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Optimality results for dividend problems in insurance

Hansj 6rg Albrecher and Stefan Thonhauser

Abstract.  This paper is a survey of some classical contributions andnteprogress in identifying
optimal dividend payment strategies in the framework ofemtive risk theory. In particular, available
mathematical tools are discussed and some challenges smebael that occur under various objective
functions and model assumptions. Finally, some open relsgaoblems in this field are stated.

Resultados de optimalidad para problemas de dividendos en s eguros

Resumen. Este articulo es una revista de algunos resultados ctagi@avances recientes en la iden-
tificacion de estrategias dptimas de pago de dividendad erarco de la teoria de riesgo para modelos
colectivos. En particular, describimos las herramientagematicas disponibles y discutimos algunos de
los retos que se presentan bajo diferentes funcionesabjesupuestos del modelo. Finalmente, presen-
tamos problemas abiertos de investigacion en esta area.

1 Introduction

After the introduction of the classical collective risk nedéh 1903 by Lundberg9d?] to describe the free
surplus process of an insurance portfolio, the probabilitsuin of such a portfolio was among the prime
guantities of interest in this field. However, a trajectofytiee surplus process that does not lead to ruin
in this model will exceed every finite level, which is typisalinrealistic in practice. That is why in 1957
de Finetti B9 proposed another, economically motivated, criterionht® actuarial world. Instead of fo-
cussing on the safety aspect (measured by the probabilityirgf he proposed to measure the performance
of an insurance portfolio by the maximal dividend payout tten be achieved over the lifetime of the
portfolio. In particular, he proposed to look for the exmettiscounted sum of dividend payments until
the time of ruin, where the discounting is with respect to saranstant discount rate > 0. Whereas

de Finetti himself solved the problem to identify the optirmach dividend strategy in a very simple dis-
crete random walk model, since then many research grougsttiad to address this optimality question
under more general and more realistic model assumptionsrailchowadays this turns out to be a rich and
challenging field of research that needs the combination@stfrom analysis, probability and stochastic
control. In contrast to typical control (and consumptiomlgems in finance, in this insurance context a
control action changes the value of the underlying, as tideld payments are subtracted from the current
surplus, so that the problems have a quite different flawnftheir counterparts in mathematical finance.
In this survey we would like to collect some crucial ideas dedelopments in this field and in particular
highlight the type of mathematical techniques and chaberigat occur in this field. Rather than attempting
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to provide an encyclopedic list of references we will ratteeius on methodological aspects and give links
to some classical and recent pertinent references. Foeatrguite extensive collection of references under
a slightly different focus see Avanzi{].

The above classical criterion is in line with the so-calledr@n model $8 which uses discounted
future dividend payments as an alternative to the genesabdited cashflows method for valuating a
company. At the same time this approach also was at deballer ®iModigliani [ 94] showed in a simple
model with quite restrictive assumptions on the market, wieen knowing exactly the investment strategy
of the company, the knowledge about future dividends is aetied for evaluating the value of the company.
However, the variety and complexity of more sophisticatetisastic models for an insurance portfolio
does not fit into the simple framework ¢i4] (see also DeAngelo & DeAngeld(, 41], Handley (1] and
Frankfurter and Wood/[5]) and it is widely believed that the discounted dividendprapch (and variants
of it) are still useful also from an economic point of view.

In Section2 we will briefly describe the classical collective risk motielsed on a compound Poisson
process and the diffusion model. These two models are thersiones of tractable continuous-time pro-
cesses to solve stochastic control problems in this cont&lthough the diffusion model is not directly
appealing as a model for insurance purposes, where cldaitywill cause jumps in the surplus process,
we indicate an argument why it is sometimes useful in a gegpproximative sense. Both the compound
Poisson model and the diffusion model are Markovian and é&éme dynamic programming approach can
be used directly to address the problem of determining thenap dividend strategy. In fact, it seems
that all established solutions of optimal dividend proldamthe literature rely in one way or the other on
the dynamic programming principle. This solution procedamd its application are going to be described
in Section5 and Sectiorb. A potential alternative could be thdual methodintroduced for a stochastic
framework by Bismut26], which works well for portfolio optimization problems imfance (see Kramkov
& Schachermayer76] for the general case). But due to the intervention of therobimto the underlying
surplus process, it seems that the resulting set of possdjkctories is too restricted to make the dual
method work for insurance problems.

The dynamic programming approach leads to the so-calledittemdacobi-Bellman equation, which
(depending on the underlying risk model) contains elemehasdifferential, partial differential or integro-
differential equation. A solution to this equation is thest get automatically the optimal solution of the
optimization problem, but a good guess for it that then hdsetoerified in a separate step. The equation
itself can be interpreted as the natural continuous limihefdynamic programming principle from discrete
optimization (see Whittle]27) which postulates that an optimal policy for the whole tispan also has
to be the optimal one in each small time step. A reference ffmrete-time stochastic optimization is
Bertsekas & Shreve?f]. For further references on optimal dividend results inrcoite-time models we
refer to Avanzi [L4].

The remainder of this survey is organized as follows. Sa@imtroduces the type of continuous-time
insurance risk models for which optimal dividend probleras typically be solved. Secti@first discusses
several possibilities of control actions on the insuraranfplio surplus process and then introduces various
kinds of dividend strategies that later turn out to be optinmaler certain objective functions. Furthermore
references to literature that studies properties of thdtieg controlled surplus process are given. Section
deals with various criteria to measure the value of dividenategies and gives links to results that establish
the optimality of respective strategies. In Sectwe then discuss the dynamic programming principle
and typical mathematical approaches to derive an equatiothé value function of interest. Sectién
subsequently summarizes the mathematical challenges step of verifying whether a candidate solution
is indeed the optimal solution. Finally, in Sectidmve conclude and state some open problems in the field.

2 Collective Risk Models

In the following we will always use a probability spat@, F, P) on which all stochastic quantities are
defined.
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2.1 Crameér-Lundberg Model

The Cramér-Lundberg risk model (also called the classisélmodel or compound Poisson model) de-
scribes the free reserve = (R;):>o in an insurance portfolio by a stochastic process of the form

Ny
Rt:x—l—ct—ZYk. 1)
k=1
The first ingredient is the deterministic initial capital> 0. The premiums are assumed to be collected
continuously over time with constant intensitgind the total claim amount at timés given by a compound
Poisson procesS = (S;);>o With S, = j.vz‘l Y;, where the numbeV,),>( of claim occurrences up to
time¢ > 0 is a homogeneous Poisson proc@ss= (N;);>o with intensity A > 0, i.e. Ny ~ Poi(At).
The claims are a sequence of positive independent and éddéiptdistributed random variablgg’; };en
with distribution functionfy. One crucial assumption in the classical risk model is tiiependence of
N and{Y;};cn. As a consequence of the Poisson assumption for the claimtioguprocessV, the inter-
occurrence time$§W; };en with W; = T; — T;_; are independent and identically exponentially distridute
iid

{Wi}tien ~ exp(A).

The process as given in 1) lies in the intersection of the class of spectrally negaltiévy processes
and the class of Piecewise Deterministic Markov Proce$deMp’s, see Davis3d]). As a consequence it
is itself a strong Markov process. Some of the resultsHanentioned later on will have mathematically
natural extensions to the class of spectrally negativeylfroecesses. Whereas for actuarial applications
the practical interpretation of this more general procésssds somewhat limited, using the general theory
sometimes leads to a quite convenient analysis (for instéam¢erms of scale functions), which is also
applicable in the special case of the Cramér-Lundberg mnode

Definition 1 The time of ruinr denotes the first entrance time of the reserve progess(—oo, 0),
T =7(x) =inf{t > 0suchthatR, <0 | Ry =z }.
The probability of ultimate ruin is defined as
P(z) = P(1(x) < 00).
The survival probability i€/ (z) = 1 — ().

The so-calledhet profit conditiorrequires to choose the premium intensity larger than the@®p loss
in a time interval of length, ¢ > Ay = E(S;) wherep = E(Y1). A result from the theory of random
walks [L0€ shows that ifc < Ap = E(S;), ruin occurs almost surelyp(z) = 1. If ¢ > Ay, then
P(lim;—,~ R+ = o) = 1. The following operator which is applied to a suitable fuowty (for details
see B8 or [104) is called the infinitesimal generator of the Markov prac&s

0] 0 e
ﬁg(l‘,t) = ca_z(x7ﬁ) I{xZ()} + a_i(x7t) + I{zZO})‘ (/ g(x - yat) dFY(y) - g(l‘,t)) ) (2)
0

which will be needed later on.

2.2 Diffusion Approximation of the Model

We will only give a brief illustration of the ideas of diffusn approximations for risk reserve processes.
Overviews and numerical comparisons of different typespgraximations are given in Grandeb],
Asmussen{Z] and Schmidli [L10.

Letb > 0 anda € R be two constants, then a Markov procéssvhich, for smallh, fulfills

E(Xiyn — X¢ | Ft) = ha,
E ((Xt+}z — Xt - ha)2 | .7:,5) = hb2,
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with inifinitesimal drift « and variancé?, is of the formX, = at + bW, for a Brownian motioniV;.
ThereforeX is called a Brownian motion with drift, or, loosely speakiagliffusion process with constant
drift and volatility. The basic idea behind such an appraion is to define a sequence of classical reserve
processes, which converge weakly to some Brownian motidh drift. Since for that special type of
process explicit results for distributions of first hittitignes exist, these can be used as an approximation
of the ruin probability of the classical reserve processt iBladdition to their tractability, also from an
optimal stochastic control point of view such approximatigeem to be interesting. Ihd] Bauerle proves
the convergence of values and strategies of solutions teidetid maximization problem solved by Schal
in [107) for a PDMP risk reserve process to the value and optimatiegiyeof its diffusion approximation.
The following basic construction is due to Iglehar?]. He defines a sequence of classical reserve
processe§ R(™},,cn, where the components of theh process are given by the initial capita] > 0,
the premium intensity:;,, > 0 and independent identically distributed claim amothg,(”)}ieN with
E(Y,") := p, > 0andVar(¥,"”) := 02 > 0. The claim counting proces¥ is given by a renewal
process with interclaim timefiV; };cn, see p9 or [104, for whichE(W;) = 1/X > 0 and

Ri”) =z, +cnt — S t €10,1],

nt
Nnt

S =y v
i=1

Note, that the distribution of the claim amounts may vanhwit whereas the claim counting process stays
the same for everR(™). The reference reserve procdd$or which the approximation is valid is

N
Rt:a:JrcthYi,

i=1

with E(Y;) := p > 0 andVar(Y;) := o2 > 0. Under some technical conditions (s€€]) the sequence of
classical reserve processes converges weakly to a stmcpeastess of the form

z+ T+ o2,

wherel’ = (T';);>0 With Ty = (¢ — Au)t andW = (W;);>¢ Iis a standard Brownian motion. Later on
we will sometimes refer tgeneraldiffusion processes, which will be solutions of stochadifterential
equations of the following type

day = p(we, t) dt + o(x, t) AWy, To = .
The infinitesimal generator for such a process is then giyen b

(e,t) 4 T 00y (3)

7) 0
Lo(a,t) = 5/ (@,t) + pla,t) s

99
ot oz
3 Model Extensions and Possibilities of Control

The classical risk model in Sectighl and its diffusion approximations in Secti@2 suggest two pos-
sibilities for an insurer to intervene in the surplus pragesmmely the choice of the initial capitaland
the choice of the premium intensity(respectively the drift in the diffusion approximationhn practice
there will be more possibilities to influence and control peeformance of the insurance portfolio. In the
following we will outline some of them.
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3.1 Reinsurance and Investment

In 1995, Browne $1] started to apply methods from the theory of stochasticneglticontrol of diffusion
processes in the context of insurance. He considered a Baowmotion with drift as a model for the surplus
process and included the possibility for the insurer to $thgeme fraction of the reserve dynamically over
time into a financial asset, where the price of that financsakais modelled by a geometric Brownian
motion (cf. Black and Schole&T]). The goal is to identify an investment strategy such thatgrobability

of ruin of the controlled reserve process is minimized. Hioya Plum consider the same problem for a
classical compound Poisson risk reserve proces84dhgnd in a more general framework i6g]. In the
context of the classical model, the control variable is &valued cadlag proces$ = (A;):>o adapted

to the history of the aggregate claims procéss= (S;):>o andW = (W;);>0, Which is the standard
Brownian motion describing the pride of the financial asset with P, = P;(m dt + o dW;) and P, = p.
The controlled reserve proceBs' (strategyA) is determined by the stochastic differential equation

AR} = (¢ + Aym) dt 4+ Ao AW, — dS;, Ry ==

The asymptotic behavior of the probability of ruin under tgimal investment strategy is e.g. considered
in Hipp and Schmidli §6], Gaier and Grandits4[/] and Gaier et al.48]. Another possibility to reduce
the probability of ruin in the classical model is to use remasice. Here the insurer passes on some of its
premium income to a reinsurer, who in turn covers a certaiction of the occurred claims. Let a function
b: [0,00) — [0,00) with 0 < b(z) < z denote the retained amount of the insurer for a claim of sigeich
that the amount — b(z) is covered by the reinsurer). This constitutes a per-risisteance coverage. The
premium income kept by the insurer is theiit) < ¢t and depends on the specificatiorbof he controlled
processk? is in this case given by

N,
Ry =z +cp(t) = ) b(Yy).
=1

Two well-studied types of reinsurance are proportionaiserance, wherkz) = ~z for somey € (0, 1],
and excess-of-loss (XL) reinsurance, whigre) = min{z, M} for a retention level > 0. Schmidli [L0g
uses modern stochastic control theory to study the optifmaice of dynamic proportional reinsurance to
reduce the probability of ruin in the (otherwise) classidsk model. Heredynamicrefers to a strategy
where the proportiofy = (;):>¢ is a predictable process, adapteqﬂib}tzo, with respect to the history
of R’, e.g. at claim timel; the proportion has to be fixed using information only up togtil—. In [67]
the same problem is studied for dynamic XL-reinsurance Ippkind Vogt. Schmidlif09 uses the results
from [64] and [L0] to combine investment and dynamic reinsurance for themization of the probability
of ruin. While in the diffusion setup it is sometimes possibd calculate quantities of interest explicitly
(see B1)), this is not the case in models including jumps of the resgrocess. The above mentioned
papers dealing with the classical model give proofs of thsterce of a minimal probability of ruin and the
existence of an optimal strategy, but only provide ideasHeir numerical evaluation.

3.2 Dividends

Let us now define the so-calledimissible dividend strategie3he filtration 7 = (F;>(), which we are
going to use, is always the one generated by the uncontimitezbsses (in the diffusion case by the driving
Brownian motion, in the classical case by the compound Boigsocess). The basic idea for modeling
a dividend policy is to introduce a stochastic procéss- (L;);>o representing the cumulated dividend
payments up to timé. From the interpretation as a dividend strategy, it is redtiarimpose the following
four conditions on’:

(i) ruin does not occur due to dividend payments,Ad.; < R (whereR} denotes the controlled risk
process)
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(i) Lo = 0 and the paths of are non-decreasing,
(i) payments have to stop after the event of ruin,
(iv) decisions have to be fixed in a predictable way.

Condition(iv) gives reason to look at caglad procesbkewhich are left-continuous with existing limits
from the right €, = L;). We hence call a dividend stratedy= {L,};>( admissiblef it is caglad for
all t > 0 and fulfills (i), (i) and(iii) above (in particularl; then is previsible, i.e7;_-measurable). The
controlled process in the compound Poisson model is defilzed v

Ny
Rf =w+ct—) Yi— Ly
k=1

The cadlag property of the reserve process and the @¢gmigperty of the dividend process imply that
Rl +# Rl isalways dueto aclaiman@”, # R is due to some (singular) dividend payment. This caglad
assumption is for instance used in Azcue & Mul&é][and Albrecher & Thonhauseg] in a compound
Poisson framework. Alternatively, it is also possible tosider previsible cadlag strategiés which
preserve the cadlag property of the risk process for tmgrotled process. But then —in order to allow
lump sum payments at= 0 (one has to také,_ = 0) and to exclude payments at the time of ruin— the
optimization criterion has to be slightly modified (we wilime back to that later on, see also Schmitilij]
and Mnif & Sulem P5]). The essential difference between using a cadlag @giad control process is
observing the process after or before a possible divideydhpat (cf. [L17). If the uncontrolled risk
process is a diffusion, the requirement thais F,_-measurable is equivalent to requiribgto be adapted
(i.e. F;-measurable for all > 0). The controlled diffusion process is

t t
R£=x+/ u(RSL,s)der/ o(RL,s)dW, — L.
0 0

This definition is in line with the one of Shreve et al.1[§ and the one for general controlled Markov
processes presented in Fleming & Son&f [ Again it is also possible to use cadlag controls insteasds
done for constant ando by Asmussen & Taksarif], see also]17.

3.2.1 Analytic Properties of L

In many situations it is useful to restrict the general clafssdmissible controls further. A natural subclass
of admissible control strategies are the absolutely contils ones. Such strategiésadmit an adapted
nonnegative density proceks- (I5)s>o such that

t
0

To avoid payments after ruin, one has to additionally regjie= 0 for ¢t > 7%, wherer” denotes the time
of ruin of R”. In order to exclude singularities, one usually assumeisthieadensity process is bounded,
0 <ls <lyx < oo forall s > 0. Note that this restricted type of control, now determingdtb density
process, then does not include the possibility of lump suymaats (i.e. jumps of., which would be
singularities ofl). In Fleming & Soner 44] a complete picture of admissible controls (or more gemeral
admissible control systeinand the use of progressively measurable control procésseg!;),>o for
Markov diffusion processes can be found. Moreover thedeoasiigive a construction how to move from
a control represented by its —possibly unbounded— densitych a priori does not make sense, to its
integrated representatidn

In some situations (examples will be given below) it can lmnghthat the singular parts of a strategy do
not contribute to the resulting wealth, and hence the abslglaontinuous controls are a sufficient choice
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for solving the general maximization problem. This reséritclass of controls is for instance considered
in Asmussen & Taksarl]3], Jeanblanc-Picqué & Shiryaev4], Schal [L07] and Gerber & Shiuj€]. In
Schmidli [L17] the solution of the restricted problem in the Cramér-Lbexd) model is shown to converge
pointwise to the general solution &s — oc.

In aninsurance context the introduction of transactiontiscolsarging the dividend payments seems to be
relatively new (although there is an early discussion by [L0Z]) and up to now mostly problems in a
diffusion setup are solved, see for example JeanblanaiBi&dShiryaev [4], Paulsen $8] and Cadenillas
et al. [33, 34]. For the compound Poisson risk reserve process, the effé@nsaction costs on the optimal
control problem was recently investigated in Albrecher &mhauser(. The inclusion of transaction
costs naturally leads to another restricted class of adlmiesstrategies known as impulse controls. Let us
assume that every dividend payment is charged by propaiteomd fixed costs such that the shareholder
receiveskz — K from a payment of size (K > 0 andk € (0,1)). Then dividend strategies with an
absolutely continuous component lead to an unbounded imegstyoff for the shareholder and are con-
sequently not appropriate. Ampulse controlS = {(;, Z;) }:en is now instead a sequence of increasing
intervention timeg; and associated control actiods, which fulfills the following four conditions:

e 0 <7, <7y as.forali e N,

7; is a stopping time with respect to the filtratigh = o{ Rf_ | s <t}fort >0,
e 7, is measurable with respect 16,
o P(lim; oom; <T)=0foralT > 0.
The controlled procesB® = (R} );>o based on an uncontrolled reseeis consequently given by

(o)
R} =R = I Zi.
i=1
If the uncontrolled model has continuous sample paths, themeasurability condition on the stopping
timesr; can of course be replaced by measurability with respectedistory of the process. For further
details on impulse controls for PDMPs and also on the existeri controlled processes see Davi§][
Other standard references in this context are Bensoussaor® [23] and @ksendal & Sulen®f).

Remark 1 In the literature on optimal stochastic control one ofterceumnters the concept atlaxed(or
generalizeyicontrols, which goes back to Flemifig3] (for the deterministic case see Yourig@d). The
basic idea is to enlarge the set of admissible controls (tvka&e values in a compact control spaégby
defining the set of relaxed controls consisting of the setaafsurable functions:: [0, 00) — P(U) (where
P(U) denotes the set of probability measureslon In other words, one allows for stochastic strategies
and a classical control, € U then corresponds to a Dirac measuig. For instance, if the drift of a
controlled diffusion depends continuously on the coniral U, then, applying a relaxed contreh,, one
gets the process

' t
R =z + / / (s, u)yms(du) ds + / o(s)dWs.
0JU 0

A natural question is now whether such a randomization @ftegiies can substantially increase the value
of the objective function in the stochastic control probléas it is for instance the case for the value
of non-cooperative deterministic games in game theory)gdneral, in the diffusion case the so-called
chattering lemmatates that for any relaxed control there existsi@plecontrol approximating the relaxed
one arbitrarily closely (i.eU is dense in the set of relaxed controls, see Kushngrfor an overview and
Davis[38] for a short comment on the introduction of randomized sgig®in the PDMP case). Explicit
calculations for certain simple randomized dividend stgags in a compound binomial risk model are given
in Tan & Yang[11§ and Landriault[83.

The concept of relaxed strategies can in any case often Ipéuhé&br proving the existence of an op-
timal control (at least in the relaxed sense), when therstexiosimple optimal strategy, maximizing or
minimizing a given cost functional.
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Figure 1. A sample path of the Cramér-Lundberg model under a control of threshold type

3.2.2 Some Particular Control Strategies

We will conclude this section by introducing some concreédiaknown strategies that will turn out to be
optimal in certain situations.

Threshold strategies As an example for an absolutely continuous control ftkri@sholdlevel b > 0 and

choose a Markovian density procdss= /(z) = a I;;~5 With a > 0. The cumulated dividend
payments process is then given by

tAT
Lt = / a]{R572b} ds.
0

Such a strategy pays out dividends continuously at acatdenever the current reserve is above
leveld (cf. Figurel).

The articles by Gerber & Shilbf], Frostig [4€] and Lin & Pavlova B6] deal with such a strategy
in the classical model and Gerber & Shif] in the diffusion model. Kyprianou and Loefferi{]
discuss the existence of spectrally negative Lévy prasessntrolled by a threshold strategy.

An extension of the threshold strategy is to fix multiple #iveldsb; and associated intensities.
Kerekheshai5], Zhou [124], Albrecher & Hartinger {] and Lin & Sendova§7] study properties of
the resulting risk reserve process in the classical modelatso Badescu et al. .

Barrier strategies For a fixed barrier heiglit > 0, the cumulated dividend payments are described by

302
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tAT
0

Such a strategy pays out all the reserve abipuemediately att = 0+ (representing a singular
component in the strategy) and subsequently all incomiegiprms that lead to a surplus abave
are immediately distributed as dividends. Fos 0 the controlled risk process is hence reflectebl at
and there are obvious connections to concepts of first gitimes of the process atfrom below and
the local time of the process @&{cf. Figure2).

This intuitively natural strategy for profit participatian the risk process was first proposed by

de Finetti B9 in 1957 and he showed that a certain barrier strategy marisrexpected discounted
dividend payments if the underlying risk reserve processadelled as a simple random walk. For
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risk reserve

RO cumulated

dividends

ruin

Figure 2. A sample path of the Cramér-Lundberg model under a control of barrier type

further situations in which barrier strategies turn out éodptimal we refer to Sectioh There are
many papers in the literature that deal with specific propeuf the risk reserve process resulting
from a barrier strategy. For instance, Paulsen & Gjessing][investigate the effect of barrier strate-
gies on risk processes in an economic environment. Irbagkstudies asymptotic results for high
horizontal barriers. Gerber & Shig{] calculate the moments of the expected dividends for anunde
lying diffusion process. Leung et aB4] deal with finite horizon problems in the presence of a hori-
zontal barrier and a geometric Brownian motion. Cai etZd] ftudy an Ornstein-Uhlenbeck model
including credit and debit interest. Lin et ak€] discuss properties of the classical risk reserve pro-
cess controlled by a barrier strategy by means of the seetaltpected discounted penalty function.
For the more general spectrally negative Lévy processesmet al. 5], Renaud & Zhou [04]
and Kyprianou & Palmowskid1] use scale functions for calculating functionals of the entpd
discounted dividends under a barrier strategy. In the cemg&oisson model, Hgjgaardd deter-
mines optimal premium payment schemes such that expecedutited dividend payments under a
barrier strategy are maximized.

Time-dependent barriers were studied in Gerhét,[Siegl & Tichy [114] and Albrecher et al.q]

for the linear case and in Alegre et al.]] and Albrecher & Kainhofer ] for the non-linear case
(see also Garridodf] for the diffusion model). In}1], it was shown that barrier dividend payments
constitute a complete family of Pareto-optimal dividends.

Band strategies When studying the classical reserve process, Getigshowed that for general optimal-
ity one needs another type of strategy calb@shdstrategy. Such a strategy is characterized by three
setsA, B andC which partition the state space of the reserve process. &&#dh associated with a
certain dividend payment action for the current resenas follows: if the current surplus € A,
then every incoming premium is paid outpife 3, then a lump sum is paid out moving the current
reserve to the closest pointithat is smaller tham; if = € C then no dividend is paid. Itis possible
that several disjoint intervals belongfoandC and create a band structure fdt;, ¢) overR™ x R™.

For further discussions on these type of strategies seddlsimann B2}, where also other general
thoughts about dividend policies can be found. In Figdieesample path of the risk process with a
band strategy given byA = {bo, b1}, B = (bg, a] U (b1, 00) andC = (a, by) is illustrated.

A simple type of impulse strategy Fix two levelsb; andb, with 0 < b; < bs and use the following

rules for dividend payments: if the surplus is above or eguathen pay out the amount — b,
immediately; if the surplus is belobs, do nothing until the reserve reaches the léyedgain. Let);,
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Figure 3. A sample path of the Cramér-Lundberg model under a control of band type

denote thenth time that the process hits from below. Then the payoff of such a dividend strategy
is given by

Ly = (2 — b1)l{z>p,) + Z(bz - bl)I{f);;2 <t<rS)

n=1
when starting with initial capitat > 0 (cf. Figure4).

Such a dividend strategy naturally appears for diffusisk reserve processes and transaction costs
for dividend payments (cf. Jeanblanc-Piqué & Shirya&f for a simple diffusion model with con-
stant drift and volatility, Cadenillas et aB4{] for a mean-reverting diffusion process, Paulséf] for
general diffusion processes; Cadenillas et3l] plso take proportional reinsurance into account).

For risk models with jumps and an impulse strategy of the altype, the literature is still scarce. For
the case of spectrally negative Lévy risk processes sefidrof@(]. Albrecher & Thonhauserl[]
study the Cramér-Lundberg model with both proportional fixed transaction costs and also discuss
the role of these simple impulse strategies.

Another somewhat intuitive payout scheme for profit pgptition is to pay a certain proportion of the
premium income whenever it represents new gains (i.e. wieemiee risk process is in a running maximum).
Although there are no criteria known under which such a paytisteategy is optimal, it leads to surprisingly
simple identities between the survival probability wittdamithout those payments and has another natural
interpretation in terms of tax payments on profits of the iaage business (cf. Albrecher & Hipp][and
Albrecher et al. I, 8]).

4 Value Functions

Let us now consider in more detail ways to measure the valaeeftain dividend stratedy. Letd > 0 de-
note a constant discount factor (this can be interpreteefiesting the preference of shareholders to receive
dividend payments earlier rather than later during théitife of the reserve process, see e.g. Bo&H)[
The indexz in the notatioriE,. will indicate in the following that the initial capital is, i.e. P(Rf = z) = 1.

The classical performance measure for a certain divideradesty L (in this context going back to

304



Optimality results for dividend problems in insurance

risk reserve

A i jump due to
R(t) lump sum payment
cumulated
dividends

-~y

ruin
Figure 4. A sample path of the Cramér-Lundberg model under an impulse control

de Finetti B9)), is the expected value of discounted future dividend peyts

Vi(z) = E, <AT e5tst> . 4)

If instead of caglad processés one defines cadlag processes to be admissible (cf. S&#prthen @)

has to be modified to ;
Vi(z) =E, (/ e st> .
(7

The associated optimization problem then consists of fondin

V(z) = sup Vi () (5)

and an optimal admissible strate@y such thatV'(z) = V.. (z) holds. The set of admissible controls
denoted byiT will vary depending on the generality one aims at. For olitgjexplicit solutions and simple
decision rules, one may want to focus on barrier or thressinddegies; for solving the problem in a general
form one will want to deal with general caglad cumulateddind processes as specified in the previous
section.

The general problem for the classical Cramér-Lundbekgreserve process was first solved by Gerber
in [50 via a limit of an associated discrete problem and later onm@ans of stochastic control theory
by Azcue & Muler [L6], who also included a general reinsurance strategy as adexmmtrol possibility.
See also Schmidlil[14 and Mnif & Sulem P5] who allow for additional dynamic XL-reinsurance and
Albrecher & Thonhause#] for a reserve process under a force of interest. For alktleases in general a
band strategy turns out to be optimal among all admissibdesfies.

For the particular case of exponentially distributed claimounts, the band strategy collapses to a bar-
rier strategy (this was proven by Gerbéf] in 1969 as a by-product of the general characterizatiom). |
Albrecher & Thonhause#] it is shown that the optimality of barrier strategies in tiassical model with
exponential claims still holds if there is a constant fortmterest. Recently, Loeffer8p] showed that bar-
rier strategies maximize the expected discounted divigeyinents until ruin also for general spectrally
negative Lévy risk processes with completely monotonepjamnsity (and Kyprianou et al3{] relaxed
this condition on the jump densities to log-convexity). §for instance establishes the optimality of bar-
rier strategies in the Cramér-Lundberg model with Parédacsizes. However, despite this collection

305



H. Albrecher and S. Thonhauser

of sufficient conditions for the optimality of barrier stegies, explicit necessary conditions on the model
parameters are still not available up to now.

In the general diffusion setup the optimal dividend probl@nwas completely solved by Shreve et
al. [113 and a barrier strategy was identified to be optimal. The ispease of constant drift and diffu-
sion coefficient was then solved again by slighty differeetams in Jeanblanc-Piqué & ShiryaéVand
Asmussen & Taksarl[3 (Radner & Sheppl0] study the situation where the drift and volatility can also
be controlled within a discrete set of possible values). dditon to the dividend control, Hgjgaard &
Taksar p9, 70] also considered the possibility of proportional reinsumand optimal investment. For an
overview on this and variants of these problems for diffngicocesses see Taksar [1].

If one wants to maximize4) over the set of absolutely continuous controls with a badhidtensity,
then a threshold strategy turns out to be optimal in a diffusisk model (cf. Asmussen & Taksard]) as
well as in the compound Poisson risk model with exponentdilitributed jumps and < ¢ (cf. Gerber &
Shiu [56)).

Motivated by optimal consumption problems from mathen@fioance (see e.g. Mertod]), Hubalek
& Schachermayer7l] propose a value function measuring the expected discdurtttty of a dividend
stream and discuss the related optimization problem foffasitin risk reserve process. They show that
under so-called Inada conditions on the utility function[0,c0) — [0, 00) (namelyx/(0) = oo and
u’(00) = 0), the optimal strategy has to be absolutely continuous.vahee of a strategy. is then defined

by
Vi(z) =E, </T e‘gsu(ls)ds> ) (6)
0

Although the measurement of a utility of a density may seemnge at a first glance, this can be
motivated by interpreting the problem as a limit of a diseretodel, where the cumulated utility of the
payments from each time step is considered (cf. Bof})[ Another utility-based approach is due to
Grandits et al. §0], who propose to measure a strategy by its expected (in¢hse exponential) utility of
the cumulated discounted dividend payments,

Vi(z) =E, <u (/T e 0t st>> . (7)

For a diffusion model a certain time-dependent barrieteaturns out to be optimal. However, the
concrete form of this barrier is difficult to obtain, as it isgn through a defining integral equation.

When including transaction costs, the inclusion of a ytjier payment seems to be natural (e.g:) =
(kz — K)7 /v with v € (0,1]). Then the value of an admissible impulse strat®gy= {(7;, Z;)}ien IS
measured by

Vs(z) =E, (Z e‘s”u(Zi)I{TKTS},) . (8)
i=1

The corresponding optimization problem is considered & P&] for a general diffusion process,
in Jeanblanc-Picqué & Shiryae¥/] for the constant drift and volatility case and in Cadesikd al. 34] for
a mean-reverting diffusion. Albrecher & Thonhauskd][characterize the value function according 8 (
for the classical model. In a similar way as for general @dglontrols, Loeffenq(] proves that a simple
impulse strategy, as introduced in Sect®#g is optimal for spectrally negative Lévy risk processeewh
there are fixed transaction costs with each dividend paymeatl and the density of the jump distribution
is log-convex.

Of course there are various possibilities to extend the tiefinof the value function. We now mention
two more examples that may be of particular interest forrasce issues. The first one introduces some
sort ofreward for avoiding early ruin, modelled by a discounted streamajfments with densith > 0
until ruin and a corresponding value function

Vi(z) =E, ( /0 ’ e O dL, + /0 ’ e A dt) . (9)
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The additional parameteY can be used for balancing between safety and profit in théqgtior(al-
ternatively, one can interpret the additional summand astaio discounted penalty at ruin, cf. Gerber et
al. [53]; for the special case of expected time to ruin=€ 0) see Borch29]). For this value function,
Shreve et al.113 and Boguslavskay&[] identify the optimality of barrier strategies in diffusionodels,
and in 8] also the inclusion of transaction costs is investigatedornhauser & Albrecherl[LY estab-
lish the optimality of barrier strategies undéj for the classical risk model with exponentially distribdt
claim amounts. For recent extensions to general Lévy risllats see Loefferf[l] and for an inclusion of
additional investment possibilities see Wang & Zhah#].

Another approach is to allow for capital injections from ste@reholders when the surplus falls below
zero to make it again positive and avoid bankruptcy. Dick&dNaters 42] and Gerber et al.q7] assumed
that the deficit at ruin has to be paid by the shareholders andehlooked at choosing an optimal barrrier
that minimizes the expected difference between discoutitédiend payments until ruin and deficit at ruin
for a compound Poisson model. Assume now more generallytibae capital injections can occur at any
point in time with the goal that the surplus does not becongaitiee and denote by = (Z;);>¢ the
injection process. Then the controlled process is of thefor

Nt
RpZ =axtct—Y Yi—Li+ 2.

n=1

The value of such a control p&if, Z) can naturally be defined by

o0 o0
Vi.z(z) =K, (/ e OtdL, — 9/ e‘”dZt) ,
0 0

whered > 1is a weight for the expected discounted capital injectidiige associated general maximization
problem was recently solved in Kulenko & Schmidli7] for the classical risk model, see also Avram et
al. [15]. It turns out that the optimal strategy is now for arbitratgim size distributions a barrier strategy
and injections should only take place when the process iativeg Shreve et al1[LJ solved the analogous
problem for a general diffusion process. He & Liarig][deal with this problem in a diffusion framework
allowing general dividend strategies and including tratisa costs on the reinvestments, and Paul$éh [
investigates the diffusion setup when both dividend paytsiand reinvestments are charged by transaction
costs.

The idea of putting different constraints on the probapiit ruin of the controlled reserve process is
used in Paulserd[/] for a general diffusion model and Bayraktar & Youngdl] for a diffusion model and a
utility criterion on the value of a strategy. HippJ] solves such a problem in a discrete framework. When
fixing a dividend strategy, Bayraktar & Young(, 21] use an investment control possibility for minimizing
the probability of ruin of the controlled diffusion resempeocess.

5 The Dynamic Programming Approach

In the following sections we will describe in more detail tieture of the mathematical challenges when try-
ing to identify optimal control strategies in an insuranneieonment. We will start with a discussion of the
dynamic programming approach, which is at the heart of thdisa of most dividend maximization prob-
lems in a Markovian environment (for a general overview deenihg & Soner {14] and Schmidli [L17).
The dynamic programming principle has its origin in disergime optimization (see e.gl?7) and
basically states that one tries to behave optimally in atfirst interval and then optimally from there on. In
continuous time this leads to a so-callédmilton-Jacobi-Bellman (HIB) equatiofiypically the derivation
of this equation fol/(x) involves several assumptions that are difficult to verifyedily. Hence the usual
procedure is to derive the equation heuristically and finaibve separately (in a so-calledrification step
that its solution is indeed the required value function ef diptimal control problem. This verification step
can consist of two alternative procedures: either one caw shat the value function indeed fulfills the
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HJB equation (by justifying all steps in the derivation oé tbquation rigorously), or one is able to show
that the obtained solution of the HIB equation actually datas the values of all other possible strategies
(usually by martingale arguments).

5.1 Non-Singular Controls —the Classical Case

LetII be a set of admissible strategies dfdbe one of the risk reserve processes introduced before. The
value functionV (z) of the maximization problem is said to fulfill the dynamic gramming principle if
for any stopping timey the equation

TNy

V(z) = sup E, ( / e % dL, + e‘s(T/W)V(RfL/\,Y)> (10)
Lell 0

holds. In other words, maximizing the dividend paymentsiirgerval[0, v) and from there on continuing

in an optimal way is equivalent to maximizing the paymentsrdtie whole lifetime of the reserve process.

Now replacey by some small. > 0 and suppose that a certain admissible confr@ldmits a density

process = (I;);>0 Which is constant fot € [0, k). Then clearly

hATE
V(z) > E, (z / e % dt +e—6<WL>V(R,LWL)> : (11)
0

Dividing (11) by 4 and subtractindg’ () results in

1 h/\’TL

0> - E, (l / e % dt 4 e ATV (RE ) — V(:c)) . (12)
0

We now want to take the limi — 0 and assume thaf is in the domain of the generatgf of the reserve

controlled by the constamtividend density (at this point, several other assumptions enter that make th

derivation heuristic). For the compound Poisson modeldkiserator (compare witt2)) is for instance

given by

xT

Llg(x) = (e — g’ (z) — Ag(z) + A / oz — y) dFy (1), (13)

One then arrives at
0> LV (z) = 6V(x)+1.

Suppose now that inlQ) the supremum is attained for a stratefyy (again assumed to be absolutely
continuous but now not necessarily constarjbirk)), so that £2) holds with equality:

1 hArt” " .
0= E By ( /0 e_étl: dt + e_é(h/\TL )V(R(Lh/\TL*)) - V(l‘)) .

This indicates that
0=sup{L'V(z) — oV (z)+1} (14)
l

should hold. All this is under the assumption that interdiag limit and expectation, and taking the
supremum is allowed. Equatiod4) is called the Hamilton-Jacobi-Bellman (HJB) equationoassted
with the dividend maximization problem

7_L
V(z) = sup E, ( / e 0, dt), (15)
Lellae 0
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whereI12¢ denotes the set of absolutely continuous admissible giestea solution of 15) is given
in[111).

For a diffusion risk reserve process (constant griftvolatility o > 0 and generator3d)), the HIB
equation corresponding ta%) is given by

0= sup {(u —DV'(z) + J—2V"(:c) -0V (z) + l} , V(0) =0, (16)
0<1<ln0 2
(see e.g.13]) and the one corresponding 1) with u(l) = [*/a anda € (0, 1), by
0 = sup {(u -V (x) + %QV”(JJ) —oV(x) + u(l)} , V(0) =0, a7
0<l

(cf. [71]), where due to the Inada conditions in the utility framelwtire upper bound,, does not need to
be specified.

When the reserve process is given by a diffusitii)) = 0 is an obvious initial condition for the
HJB equation, because when starting ithe driving Brownian motion immediately becomes negatiite w
probability 1 (see Rogers & Williams105) and there will be no future dividend payments. In contrast
there is no obvious initial value in the compound Poisson ehddecause there is a positive probability
for the reserve to recover from the valoe We will see later how this fact influences the mathematical
characterization of a solution of the maximization problem

Remark 2 From the statement of the HIB equatifi®), we immediately get that a candidate solution
suggests a Markov control as the optimal strategy, i.e. thesdy only depends on the present statd the
process (and not on the whole filtration up to a certain tihelThis means$, = [(R;) with

I(z) = arg max {L'V(z) =6V (z) +1}.

Further note that classical dividend maximization probéege stated as infinite-time horizon optimization
problems and therefore stationary controls are naturat o exception segs50]).

The common notation of specifying the HIB equation throbghvilue functiod/(x) is, due to its
heuristic derivation, a bit misleading, as one still neealsheck by the verification arguments whether the
actual value function indeed satisfies the HIB equation.

5.2 The Singular Control Case

Let us now drop the assumption of absolute continuity afe. we deal with the case of general admissible
controls, so that the density procdss= (I5)s>¢ of a dividend strategy_ is not necessarily bounded.
Focussing on the classical model and now plugging in thergémeof the controlled reservéd) into (14)
explicitly, we obtain

Ozsup{(l — V(@) l+cV'(x)— (A+0)V(z) + A V(x—y)dFy(y)}. (18)
>0 0
One immediately observes that in the cas& ¢fr) < 1 for somex > 0 the local maximizet*(z) and
more generally18) is unbounded, so that both quantities do not make sense arg 1@n the other hand,
in the case of/’(z) > 1 we get/*(x) = 0 and
O=cV'(z) = (A+0)V(z) + )\/ V(z —y)dFy (y).
0

Restricting tol — V'(x) < 0 for all z > 0, we hence obtain the following rewritten HIB equation

0 = max {1 —V'(x), cV'(z) = (A+0)V(x)+ )\/Ow Viz—y) dFy(y)} : (19)
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The following observations also motivate heuristicallg torm of equationX9). First suppose that at
some pointc > 0 it is optimal to pay a (possibly very small) lump sum dividend- 0 and then continue
with capitalz — h (or stop ifx = 0), so thatV (x) = h + V(« — h) which forh — 0 indicatesV’(x) = 1.
Secondly, if waiting and not paying dividends in some snrakiival around: > 0 is optimal, one obtains
the second part of the right side df9).

For diffusion risk reserve processes with constant grift 0 and constant volatility > 0 one obtains
along the same lines of arguments

2
0 = max {1 —V'(z), pV'(2)+ %V”(x) - 5V(x)} . V(0)=0. (20)
For the value function?) and exponential utility function(z) = (1 —e~7*)/~, the corresponding HIB

equation for the singular control problem then is

0.2

0 = max{Vi(z,t) + puVy(x,t) + 7Vm(m, t), —Vi(z,t) +e (1 — 4V (x, 1)}, V(0,¢) = 0.

Here it turns out necessary to use the additional time vigrtab 0 (for details seef(]).

5.3 The Impulse Control Case

Let us first consider the compound Poisson model. For thefahction @) in the impulse control frame-
work, we first observe that at poinis > 0 where it would be optimal to intervene, we should have
MV (z) = V(x), where the operator

MV(z) := sup {u(y)+V(z—y)},

Y admissible

gives the value of the best admissible intervention at terke levelk:. On the other hand, if it would
be optimal not to intervene in an open interval around thaetpoi then conditioning on the first claim
occurrence in a small time intervl, k] and lettingh — 0 will result in

V() + A (/O Viz—y)dFy (y) - V(x)) SV (z) = 0.

These observations heuristically motivate the so-cajleasi-variational inequalitie$QVI):

V') 3 ([ Ve -0 aF ) - Vo) - v <o
MV -V <0,

(cv'(x) +A (/x Viz —y)dFy (y) - V(a:)) _ 6V(x)) (MV V) =0,

or equivalently 0
max {CV’(:C) + A (Am V(e —y)dFy(y) — V(a:)) —o0V(x), MV V} =0.

For a rigorous treatment cfL{]. For a diffusion model one just needs to replace the geoeaatord-
ingly and arrives at a similar equation (se&f][or [74]). The dynamic approach for stochastic impulse
control problems was introduced by Bensoussan & Ligs73].
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6 Discussion of the HIB equation —Verification Arguments

In the previous section we saw how one can (heuristicallsiyde¢he HIB equation associated with a given
stochastic optimization problem. Now we want to link a sioltof this equation to the value function of
the optimization problem. Crucial questions in this cohtae: Which types of solutions exist? Is the value
function a solution? Is the solution unique?

In general there are two ways to obtain a solution for thenoigtition problem based on the HIB
equation.

e It is possible to prove that there exists a unique solutiothéoHJB equation of the given dividend
maximization problem. In the ideal case it is also possiblednstruct an explicit solution. Then a
so-calledverification theorenis needed that states that this solution dominates all otdaes that
can be achieved by admissible strategies, and that a stralbe¢gined by this solution is admissible
(and hence optimal). We then get that this unique solutidch@HJB equation is the value function.

e Itis possible to show that there exist solutions (in somesseof the HIB equation, but uniqueness
is doubtful. Then a precise characterization of the valuetion is needed and one has to prove that
the value function indeed fulfills the HIB equation by veirifythat all steps in the derivation of the
HJB equation are actually justified.

Once the value function is determined one has to identifctireesponding dividend payment strategy
that realizes this value function (this is often non-trivdaad it may even happen that such a strategy does
not exist, see e.g. Shreve et dl1 Th. 4.3]).

Remark 3 As an alternative to the above full characterization of tiptimization problem (the “analytic
way”), another quite common (Bensoussan ef2] call it “probabilistic”) approach in the literature is to
maximize a certain value function over a (small) restrictéass of admissible strategies, say barrier type
strategies or simple impulse controls (cf. Avram e{at], Loeffen 90, 89], Gerber & Shiu54, 56]). Then

in some cases it is possible to verify by comparison that théthin the restricted class— optimal strategy
is also optimal within the bigger class of general admissitrategies.

6.1 There is a unique solution

In some cases it is possible to calculate an explicit salutiothe HIJB equation (e.g. fol§) and @0),
cf. [13, 113), whereas in other cases it is only possible to prove thetente of a classical solution
(e.g. for @L7), cf. [71]). Classical solutiorin this context means that the solution is as regular as redui
by the equation (note that the crucial points in that resaezthe junction points of the various parts of the
equation).

In many cases an explicit solution can be obtained alongdhewfing lines of argument: One can
reformulate the HIB equatioi4) as

0= sup {LV(z) — 6V (x)+1(1—-V'(x))}, (21)

whereL is the generator of the uncontrolled reserve process giv&ection2 (for notational convenience
we restrict ourselves here to the absolutely continuous)cas
It follows that the optimal action with current reservelepends on whethdr— V’(x) is larger than
zero or equal to zero. A first approach often is to assumeltjay is concave, in which case there will
only be one switching point, such thatV’(x) > 1 for z < zg andV’(z) < 1 forz > xy. This then
immediately suggests the control
l*(l‘): {0 xr < Xg, (22)

lo x>0,
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wherex still has to be determined. The principle of smooth fit suggyasmethod to determing,. It
states that the value function should be sufficiently regat@hefree boundary:, (sometimes also called
decision boundarycf. Peskir & Shiryaev]01] and Kyprianou & Surya§?), i.e.

W(ICO) = Vr(ﬂfo),
V/(x0) = V,/(20) = 1,

whereV; andV,. denote the solutions of the HIB equation fox zy andxz > x under the concavity
assumption (in the diffusion case one has the additionahagsonV,” (z¢) = V;”(x¢)). These conditions
allow for the calculation of the individual parts of the st and an implicit determination of the crucial
pointzq. In the diffusion setup it follows by easy calculations thatually x is the only value of: for
which one can past& andV,. such that the resulting function is twice differentiable.

The form of the problem indicated by the concavity assunmatiothe candidate value function is called
free boundary value problenin Whittle [127 there are some conditions when a value function is twice
differentiable at the optimal decision boundary. When thess on the concavity df and the smooth-
fit conditions were successful to obtain a solution 2f)( then it remains to verify that this solution is
indeed the value function (the verification step). The baka in the verification theorem is often that for
an arbitrary admissible stratedywith density process = (I;)s>0, the process—‘s(t“LW(RtLML), by
virtue of an (appropriate) Itd-formula and the dynamicgreonming principle, leads to a supermartingale
that then can be compared to a martingale resulting from rtbeepSe*5(tATL*>V(RtLA*TL*) with strategy
L* given by @2). This then establishdd(z) > Vi (x) for any other strategy. andV (x) = Vi« (z).

The mentioned martingale properties are usually estaibly a suitable application of the Itd formula
(or its extension for jumps, respectively). In particutare has to make sure that differentiability properties
of V needed in the 1td formula actually hold (this is for instamtitomatically the case if the construction of
the solution via the smooth-fit principle succeeds). Thep stan sometimes require considerable technical
expertise.

Davis [36] considers the verification theorem as the mathematicalvatain of the HIB equation.

6.2 There is no unique solution

For dividend maximization problemd)(in the classical risk model with arbitrary claim size distition,
some difficulties may arise. This problem was first solved leyt@®r p0] via a discretization and taking
the continuous-time limit. As already mentioned, he id@diband strategies to be optimal in this context.
Only recently Azcue & Muler 6] used the dynamic programming approach to obtain the HIB-equ
tion (19) for this problem (they also included a dynamic reinsurgessibility, see also Schmidli[L1]).

The two main difficulties which arise when looking dt9} are the question of differentiability and
unigueness of a solution. The uniqueness question is realyial, because when starting with a wrong
solution to (L9) the construction of an associated admissible strateds. faihere are certain parameter
constellations (e.g. hugg such that the simple linear functigiiz) = x+c¢/d solves (9) but the associated
strategy attaining this value (whichggy out the initial capital: and subsequently all incoming premiums
ignoring potential ruir) is of course not admissible. This problem is mainly due #ortfissing initial value
for the HIB equation. As one can in this case usually not findl@isn that is sufficiently differentiable,
one has to introduce other non-classical solution congémtsnstanceviscosity solutionsFor the latter,
one replaces a function around a problematic point 0 locally by smooth functions that upperbound
and lowerbound (respectively) the original functignIf V' can be approximated from below (above) such
that the HIB equation becomes an inequality bigger (smahan zero for the approximating function,
one callsV a viscosity subsolution (supersolution, respectivelihoth approximations are possibMé,is
called a viscosity solution. This extended solution coneegs first introduced in Crandall & Lions3Y],
see also Crandall et al3§]. For PDMPs this notion was used by Sonétf]. Schmidli [111] uses weak
solutions as a further alternative solution concept. Forixedstochastic control problem that arises in
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a real options situation in a diffusion framework, where tias to choose between paying dividends or
investing, viscosity solutions were recently employed byhwet al. [L24.
Let us now sketch the derivation of the solution of the HJBatigun

max {1 —V'(x), cV'(z) = (6+ NV (x)+ )\/01‘ V(z—vy) dFy(y)} =0. (23)

It is possible to obtain directly from the definitioB)(of V' and the definition of the general admissible
strategies from SectioB.2thatV is absolutely continuous and linearly bounded. The furtharacteriza-
tion splits into two steps.

First a so-called comparison result (if a viscosity supletsm is bigger than a viscosity subsolution
in zero then this relation holds ov&™) is needed and in a second step one shows that every viscosity
supersolution is dominating the value function (this is el@ma similar way as one proves a verification
theorem). BecausE is both a super- and subsolution, it has to be the smallesbsity solution fulfilling
a linear growth condition.

Now it only remains to determine the dividend strategy aisted to the correct solutiow to (23). In
the above example it turns out to be a band strategy definduetnets

e A={z€0,00)|c 7(5+>\)V(£C)+)\f(iCV(£C*y)dFy(y):0},
e B={z€(0,00) | V'(z) =1andc — (6 + NV (z) + A [y V(z —y)dFy(y) <0},
e C=(AUB)".

In [111] an algorithmic procedure for obtainidg is described, in16] and [9] explicit examples are
constructed which demonstrate the necessity of an extesaletion concept. A policy iteration algorithm
for a related problem is constructed #H].

7 Conclusion and Open Problems

It turned out that theompletesolution of the seemingly simple problem of determiningiopd dividend
strategies for insurance risk processes requires advaadeciques from analysis, probability and stochas-
tic control. Although the understanding of the problem ia thassical risk model as well as in the diffusion
model has now reached a certain state of matureness, tleestllempen questions.

e As discussed in Sectiofy a barrier-type strategy turns out to be the optimal chaicgeveral model
situations, but even for the classical risk model there #@ltene explicit criteria on the model param-
eters available that are both necessary and sufficient farréeb strategy to be optimal. Similarly,
necessary and sufficient conditions for a threshold styatefe optimal are still unknown. Further-
more, a rigorous numerical analysis for the determinatidheoptimal strategies for given parameter
values needs to be developed.

e Theresearch on dividend maximization problems under a@titns costs and/or under utility criteria
in the classical model is just starting to develop. For theecaf transaction costs, up to now a
complete characterization of the value function and sonmearical ideas have been developé&d][
but a formal description of a strategy that is in generalrogtiis not available yet.

e Optimal dividend strategies under additional constraomtthe probability of ruin (see e.g. HippJ
for a particular case) and in general under constraints enr#jectories of the controlled process,
seem to be a very hard problem for a risk reserve process witps.

Furthermore, there are a wealth of open problems under reddifiodel assumptions. In this context,
a particular line of potential future research is to consttie optimal dividend problem when the Poisson
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claim number process is replaced by a general renewal racesthe Sparre Andersen risk model{.
Li & Garrido [85] study properties of the renewal risk reserve process umbarrier strategy and Albrecher
et al. [2] calculate the moments of the expected discounted divigagithents under a barrier strategy in this
framework, but Albrecher & Hartinge] show that even in the case Bflang(2) distributed interclaim
times and exponentially distributed claim amounts a haialbarrier strategy is not optimal anymore, as it
can be outperformed by a strategy that depends on the timppseglaince the previous claim occurrence. It
is still an open problem to identify optimal dividend stigitss in this model. One can markovize the Sparre
Andersen model by extending the dimension of the state sphttee risk process, taking into account
the time that has elapsed since the last claim occurrenceagonable strategy should also depend on this
additional variable. But correspondingly also the dimensif the associated HIB equation will be extended
which considerably increases the difficulties one is faguwhgn analytically approaching this equation.
Finally, for risk reserve processes modelled by generaitspléy negative Lévy processes, Loeffesit]
and Avram et al. 15 study the dividend optimization problem from a probalitigoint of view. It is still
open to approach and solve this problem in this general ¢Btupeans of stochastic optimal control.
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