order to allow
lump sum payments att = 0 (one has to takeL0− = 0) and to exclude payments at the time of ruin— the
optimization criterion has to be slightly modified (we will come back to that later on, see also Schmidli [112]
and Mnif & Sulem [95]). The essential difference between using a càdlàg or a c`aglàd control process is
observing the process after or before a possible dividend payment (cf. [112]). If the uncontrolled risk
process is a diffusion, the requirement thatLt isFt−-measurable is equivalent to requiringLt to be adapted
(i.e.Ft-measurable for allt ≥ 0). The controlled diffusion process is

RL
t = x+

∫ t

0

µ(RL
s , s) ds+

∫ t

0

σ(RL
s , s) dWs − Lt.

This definition is in line with the one of Shreve et al. [113] and the one for general controlled Markov
processes presented in Fleming & Soner [44]. Again it is also possible to use càdlàg controls instead, as is
done for constantµ andσ by Asmussen & Taksar [13], see also [112].

3.2.1 Analytic Properties of L

In many situations it is useful to restrict the general classof admissible controls further. A natural subclass
of admissible control strategies are the absolutely continuous ones. Such strategiesL admit an adapted
nonnegative density processl = (ls)s≥0 such that

Lt =

∫ t

0

ls ds.

To avoid payments after ruin, one has to additionally require lt = 0 for t ≥ τL, whereτL denotes the time
of ruin ofRL. In order to exclude singularities, one usually assumes that the density process is bounded,
0 ≤ ls < l∞ < ∞ for all s ≥ 0. Note that this restricted type of control, now determined by its density
process, then does not include the possibility of lump sum payments (i.e. jumps ofL, which would be
singularities ofl). In Fleming & Soner [44] a complete picture of admissible controls (or more generally
admissible control systems) and the use of progressively measurable control processesl = (ls)s≥0 for
Markov diffusion processes can be found. Moreover these authors give a construction how to move from
a control represented by its —possibly unbounded— density,which a priori does not make sense, to its
integrated representationL.

In some situations (examples will be given below) it can be shown that the singular parts of a strategy do
not contribute to the resulting wealth, and hence the absolutely continuous controls are a sufficient choice
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for solving the general maximization problem. This restricted class of controls is for instance considered
in Asmussen & Taksar [13], Jeanblanc-Picqué & Shiryaev [74], Schäl [107] and Gerber & Shiu [56]. In
Schmidli [112] the solution of the restricted problem in the Cramér-Lundberg model is shown to converge
pointwise to the general solution asl∞ → ∞.

In an insurance context the introduction of transaction costs charging the dividend payments seems to be
relatively new (although there is an early discussion by Porteus [102]) and up to now mostly problems in a
diffusion setup are solved, see for example Jeanblanc-Picqué & Shiryaev [74], Paulsen [98] and Cadenillas
et al. [33, 34]. For the compound Poisson risk reserve process, the effectof transaction costs on the optimal
control problem was recently investigated in Albrecher & Thonhauser [10]. The inclusion of transaction
costs naturally leads to another restricted class of admissible strategies known as impulse controls. Let us
assume that every dividend payment is charged by proportional and fixed costs such that the shareholder
receiveskz − K from a payment of sizez (K > 0 andk ∈ (0, 1)). Then dividend strategies with an
absolutely continuous component lead to an unbounded negative payoff for the shareholder and are con-
sequently not appropriate. Animpulse controlS = {(τi, Zi)}i∈N is now instead a sequence of increasing
intervention timesτi and associated control actionsZi, which fulfills the following four conditions:

• 0 ≤ τi ≤ τi+1 a.s. for alli ∈ N,

• τi is a stopping time with respect to the filtrationFt = σ{RS
s− | s ≤ t } for t ≥ 0,

• Zi is measurable with respect toFτi
,

• P (limi→∞ τi ≤ T ) = 0 for all T ≥ 0.

The controlled processRS = (RS
t )t≥0 based on an uncontrolled reserveR, is consequently given by

RS
t = Rt −

∞
∑

i=1

I{τi<t}Zi.

If the uncontrolled model has continuous sample paths, thenthe measurability condition on the stopping
timesτi can of course be replaced by measurability with respect to the history of the process. For further
details on impulse controls for PDMPs and also on the existence of controlled processes see Davis [38].
Other standard references in this context are Bensoussan & Lions [23] and Øksendal & Sulem [96].

Remark 1 In the literature on optimal stochastic control one often encounters the concept ofrelaxed(or
generalized) controls, which goes back to Fleming[43] (for the deterministic case see Young[123]). The
basic idea is to enlarge the set of admissible controls (which take values in a compact control spaceU ) by
defining the set of relaxed controls consisting of the set of measurable functionsm : [0,∞) → P (U) (where
P (U) denotes the set of probability measures onU ). In other words, one allows for stochastic strategies
and a classical controlu ∈ U then corresponds to a Dirac measureδu. For instance, if the drift of a
controlled diffusion depends continuously on the controlu ∈ U , then, applying a relaxed controlmt, one
gets the process

Rm
t = x+

∫ t

0

∫

U

µ(s, u)ms(du) ds+

∫ t

0

σ(s) dWs.

A natural question is now whether such a randomization of strategies can substantially increase the value
of the objective function in the stochastic control problem(as it is for instance the case for the value
of non-cooperative deterministic games in game theory). Ingeneral, in the diffusion case the so-called
chattering lemmastates that for any relaxed control there exists asimplecontrol approximating the relaxed
one arbitrarily closely (i.e.U is dense in the set of relaxed controls, see Kushner[78] for an overview and
Davis [38] for a short comment on the introduction of randomized strategies in the PDMP case). Explicit
calculations for certain simple randomized dividend strategies in a compound binomial risk model are given
in Tan & Yang[118] and Landriault[83].

The concept of relaxed strategies can in any case often be helpful for proving the existence of an op-
timal control (at least in the relaxed sense), when there exists nosimpleoptimal strategy, maximizing or
minimizing a given cost functional.
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Figure 1. A sample path of the Cramér-Lundberg model under a control of threshold type

3.2.2 Some Particular Control Strategies

We will conclude this section by introducing some concrete well-known strategies that will turn out to be
optimal in certain situations.

Threshold strategies As an example for an absolutely continuous control fix athresholdlevel b > 0 and
choose a Markovian density processls = l(x) = a I{x>b} with a > 0. The cumulated dividend
payments process is then given by

Lt =

∫ t∧τL

0

a I{Rs−≥b} ds.

Such a strategy pays out dividends continuously at a ratea whenever the current reserve is above
levelb (cf. Figure1).

The articles by Gerber & Shiu [56], Frostig [46] and Lin & Pavlova [86] deal with such a strategy
in the classical model and Gerber & Shiu [55] in the diffusion model. Kyprianou and Loeffen [79]
discuss the existence of spectrally negative Lévy processes controlled by a threshold strategy.

An extension of the threshold strategy is to fix multiple thresholdsbi and associated intensitiesai.
Kerekhesha [75], Zhou [124], Albrecher & Hartinger [4] and Lin & Sendova [87] study properties of
the resulting risk reserve process in the classical model, see also Badescu et al. [17].

Barrier strategies For a fixed barrier heightb ≥ 0, the cumulated dividend payments are described by

Lt = (x− b)I{x>b} +

∫ t∧τL

0

c I{RL

t−
=b} dt.

Such a strategy pays out all the reserve aboveb immediately att = 0+ (representing a singular
component in the strategy) and subsequently all incoming premiums that lead to a surplus aboveb
are immediately distributed as dividends. Fort > 0 the controlled risk process is hence reflected atb
and there are obvious connections to concepts of first hitting times of the process atb from below and
the local time of the process atb (cf. Figure2).

This intuitively natural strategy for profit participationin the risk process was first proposed by
de Finetti [39] in 1957 and he showed that a certain barrier strategy maximizes expected discounted
dividend payments if the underlying risk reserve process ismodelled as a simple random walk. For
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Figure 2. A sample path of the Cramér-Lundberg model under a control of barrier type

further situations in which barrier strategies turn out to be optimal we refer to Section4. There are
many papers in the literature that deal with specific properties of the risk reserve process resulting
from a barrier strategy. For instance, Paulsen & Gjessing [100] investigate the effect of barrier strate-
gies on risk processes in an economic environment. Irbäck [73] studies asymptotic results for high
horizontal barriers. Gerber & Shiu [54] calculate the moments of the expected dividends for an under-
lying diffusion process. Leung et al. [84] deal with finite horizon problems in the presence of a hori-
zontal barrier and a geometric Brownian motion. Cai et al. [35] study an Ornstein-Uhlenbeck model
including credit and debit interest. Lin et al. [88] discuss properties of the classical risk reserve pro-
cess controlled by a barrier strategy by means of the so-called expected discounted penalty function.
For the more general spectrally negative Lévy processes, Avram et al. [15], Renaud & Zhou [104]
and Kyprianou & Palmowski [81] use scale functions for calculating functionals of the expected
discounted dividends under a barrier strategy. In the compound Poisson model, Højgaard [68] deter-
mines optimal premium payment schemes such that expected discounted dividend payments under a
barrier strategy are maximized.

Time-dependent barriers were studied in Gerber [52], Siegl & Tichy [114] and Albrecher et al. [5]
for the linear case and in Alegre et al. [11] and Albrecher & Kainhofer [7] for the non-linear case
(see also Garrido [49] for the diffusion model). In [51], it was shown that barrier dividend payments
constitute a complete family of Pareto-optimal dividends.

Band strategies When studying the classical reserve process, Gerber [50] showed that for general optimal-
ity one needs another type of strategy calledbandstrategy. Such a strategy is characterized by three
setsA, B andC which partition the state space of the reserve process. Eachset is associated with a
certain dividend payment action for the current reservex as follows: if the current surplusx ∈ A,
then every incoming premium is paid out; ifx ∈ B, then a lump sum is paid out moving the current
reserve to the closest point inA that is smaller thanx; if x ∈ C then no dividend is paid. It is possible
that several disjoint intervals belong toB andC and create a band structure for(Rt, t) overR+×R+.
For further discussions on these type of strategies see alsoBühlmann [32], where also other general
thoughts about dividend policies can be found. In Figure3 a sample path of the risk process with a
band strategy given byA = {b0, b1}, B = (b0, a] ∪ (b1,∞) andC = (a, b1) is illustrated.

A simple type of impulse strategyFix two levelsb1 and b2 with 0 ≤ b1 < b2 and use the following
rules for dividend payments: if the surplus is above or equalb2, then pay out the amountb2 − b1
immediately; if the surplus is belowb2, do nothing until the reserve reaches the levelb2 again. Letθn

b2
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Figure 3. A sample path of the Cramér-Lundberg model under a control of band type

denote thenth time that the process hitsb2 from below. Then the payoff of such a dividend strategy
is given by

Lt = (x− b1)I{x≥b2} +

∞
∑

n=1

(b2 − b1)I{θn

b2
<t<τS},

when starting with initial capitalx ≥ 0 (cf. Figure4).

Such a dividend strategy naturally appears for diffusion risk reserve processes and transaction costs
for dividend payments (cf. Jeanblanc-Piqué & Shiryaev [74] for a simple diffusion model with con-
stant drift and volatility, Cadenillas et al. [34] for a mean-reverting diffusion process, Paulsen [98] for
general diffusion processes; Cadenillas et al. [33] also take proportional reinsurance into account).

For risk models with jumps and an impulse strategy of the above type, the literature is still scarce. For
the case of spectrally negative Lévy risk processes see Loeffen [90]. Albrecher & Thonhauser [10]
study the Cramér-Lundberg model with both proportional and fixed transaction costs and also discuss
the role of these simple impulse strategies.

Another somewhat intuitive payout scheme for profit participation is to pay a certain proportion of the
premium income whenever it represents new gains (i.e. whenever the risk process is in a running maximum).
Although there are no criteria known under which such a payment strategy is optimal, it leads to surprisingly
simple identities between the survival probability with and without those payments and has another natural
interpretation in terms of tax payments on profits of the insurance business (cf. Albrecher & Hipp [6] and
Albrecher et al. [1, 8]).

4 Value Functions

Let us now consider in more detail ways to measure the value ofa certain dividend strategyL. Letδ > 0 de-
note a constant discount factor (this can be interpreted as reflecting the preference of shareholders to receive
dividend payments earlier rather than later during the lifetime of the reserve process, see e.g. Borch [30]).
The indexx in the notationEx will indicate in the following that the initial capital isx, i.e.P (RL

0 = x) = 1.
The classical performance measure for a certain dividend strategyL (in this context going back to
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Figure 4. A sample path of the Cramér-Lundberg model under an impulse control

de Finetti [39]), is the expected value of discounted future dividend payments

VL(x) = Ex

(

∫ τL

0

e−δt dLt

)

. (4)

If instead of càglàd processesLt one defines càdlàg processes to be admissible (cf. Section3.2), then (4)
has to be modified to

V L(x) = Ex

(

∫ τL−

0−

e−δt dLt

)

.

The associated optimization problem then consists of finding

V (x) = sup
L∈Π

VL(x) (5)

and an optimal admissible strategyL∗ such thatV (x) = VL∗(x) holds. The set of admissible controls
denoted byΠ will vary depending on the generality one aims at. For obtaining explicit solutions and simple
decision rules, one may want to focus on barrier or thresholdstrategies; for solving the problem in a general
form one will want to deal with general càglàd cumulated dividend processes as specified in the previous
section.

The general problem for the classical Cramér-Lundberg risk reserve process was first solved by Gerber
in [50] via a limit of an associated discrete problem and later on bymeans of stochastic control theory
by Azcue & Muler [16], who also included a general reinsurance strategy as a second control possibility.
See also Schmidli [112] and Mnif & Sulem [95] who allow for additional dynamic XL-reinsurance and
Albrecher & Thonhauser [9] for a reserve process under a force of interest. For all these cases in general a
band strategy turns out to be optimal among all admissible strategies.

For the particular case of exponentially distributed claimamounts, the band strategy collapses to a bar-
rier strategy (this was proven by Gerber [50] in 1969 as a by-product of the general characterization). In
Albrecher & Thonhauser [9] it is shown that the optimality of barrier strategies in theclassical model with
exponential claims still holds if there is a constant force of interest. Recently, Loeffen [89] showed that bar-
rier strategies maximize the expected discounted dividendpayments until ruin also for general spectrally
negative Lévy risk processes with completely monotone jump density (and Kyprianou et al. [80] relaxed
this condition on the jump densities to log-convexity). This for instance establishes the optimality of bar-
rier strategies in the Cramér-Lundberg model with Pareto claim sizes. However, despite this collection
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of sufficient conditions for the optimality of barrier strategies, explicit necessary conditions on the model
parameters are still not available up to now.

In the general diffusion setup the optimal dividend problem(5) was completely solved by Shreve et
al. [113] and a barrier strategy was identified to be optimal. The special case of constant drift and diffu-
sion coefficient was then solved again by slighty different means in Jeanblanc-Piqué & Shiryaev [74] and
Asmussen & Taksar [13] (Radner & Shepp [103] study the situation where the drift and volatility can also
be controlled within a discrete set of possible values). In addition to the dividend control, Højgaard &
Taksar [69, 70] also considered the possibility of proportional reinsurance and optimal investment. For an
overview on this and variants of these problems for diffusion processes see Taksar [117].

If one wants to maximize (4) over the set of absolutely continuous controls with a bounded intensity,
then a threshold strategy turns out to be optimal in a diffusion risk model (cf. Asmussen & Taksar [13]) as
well as in the compound Poisson risk model with exponentially distributed jumps anda < c (cf. Gerber &
Shiu [56]).

Motivated by optimal consumption problems from mathematical finance (see e.g. Merton [93]), Hubalek
& Schachermayer [71] propose a value function measuring the expected discounted utility of a dividend
stream and discuss the related optimization problem for a diffusion risk reserve process. They show that
under so-called Inada conditions on the utility functionu : [0,∞) → [0,∞) (namelyu′(0) = ∞ and
u′(∞) = 0), the optimal strategy has to be absolutely continuous. Thevalue of a strategyL is then defined
by

VL(x) = Ex

(

∫ τL

0

e−δsu(ls) ds

)

. (6)

Although the measurement of a utility of a density may seem strange at a first glance, this can be
motivated by interpreting the problem as a limit of a discrete model, where the cumulated utility of the
payments from each time step is considered (cf. Borch [30]). Another utility-based approach is due to
Grandits et al. [60], who propose to measure a strategy by its expected (in theircase exponential) utility of
the cumulated discounted dividend payments,

VL(x) = Ex

(

u

(

∫ τL

0

e−δt dLt

))

. (7)

For a diffusion model a certain time-dependent barrier strategy turns out to be optimal. However, the
concrete form of this barrier is difficult to obtain, as it is given through a defining integral equation.

When including transaction costs, the inclusion of a utility per payment seems to be natural (e.g.u(z) =
(kz − K)γ/γ with γ ∈ (0, 1]). Then the value of an admissible impulse strategyS = {(τi, Zi)}i∈N is
measured by

VS(x) = Ex

(

∞
∑

i=1

e−δτiu(Zi)I{τi<τS}

)

. (8)

The corresponding optimization problem is considered in Paulsen [98] for a general diffusion process,
in Jeanblanc-Picqué & Shiryaev [74] for the constant drift and volatility case and in Cadenillas et al. [34] for
a mean-reverting diffusion. Albrecher & Thonhauser [10] characterize the value function according to (8)
for the classical model. In a similar way as for general càglàd controls, Loeffen [90] proves that a simple
impulse strategy, as introduced in Section3.2, is optimal for spectrally negative Lévy risk processes when
there are fixed transaction costs with each dividend payment, γ = 1 and the density of the jump distribution
is log-convex.

Of course there are various possibilities to extend the definition of the value function. We now mention
two more examples that may be of particular interest for insurance issues. The first one introduces some
sort of reward for avoiding early ruin, modelled by a discounted stream of payments with densityΛ > 0
until ruin and a corresponding value function

VL(x) = Ex

(
∫ τ

0

e−δt dLt +

∫ τ

0

e−δtΛ dt

)

. (9)
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The additional parameterΛ can be used for balancing between safety and profit in the portfolio (al-
ternatively, one can interpret the additional summand as a certain discounted penalty at ruin, cf. Gerber et
al. [53]; for the special case of expected time to ruin (δ = 0) see Borch [29]). For this value function,
Shreve et al. [113] and Boguslavskaya [28] identify the optimality of barrier strategies in diffusion models,
and in [28] also the inclusion of transaction costs is investigated. Thonhauser & Albrecher [119] estab-
lish the optimality of barrier strategies under (9) for the classical risk model with exponentially distributed
claim amounts. For recent extensions to general Lévy risk models see Loeffen [91] and for an inclusion of
additional investment possibilities see Wang & Zhang [121].

Another approach is to allow for capital injections from theshareholders when the surplus falls below
zero to make it again positive and avoid bankruptcy. Dickson& Waters [42] and Gerber et al. [57] assumed
that the deficit at ruin has to be paid by the shareholders and hence looked at choosing an optimal barrrier
that minimizes the expected difference between discounteddividend payments until ruin and deficit at ruin
for a compound Poisson model. Assume now more generally thatthese capital injections can occur at any
point in time with the goal that the surplus does not become negative and denote byZ = (Zt)t≥0 the
injection process. Then the controlled process is of the form

RL,Z
t = x+ ct−

Nt
∑

n=1

Yt − Lt + Zt.

The value of such a control pair(L,Z) can naturally be defined by

VL,Z(x) = Ex

(
∫ ∞

0

e−δt dLt − θ

∫ ∞

0

e−δt dZt

)

,

whereθ > 1 is a weight for the expected discounted capital injections.The associated general maximization
problem was recently solved in Kulenko & Schmidli [77] for the classical risk model, see also Avram et
al. [15]. It turns out that the optimal strategy is now for arbitraryclaim size distributions a barrier strategy
and injections should only take place when the process is negative. Shreve et al. [113] solved the analogous
problem for a general diffusion process. He & Liang [62] deal with this problem in a diffusion framework
allowing general dividend strategies and including transaction costs on the reinvestments, and Paulsen [99]
investigates the diffusion setup when both dividend payments and reinvestments are charged by transaction
costs.

The idea of putting different constraints on the probability of ruin of the controlled reserve process is
used in Paulsen [97] for a general diffusion model and Bayraktar & Young [19] for a diffusion model and a
utility criterion on the value of a strategy. Hipp [63] solves such a problem in a discrete framework. When
fixing a dividend strategy, Bayraktar & Young [20, 21] use an investment control possibility for minimizing
the probability of ruin of the controlled diffusion reserveprocess.

5 The Dynamic Programming Approach

In the following sections we will describe in more detail thenature of the mathematical challenges when try-
ing to identify optimal control strategies in an insurance environment. We will start with a discussion of the
dynamic programming approach, which is at the heart of the solution of most dividend maximization prob-
lems in a Markovian environment (for a general overview see Fleming & Soner [44] and Schmidli [112]).

The dynamic programming principle has its origin in discrete-time optimization (see e.g. [122]) and
basically states that one tries to behave optimally in a firsttime interval and then optimally from there on. In
continuous time this leads to a so-calledHamilton-Jacobi-Bellman (HJB) equation. Typically the derivation
of this equation forV (x) involves several assumptions that are difficult to verify directly. Hence the usual
procedure is to derive the equation heuristically and finally prove separately (in a so-calledverification step)
that its solution is indeed the required value function of the optimal control problem. This verification step
can consist of two alternative procedures: either one can show that the value function indeed fulfills the
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HJB equation (by justifying all steps in the derivation of the equation rigorously), or one is able to show
that the obtained solution of the HJB equation actually dominates the values of all other possible strategies
(usually by martingale arguments).

5.1 Non-Singular Controls —the Classical Case

Let Π be a set of admissible strategies andR be one of the risk reserve processes introduced before. The
value functionV (x) of the maximization problem is said to fulfill the dynamic programming principle if
for any stopping timeγ the equation

V (x) = sup
L∈Π

Ex

(

∫ τL∧γ

0

e−δs dLs + e−δ(τ∧γ)V (RL
τL∧γ)

)

(10)

holds. In other words, maximizing the dividend payments in an interval[0, γ) and from there on continuing
in an optimal way is equivalent to maximizing the payments over the whole lifetime of the reserve process.
Now replaceγ by some smallh > 0 and suppose that a certain admissible controlL admits a density
processl = (lt)t≥0 which is constant fort ∈ [0, h). Then clearly

V (x) ≥ Ex

(

l

∫ h∧τL

0

e−δt dt+ e−δ(h∧τL)V (RL
h∧τL)

)

. (11)

Dividing (11) by h and subtractingV (x) results in

0 ≥
1

h
Ex

(

l

∫ h∧τL

0

e−δt dt+ e−δ(h∧τL)V (RL
h∧τL) − V (x)

)

. (12)

We now want to take the limith→ 0 and assume thatV is in the domain of the generatorLl of the reserve
controlled by the constantdividend densityl (at this point, several other assumptions enter that make the
derivation heuristic). For the compound Poisson model thisgenerator (compare with (2)) is for instance
given by

Llg(x) = (c− l)g′(x) − λg(x) + λ

∫ x

0

g(x− y) dFY (y). (13)

One then arrives at
0 ≥ LlV (x) − δV (x) + l.

Suppose now that in (10) the supremum is attained for a strategyL∗ (again assumed to be absolutely
continuous but now not necessarily constant in[0, h)), so that (12) holds with equality:

0 =
1

h
Ex

(

∫ h∧τL
∗

0

e−δtl∗t dt+ e−δ(h∧τL
∗

)V (RL∗

(h∧τL∗)) − V (x)

)

.

This indicates that
0 = sup

l

{

LlV (x) − δV (x) + l
}

(14)

should hold. All this is under the assumption that interchanging limit and expectation, and taking the
supremum is allowed. Equation (14) is called the Hamilton-Jacobi-Bellman (HJB) equation associated
with the dividend maximization problem

V (x) = sup
L∈Πac

Ex

(

∫ τL

0

e−δt lt dt

)

, (15)
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whereΠac denotes the set of absolutely continuous admissible strategies (a solution of (15) is given
in [111]).

For a diffusion risk reserve process (constant driftµ, volatility σ > 0 and generator (3)), the HJB
equation corresponding to (15) is given by

0 = sup
0≤l≤l∞

{

(µ− l)V ′(x) +
σ2

2
V ′′(x) − δV (x) + l

}

, V (0) = 0, (16)

(see e.g. [13]) and the one corresponding to (6) with u(l) = lα/α andα ∈ (0, 1), by

0 = sup
0≤l

{

(µ− l)V ′(x) +
σ2

2
V ′′(x) − δV (x) + u(l)

}

, V (0) = 0, (17)

(cf. [71]), where due to the Inada conditions in the utility framework the upper boundl∞ does not need to
be specified.

When the reserve process is given by a diffusion,V (0) = 0 is an obvious initial condition for the
HJB equation, because when starting in0 the driving Brownian motion immediately becomes negative with
probability1 (see Rogers & Williams [105]) and there will be no future dividend payments. In contrast,
there is no obvious initial value in the compound Poisson model, because there is a positive probability
for the reserve to recover from the value0. We will see later how this fact influences the mathematical
characterization of a solution of the maximization problem.

Remark 2 From the statement of the HJB equation(14), we immediately get that a candidate solution
suggests a Markov control as the optimal strategy, i.e. the density only depends on the present statex of the
process (and not on the whole filtration up to a certain timet). This meanslt = l(Rt) with

l(x) := arg max
l

{

LlV (x) − δV (x) + l
}

.

Further note that classical dividend maximization problems are stated as infinite-time horizon optimization
problems and therefore stationary controls are natural (for an exception see[60]).

The common notation of specifying the HJB equation through the value functionV (x) is, due to its
heuristic derivation, a bit misleading, as one still needs to check by the verification arguments whether the
actual value function indeed satisfies the HJB equation.

5.2 The Singular Control Case

Let us now drop the assumption of absolute continuity ofL, i.e. we deal with the case of general admissible
controls, so that the density processl = (ls)s≥0 of a dividend strategyL is not necessarily bounded.
Focussing on the classical model and now plugging in the generator of the controlled reserve (13) into (14)
explicitly, we obtain

0 = sup
l≥0

{

(1 − V ′(x)) l + c V ′(x) − (λ+ δ)V (x) + λ

∫ x

0

V (x − y) dFY (y)

}

. (18)

One immediately observes that in the case ofV ′(x) < 1 for somex ≥ 0 the local maximizerl∗(x) and
more generally (18) is unbounded, so that both quantities do not make sense any more. On the other hand,
in the case ofV ′(x) > 1 we getl∗(x) = 0 and

0 = c V ′(x) − (λ+ δ)V (x) + λ

∫ x

0

V (x− y) dFY (y).

Restricting to1 − V ′(x) ≤ 0 for all x ≥ 0, we hence obtain the following rewritten HJB equation

0 = max

{

1 − V ′(x), c V ′(x) − (λ+ δ)V (x) + λ

∫ x

0

V (x− y) dFY (y)

}

. (19)
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The following observations also motivate heuristically the form of equation (19). First suppose that at
some pointx ≥ 0 it is optimal to pay a (possibly very small) lump sum dividendh > 0 and then continue
with capitalx− h (or stop ifx = 0), so thatV (x) = h+ V (x− h) which forh→ 0 indicatesV ′(x) = 1.
Secondly, if waiting and not paying dividends in some small interval aroundx ≥ 0 is optimal, one obtains
the second part of the right side of (19).

For diffusion risk reserve processes with constant driftµ > 0 and constant volatilityσ > 0 one obtains
along the same lines of arguments

0 = max

{

1 − V ′(x), µV ′(x) +
σ2

2
V ′′(x) − δV (x)

}

, V (0) = 0. (20)

For the value function (7) and exponential utility functionu(z) = (1−e−γz)/γ, the corresponding HJB
equation for the singular control problem then is

0 = max{Vt(x, t) + µVx(x, t) +
σ2

2
Vxx(x, t), −Vx(x, t) + e−δt(1 − γV (x, t)}, V (0, t) = 0.

Here it turns out necessary to use the additional time variable t ≥ 0 (for details see [60]).

5.3 The Impulse Control Case

Let us first consider the compound Poisson model. For the value function (8) in the impulse control frame-
work, we first observe that at pointsx ≥ 0 where it would be optimal to intervene, we should have
MV(x) = V (x), where the operator

MV(x) := sup
y admissible

{u(y) + V (x− y)},

gives the value of the best admissible intervention at the reserve levelx. On the other hand, if it would
be optimal not to intervene in an open interval around the point x, then conditioning on the first claim
occurrence in a small time interval[0, h] and lettingh→ 0 will result in

c V ′(x) + λ

(
∫ x

0

V (x− y) dFY (y) − V (x)

)

− δV (x) = 0.

These observations heuristically motivate the so-calledquasi-variational inequalities(QVI):

c V ′(x) + λ

(
∫ x

0

V (x− y) dFY (y) − V (x)

)

− δV (x) ≤ 0,

MV−V ≤ 0,
(

cV ′(x) + λ

(
∫ x

0

V (x− y) dFY (y) − V (x)

)

− δV (x)

)

(MV−V ) = 0,

or equivalently

max

{

cV ′(x) + λ

(
∫ x

0

V (x− y) dFY (y) − V (x)

)

− δV (x), MV−V

}

= 0.

For a rigorous treatment cf. [10]. For a diffusion model one just needs to replace the generator accord-
ingly and arrives at a similar equation (see [34] or [74]). The dynamic approach for stochastic impulse
control problems was introduced by Bensoussan & Lions [22, 23].
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6 Discussion of the HJB equation —Verification Arguments

In the previous section we saw how one can (heuristically) derive the HJB equation associated with a given
stochastic optimization problem. Now we want to link a solution of this equation to the value function of
the optimization problem. Crucial questions in this context are: Which types of solutions exist? Is the value
function a solution? Is the solution unique?

In general there are two ways to obtain a solution for the optimization problem based on the HJB
equation.

• It is possible to prove that there exists a unique solution tothe HJB equation of the given dividend
maximization problem. In the ideal case it is also possible to construct an explicit solution. Then a
so-calledverification theoremis needed that states that this solution dominates all othervalues that
can be achieved by admissible strategies, and that a strategy obtained by this solution is admissible
(and hence optimal). We then get that this unique solution ofthe HJB equation is the value function.

• It is possible to show that there exist solutions (in some sense) of the HJB equation, but uniqueness
is doubtful. Then a precise characterization of the value function is needed and one has to prove that
the value function indeed fulfills the HJB equation by verifying that all steps in the derivation of the
HJB equation are actually justified.

Once the value function is determined one has to identify thecorresponding dividend payment strategy
that realizes this value function (this is often non-trivial and it may even happen that such a strategy does
not exist, see e.g. Shreve et al. [113, Th. 4.3]).

Remark 3 As an alternative to the above full characterization of the optimization problem (the “analytic
way”), another quite common (Bensoussan et al.[24] call it “probabilistic”) approach in the literature is to
maximize a certain value function over a (small) restrictedclass of admissible strategies, say barrier type
strategies or simple impulse controls (cf. Avram et al.[15], Loeffen[90, 89], Gerber & Shiu[54, 56]). Then
in some cases it is possible to verify by comparison that the —within the restricted class— optimal strategy
is also optimal within the bigger class of general admissible strategies.

6.1 There is a unique solution

In some cases it is possible to calculate an explicit solution to the HJB equation (e.g. for (16) and (20),
cf. [13, 113]), whereas in other cases it is only possible to prove the existence of a classical solution
(e.g. for (17), cf. [71]). Classical solutionin this context means that the solution is as regular as required
by the equation (note that the crucial points in that respectare the junction points of the various parts of the
equation).

In many cases an explicit solution can be obtained along the following lines of argument: One can
reformulate the HJB equation (14) as

0 = sup
l

{LV (x) − δV (x) + l (1 − V ′(x))} , (21)

whereL is the generator of the uncontrolled reserve process given in Section2 (for notational convenience
we restrict ourselves here to the absolutely continuous case).

It follows that the optimal action with current reservex depends on whether1 − V ′(x) is larger than
zero or equal to zero. A first approach often is to assume thatV (x) is concave, in which case there will
only be one switching pointx0 such thatV ′(x) > 1 for x < x0 andV ′(x) ≤ 1 for x ≥ x0. This then
immediately suggests the control

l∗(x) =

{

0 x < x0,

l∞ x ≥ x0,
(22)
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wherex0 still has to be determined. The principle of smooth fit suggests a method to determinex0. It
states that the value function should be sufficiently regular at thefree boundaryx0 (sometimes also called
decision boundary, cf. Peskir & Shiryaev [101] and Kyprianou & Surya [82]), i.e.

Vl(x0) = Vr(x0),

V ′
l (x0) = V ′

r (x0) = 1,

whereVl andVr denote the solutions of the HJB equation forx < x0 andx ≥ x0 under the concavity
assumption (in the diffusion case one has the additional assumptionV ′′

l (x0) = V ′′
r (x0)). These conditions

allow for the calculation of the individual parts of the solution and an implicit determination of the crucial
point x0. In the diffusion setup it follows by easy calculations thatactuallyx0 is the only value ofx for
which one can pasteVl andVr such that the resulting function is twice differentiable.

The form of the problem indicated by the concavity assumption on the candidate value function is called
free boundary value problem. In Whittle [122] there are some conditions when a value function is twice
differentiable at the optimal decision boundary. When the guess on the concavity ofV and the smooth-
fit conditions were successful to obtain a solution of (21), then it remains to verify that this solution is
indeed the value function (the verification step). The basicidea in the verification theorem is often that for
an arbitrary admissible strategyL with density processl = (ls)s≥0, the processe−δ(t∧τL)V (RL

t∧τL), by
virtue of an (appropriate) Itô-formula and the dynamic programming principle, leads to a supermartingale

that then can be compared to a martingale resulting from the processe−δ(t∧τL
∗

)V (RL∗

t∧τL∗ ) with strategy
L∗ given by (22). This then establishesV (x) ≥ VL(x) for any other strategyL andV (x) = VL∗(x).

The mentioned martingale properties are usually established by a suitable application of the Itô formula
(or its extension for jumps, respectively). In particular,one has to make sure that differentiability properties
of V needed in the Itô formula actually hold (this is for instance automatically the case if the construction of
the solution via the smooth-fit principle succeeds). This step can sometimes require considerable technical
expertise.

Davis [38] considers the verification theorem as the mathematical motivation of the HJB equation.

6.2 There is no unique solution

For dividend maximization problems (4) in the classical risk model with arbitrary claim size distribution,
some difficulties may arise. This problem was first solved by Gerber [50] via a discretization and taking
the continuous-time limit. As already mentioned, he identified band strategies to be optimal in this context.
Only recently Azcue & Muler [16] used the dynamic programming approach to obtain the HJB equa-
tion (19) for this problem (they also included a dynamic reinsurancepossibility, see also Schmidli [111]).

The two main difficulties which arise when looking at (19) are the question of differentiability and
uniqueness of a solution. The uniqueness question is reallycrucial, because when starting with a wrong
solution to (19) the construction of an associated admissible strategy fails. There are certain parameter
constellations (e.g. hugeλ) such that the simple linear functionf(x) = x+c/δ solves (19) but the associated
strategy attaining this value (which ispay out the initial capitalx and subsequently all incoming premiums
ignoring potential ruin) is of course not admissible. This problem is mainly due to the missing initial value
for the HJB equation. As one can in this case usually not find a solution that is sufficiently differentiable,
one has to introduce other non-classical solution concepts, for instanceviscosity solutions. For the latter,
one replaces a function around a problematic pointx ≥ 0 locally by smooth functions that upperbound
and lowerbound (respectively) the original functionV . If V can be approximated from below (above) such
that the HJB equation becomes an inequality bigger (smaller) than zero for the approximating function,
one callsV a viscosity subsolution (supersolution, respectively). If both approximations are possible,V is
called a viscosity solution. This extended solution concept was first introduced in Crandall & Lions [37],
see also Crandall et al. [36]. For PDMPs this notion was used by Soner [115]. Schmidli [111] uses weak
solutions as a further alternative solution concept. For a mixed stochastic control problem that arises in
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a real options situation in a diffusion framework, where onehas to choose between paying dividends or
investing, viscosity solutions were recently employed by Vath et al. [120].

Let us now sketch the derivation of the solution of the HJB equation

max

{

1 − V ′(x), c V ′(x) − (δ + λ)V (x) + λ

∫ x

0

V (x− y) dFY (y)

}

= 0. (23)

It is possible to obtain directly from the definition (5) of V and the definition of the general admissible
strategies from Section3.2thatV is absolutely continuous and linearly bounded. The furthercharacteriza-
tion splits into two steps.

First a so-called comparison result (if a viscosity supersolution is bigger than a viscosity subsolution
in zero then this relation holds overR+) is needed and in a second step one shows that every viscosity
supersolution is dominating the value function (this is done in a similar way as one proves a verification
theorem). BecauseV is both a super- and subsolution, it has to be the smallest viscosity solution fulfilling
a linear growth condition.

Now it only remains to determine the dividend strategy associated to the correct solutionV to (23). In
the above example it turns out to be a band strategy defined by the sets

• A = { x ∈ [0,∞) | c − (δ + λ)V (x) + λ
∫ x

0
V (x− y) dFY (y) = 0 },

• B = { x ∈ (0,∞) | V ′(x) = 1 andc − (δ + λ)V (x) + λ
∫ x

0
V (x − y) dFY (y) < 0 },

• C = (A ∪ B)c.

In [111] an algorithmic procedure for obtainingV is described, in [16] and [9] explicit examples are
constructed which demonstrate the necessity of an extendedsolution concept. A policy iteration algorithm
for a related problem is constructed in [95].

7 Conclusion and Open Problems

It turned out that thecompletesolution of the seemingly simple problem of determining optimal dividend
strategies for insurance risk processes requires advancedtechniques from analysis, probability and stochas-
tic control. Although the understanding of the problem in the classical risk model as well as in the diffusion
model has now reached a certain state of matureness, there are still open questions.

• As discussed in Section4, a barrier-type strategy turns out to be the optimal choice in several model
situations, but even for the classical risk model there are still no explicit criteria on the model param-
eters available that are both necessary and sufficient for a barrier strategy to be optimal. Similarly,
necessary and sufficient conditions for a threshold strategy to be optimal are still unknown. Further-
more, a rigorous numerical analysis for the determination of the optimal strategies for given parameter
values needs to be developed.

• The research on dividend maximization problems under transactions costs and/or under utility criteria
in the classical model is just starting to develop. For the case of transaction costs, up to now a
complete characterization of the value function and some numerical ideas have been developed [10],
but a formal description of a strategy that is in general optimal is not available yet.

• Optimal dividend strategies under additional constraintson the probability of ruin (see e.g. Hipp [63]
for a particular case) and in general under constraints on the trajectories of the controlled process,
seem to be a very hard problem for a risk reserve process with jumps.

Furthermore, there are a wealth of open problems under modified model assumptions. In this context,
a particular line of potential future research is to consider the optimal dividend problem when the Poisson
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claim number process is replaced by a general renewal process, i.e. the Sparre Andersen risk model [116].
Li & Garrido [85] study properties of the renewal risk reserve process undera barrier strategy and Albrecher
et al. [2] calculate the moments of the expected discounted dividendpayments under a barrier strategy in this
framework, but Albrecher & Hartinger [3] show that even in the case ofErlang(2) distributed interclaim
times and exponentially distributed claim amounts a horizontal barrier strategy is not optimal anymore, as it
can be outperformed by a strategy that depends on the time elapsed since the previous claim occurrence. It
is still an open problem to identify optimal dividend strategies in this model. One can markovize the Sparre
Andersen model by extending the dimension of the state spaceof the risk process, taking into account
the time that has elapsed since the last claim occurrence. A reasonable strategy should also depend on this
additional variable. But correspondingly also the dimension of the associated HJB equation will be extended
which considerably increases the difficulties one is facingwhen analytically approaching this equation.

Finally, for risk reserve processes modelled by general spectrally negative Lévy processes, Loeffen [89]
and Avram et al. [15] study the dividend optimization problem from a probabilistic point of view. It is still
open to approach and solve this problem in this general setupby means of stochastic optimal control.

Acknowledgement. We would like to thank Ronnie Loeffen for a careful reading ofthe manuscript.
Supported by the Austrian Science Fund Project P-18392.

References

[1] A LBRECHER, H., BORST, S., BOXMA , O. AND RESING, J., (2009). The tax identity in risk theory - a simple
proof and an extension,Insurance Math. Econom., 44, 2, 304–306. .
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[102] PORTEUS, E. L., (1977). On optimal dividend, reinvestment, and liquidation policies for the firm,Operations
Res., 25(5), 818–834.

[103] RADNER, R. AND SHEPP, L., (1996). Risk vs. profit potential: a model for corporatestrategy, J. Econom.
Dynamics Control, 20, 1373–1393.

[104] RENAUD, J.-F.AND ZHOU, X., (2007). Distribution of the present value of dividend payments in a Lévy risk
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