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Abstract.  This paper addresses the equivalence between the abseadstaige and the existence
of equivalent martingale measures. The equivalence wiltdiablished under quite weak assumptions
since there are no conditions on the set of trading datesafjt Ioe finite or countable, with bounded or
unbounded horizon, etc.) or on the trajectories of the giroeess (for instance, they do not have to be
right-continuous).

Besides we will deal with arbitrage portfolios rather thageflunches. The concept of arbitrage is
much more intuitive than the concept of free lunch and hasml@ar economic interpretation. Further-
more it is more easily tested in theoretical models or pcattpplications.

In order to overcome the usual mathematical difficultiesiag when dealing with arbitrage strate-
gies, the set of states of nature will be widened by drawingrajective systems of Radon probability
measures, whose projective limit will be the martingale soea. The existence of densities between
the “real” probabilities and the “risk-neutral” probaltidis will be guaranteed by introducing the con-
cept of “projective equivalence”. Hence some classicahtaexamples will be solved and a complete
characterization of the absence of arbitrage will be predith a very general framework.

Martingalas y arbitraje: un nuevo enfoque

Resumen. Analizaremos la equivalencia entre la ausencia de arbiyrlg existencia de una medida de
martingala. Esta equivalencia se establecera bajo stgsudsbiles, puesto que no hay condiciones sobre
el conjunto de fechas de negociacion (puede ser finito cabtstcon horizonte acotado o no acotado,
etc.) ni sobre las trayectorias del proceso de precios (eanpo, no tienen que ser continuas por la
derecha).

Trabajaremos con el concepto de arbitraje, y no con &kdelunch La nocion de arbitraje es mucho
mas intuitiva y tiene una interpretacion econdmica nouctas clara, ademas de ser mas facil de verificar
en las aplicaciones practicas.

Para salvar dificultades matematicas, extenderemosjelrtortle estados de la naturaleza mediante el
uso de sistemas proyectivos de probabilidades regulaedddon), cuyo limite proyectivo sera la medida
de martingala. La existencia de densidades entre las “pilatzdes reales " y las “neutrales al riesgo” se
garantizara mediante la introduccion del concepto daitedencia proyectiva”. Algunos contra-ejemplos
clasicos seran resueltos, y una caracterizacion caengéela ausencia de arbitraje sera presentada en un
contexto muy general.

1 Introduction

The existence of pricing rules, discount factors or staiepgris crucial in the literature on capital markets.
It is closely related to the concepts of arbitrage and doypiilin (see, for instance, Chamberlain and Roth-
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schild [8, (1983)] or Hansen and Jagannathaf, [(1997)]). Harrison and Kreps.f, (1979)] showed the
link between pricing rules and martingale measures.

Since Harrison and Krep& §, (1979)] established the existence of martingale proligiileasures for
some arbitrage free pricing models their result has beemnded in multiple directions, generating the Fun-
damental Theorem of Asset Pricing (hencefdtttAP). For instance, Dalang et alL], (1990)], Schacher-
mayer P2, (1992)] and 23, (1994)], Delbaen and Schachermayks,[(1998)] or Jacod and Shiryae¥/j,
(1998)] provide deep characterizations of the existenecrartingale measures in different settings.

Nevertheless a simple version of tRg'AP cannot be proved, in the sense that the arbitrage absence is
not sufficient to build martingale measures if the set ofitrgdiates is not finite. It was pointed out in Back
and Pliska , (1991)], where a simple counter-example is provided. Teroeme this problem Clarki],
(1993)] introduced the concept of “free lunch”, far weakeaurt the concept of arbitrage. The absence of
free lunch has been the key to yield further extensions oFth&P, even in the imperfect market case (see
for instance Jouini and KallallB, (1995)]).

Any free lunch can be understood as an “approximated agatri the sense that it is “quite close”
to an arbitrage portfolio. However, it is almost an arbigdayt it is not an arbitrage, it is not so intuitive
and its economic interpretation is not so clear. On the eoyit is introduced in mathematical terms and
solves a mathematical problem, but classical pricing n®@@homial model, Black and Scholes model,
etc.) usually deal with the concept of arbitrage.

Besides, if possible, it may be worth to provide risk-nelytrababilities and pricing rules (martingale
measures) under simple and meaningful assumptions, astitrage absence. This is in the line of many
others Representation Theorems of Mathematical Finararéngtance, the representation of coherent risk
measures (Artzner et all,[(1999)]) or pricing rules in one period imperfect marké&séteauneuf et al9[
(1996)], De Waegenaere et alZ] (2003)], Castagnoli et al7[ (2004)] etc.) is addressed by using intuitive
hypotheses.

Balbas et al.§, (2002)] have shown that it is possible to characterize thérage absence if the set
of trading dates i, the set of natural numbers. They built an appropriate @hlatprojective system
(vn)nen Of perfect probability measures (see Musial,[(1980)]) that are risk-neutral for each finite subset
{0,1,...,n} C N. Then they showed that the projective limits risk-neutral for the whole set of trading
dates N), in the sense that the set of states of the world and the pra@ess may be extended to a “new
price process” which is a martingale underThe initial probability measurg andv cannot be equivalent,
as illustrated by using the counter example of Back and ®liskowever, for any finite subset 8f, the
projections ofi, andv are equivalent, and there are Radon-Nikodyn derivativémth directions. Balbas
et al. used this property to introduce the concept of “pitdjecquivalence” of probability measures.

The interest of the approach above seems to be clear, siegertpermits us to extend the classical
FTAP forinfinitely many trading dates without using the projeetequivalence, i.e., in the classical setting.
For instance, Balbas et aB,[(2007)] have used the analysis of Balbas etal(2002)] so as to extend the
FTAP in a model with dynamically bounded Sharpe ratios. Unbodriglearpe ratios would lead to very
high returns with bounded risk level, which is barely acaéj# in Financial Economics. The findings of
Balbas et al. 3, (2007)] have some relationships with those of Follmer SoHachermayerlf, (2008)],
where the authors show that the absence of martingale nesaisuthe long run provokes the existence of
asymptotic arbitrage that is related to the market pricéséf r

This paper follows the approach of Balbas et &).(R002)] and extends the analysis bearing in mind a
much wider scope. Even usual constraints, also imposeckifiténature when dealing with free lunches,
are no assumed here. For instance, there are no conditiotie et of trading dates (it may be finite
or countable, with bounded or unbounded horizon, etc.) othentrajectories of the price process (for
example, they do not have to be right-continuous).

The existence of risk-neutral probabilities will be stabgdmeans of projective limits of projective sys-
tems of Radon probability measures (see Schwartz(fL973)]), rather than projective systems of perfect
measures. These projective systems will permit us to brottteset of states of nature and to generalize
the concept of projective equivalence.
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The outline of the article is as follows. Secti@mwill introduce the basic concepts and notations. Sec-
tion 3 will summarize some mathematical background that will beroapplied. Sectiod will transform
the problem in order to introduce the “projective price @s&’. Sectiorb will be devoted to provide mar-
tingale measures when the set of trading dates is count@hkmost important result is Theoresrand
generalizes those findings of Balbas et a).(R002)], since the sef of trading dates does not have to be
similar toN. For example;7 can equal the set of non-negative rational numbers or, memnerglly,7
can have adherent points, and every adherent point mayd&ddh or to its complementary. It seems to
be a significant extension since, for instanCedLag price processes are characterized for their values at
rational dates. Sectiod®will conclude the article.

2 Preliminaries and notations

Let (2, F, u) be a probability space composed of the@etheo-algebraF and the probability measuye
Suppose thaf™ C [0,00) is a set (finite or infinite, with finite or infinite horizon) ofading dates such
that0 € 7 (0 denoting the current date) arfd contains at least two elements. As usual, the arrival of
information will be provided by the increasing familf;], ., of o-algebras of2 such thatF, = {0, Q}
ando (U, Ft) = F, o(U,cr F+) being thes-algebra generated by the algebja. - ;. The restriction
of i to F; will be denoted by, for everyt € 7.

Considern different securities whose prices will be represented leyRh-valued adapted stochastic
process

{S(w,t):weQ, teT}.

Obviously
S(w,t) = (S1(w, 1), S2(w, ), ..., (w,1))

whereS;(w,t) € Rforw € Q,¢t € 7 andj = 1, 2, ..., n, and represents the price of thi¢h asset at
under the state. In order to simplify the notation the previous processey bealso denoted by andsS;,
7 =1,2,...,n. Analogous notations and conventions will be used for ahgidR-valued orR™-valued
adapted stochastic process.

As usual, the first asset will play the role of a numeraire, thiedefore we will impose that

Sl(w,t) =1 (1)

holds for everyw € Q andt € 7.

For a fixedw € () the corresponding path or trajectory Sfwill be denoted byS(w, —), while for
any fixed trading daté € 7 the symbolS(—, t) yields the random variable providing us with prices.at
Similar notations will be used in similar situations.

Consider arbitrary an finite subsety) = 0 < ¢; < --- < tx} C 7. For such a subset consider any
stochastic process

l‘ZQX{0<t1<"'<tk}—>Rn

adapted to the filtratiof], (o4, ...y, ;- Then,z is said to be a self-financing portfolio if
[z(w,t;) — z(w, tiz1)] S(w,t;) =0 (2)

p-a.s.and = 1,2, ..., k.! The set of self-financing portfolios will be denoted dy

Letx € A. It may be easily proved that the above set of trading datgsbaaxtended by adding a
finite number of elements df and the conventiom(—,t;) — 2(—,¢;—1) = 0 if ¢; is @ new element that
does not belong to the initial finite set of trading dates. réfae it is easy to show that; 2! + as2? € A
if 2t € Aando; € R, i =1, 2.

INotice that products in2) are scalar (or inner) products Bf*.
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If x € Athen
AMz) = 2(w,0)S(w,0) € R

will be its current price, while thé-;, -measurable random variable
x(w, tg)S(w, tg)

will be its final pay-off and will be denoted h¥(z), or A(z)(w) if necessary.
As usual, an arbitrage portfolio allows traders to obtaimfray without risk”.

Definition 1 A self-financing portfolia: € A is said to be an arbitrage if
a) AM(z) <0
b) A(z)(w) >0, p-as.
C) plweQ: Alz)(w) — A(z) > 0) > 0.
Hereafter we will assume essentially bounded prices,S&=,t) € L>°(F;) forj = 1,2, ..., n and
t € 7. Thus for everyt € 7 there exists a-null setZ;, € F; such that the inequality
[1S(w, I < [I5(=,1)lloo @)

holds for everyw € Q\ Z;.
Givent, s € 7T, t < s, it makes sense to introduce the conditional expectatioy ef, s) with respect
to 7, and will be denoted b¥,,(S(—, s)|F:). Similar notations will be used for similar cases.

Definition 2 Given a finite sef0 < t; < --- < t;} C 7 and a probability measure: F;, — [0, 1] then
v is said to be a martingale measure §fy = 0 < t1 < --- <t} if ut, @andv are equivalent and

EV(S(*vti”ftj) = S(*vt]) (4)
whenevet, j = 0,1, ..., kandi > j.

The absence of arbitrage and th&@AP guarantee the existence of martingale measures on any finite
set of trading dates (see for instance Dalang etlél. (1990)], Schachermaye??, (1992)] or Jacod and
Shiryaev [L7, (1998)]).

Theorem 1 The model is arbitrage free if and only if there exists a nmayéle measure on every finite set
{0<ty <<t} CT.

Despite the previous result, the counter-example of Back Rliska P, (1991)] points out that the
martingale measure depends{on< ¢; < --- < tx}, i.e., in general, it is not possible to find F — [0, 1]
equivalent tqu and such that4) holds for everyt;, t; € 7 with ¢t; > t;.

3 Some mathematical background

It is worth to recall some properties concerning Radon nmmegsand projective systems of topologi-
cal spaces and measures. Further details may be found iayKel, (1955)], Bourbaki §, (1969)],
Schwartz P4, (1973)] or Musial P1, (1980)].

If X is a Hausdorff topological space alidrepresents its Boret-algebra then a finite and positive
measures on B is said to be a Radon measure if

v(B) =sup{v(K): K C B, K compact (5)
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foreveryB € B. Itis easy to show thag] implies
v(B) =inf{v(G): G D B, G open}

for everyB € B. Furthermore®) leads to the existence of an open sulisetf X such that/(G) = 0 and
G D @ for everyG’ open and such that(G’) = 0. Its complementaryX \ G is a closed set called the
support ofv and denoted b§p(v).

If X is compact then the s& of positive and finite Radon measures®may be identified with the set
of R-valued, linear, continuous and positive functional€X ) (C(X) being the Banach spaceRfvalued
and continuous functions oK), and the Alaoglu’s Theorem trivially leads to theak -compactness of
Ro={veR:v(X)=1}.

The Hausdorff topological space is said to be a Radon space if every finite and positive measure
Bis a Radon measure. Every Polish space (metric, completsegraatable) is a Radon space. In particular,
R¢ is a Radon space for every countableGeR® being the space d-valued functions o’ endowed
with the simple (or product) topology.

For any(F, B)-measurable functiorf: & — X, the measure induces a measure dj, called the
image measurg (), given by f(u)(A) = u(f~1(A)) for all A € B.2 Obviouslyf(u) is Radon if so is the
spaceX.

If X andY are two compact and Hausdorff spaces gndX — Y is a continuous function thefi
induces the new functioR* > v — f(v) € RY, R¥ andRY being the sets of finite and positive Radon
measures oX andY respectively. It is easy to show that this transformatiatoistinuous ifR X andRY
are endowed with their respectiveak -topologies.

Let < be the ordering relation of a directed detConsider a family of Hausdorff topological spaces
(Xi)ier and the continuous maps; : X; — X;,4,j € I, 1 < j. We say that(X;, m;;); 4,5 € I, i < j)
is a projective system of topological spacesif = m;; o wj, forall i, j, k € I,7 < j < k. Its projective
limit is

X = { (mi)iel S HXi 1T :wjk(xk) Ifj,ki el,j< k}
el
endowed with the product topology. Clearly, the canonicajgetionsr;: X — X, € I, are continuous
and satisfyr; = m;; om; forall 4, j € I, < j. X may be endowed with its Borel-algebra3 and the
cylindrical o-algebraB3, C B generated by

U {="(4i) : Ai € X;, A; open}
el

Note thatr; is Bp-measurable for everye 1.
Under the notations above,f is a Radon measure oXy; for everyi € I andm;;(v;) = v; if i, j € I,
i < j,then(v;)¢cs is said to be a projective system of Radon measures. We withsd(v;);c; converges
to the measure: By — R (or v is the projective limit of(v; );c ) if 7;(v) = v; for everyi € T.
The following results on the existence of projective lintfgprojective systems of Radon measures are
adapted from BourbakB| (1969)] and Schwart2[, (1973)] respectively.

Theorem 2 Under the notations above, if= N then every projective system of Radon measigs-n
has a projective limitz. Moreover,v is unique and can be extended to a unique Radon measure defined
over the Boreb-algebral5.

Theorem 3 (Prokhorov) Under the notations above there exists a Radon measuf® — R such that
m(v) = v; for everyi € I if and only if for everye > 0 there exists a compact sé&f C X with
v;i(X; \ mi(K)) < e for every: € I. In the affirmative case is unique.

°Notice that(£2, F, ) may be replaced by any other measure space.
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Corollary 1 Under the notations above $p(v;) C X, is compact for every € I then there exists a
unique Radon measure: B — R such thatr;(v) = v; for everyi € I. Furthermorer has a compact

supportandsp(v) C [[;c; Sp(¥i).

There is a special type of projective system of Radon meagliosely related to stochastic processes.
So, considef = Pp(7) the set of finite subsets @f containing{0} and consider the order dfgenerated
by the usual inclusion. For evelly € Pr(7) we will take the (Polish and therefore Radon) topological
spacgR")" of R"-valued functions defined dri. Of course(R™)" is endowed with the product topology.
If V,U € Pr(T) satisfyV C U thenryy: (RM)Y — (R™)V is the standard projection. It is trivial to
prove that we are facing a projective system

(((R")V,WVU) VU € Pp(T), V C U) 6)

of topological spaces whose projective limit can be idesdifivith the spac¢R™)? endowed the simple
topology. Furthermorey : (R*)7 — (R")V is also the standard projection for evéryc Pr (7).

As in the general case, the projective lifik™")?7 may be endowed with its Borel or cylindricat
algebras, denoted y3)7 and(B,)7 respectively. When endowed witi8,)? (the lower one) a function
f: Q — (R")7 is measurable if and only ity o f: Q — (R")Y is measurable for every € Pr(7)
(Footnote? also applies here).

Suppose thatvy )y cp,. (1) is a projective system of Radon measures associated witibthee projec-
tive system of topological spaces. The following result rhayestablished by readapting some statements
of Kopp [20, (1984)].

Theorem 4 (Daniell-Kolmogorov)  Under the notations above the system of Radon measures

(W) vepr(T)

has a unique projective limitz: (B5)7 — R.

4 Projective system approach

As in the previous section, consider= Pr(7). LetV € Pr(7T) and letSy be function connecting any
state of naturey € €2 and the restriction of” of the corresponding trajectory of the price procésse.,
the function

Q3w Sy(w) € (RY)Y

such thatSy (w)(t) = S(w, t) forw € Q andt € V. If v is the maximum oV, thenSy is F,-measurable
and thereforeSy (u,) is a Radon probability measure ¢R™)". In order to simplify the notation the
previous probability measure will be representediy ) andv will be omitted. Now it is straightforward
to prove that

(SV('LL))VE'PF(T) (7)
is a projective system of Radon probability measures aataativith 6). Notice that the support &y (1)
is compact for every” € Pr(7) since itis included in (see))
Sp (Sv(w) c [ K ®)
tev

where for everyt € 7 we have thai; represents the compact ball Rf with center at zero and radius
equal to]| S(—, ) co-
Consider now the function

Q3w Sr(w) = S(w,-) e (RM)T
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S(w,—) being the whole path associated with It is easy to show that the previous function#s
measurable ifR™)7 is endowed with the cylindricat-algebra(3,)? since, according to the properties of
Section3, it is equivalent to show thaty o S = Sy is F-measurable for every € Pr(7). Consequently
it makes sense to consider its image measirg:) defined onBy)7 and it is straightforward to show that
the probability measurgs (u) is the projective limit of 7), i.e.,

v (S7(p) = Sv () (9)

foreveryV € Pr (7). Moreover Corollani and @) prove thatS7 (1), projective limit of (Sv (1)) v ep,. (7).
may be extended to a unique Radon measure defing®h If there is no confusion then bot$ir (u)
and its extension will be denoted with the same symbol. Bas@) leads to

Sp (Sr(w) < [] K. (10)

teT

Next let us introduce the projective price process. So, ¥enew < (R™)7 and everyt € 7 we can

define

S*(w,t) = w(t).
One can consider the filtratidF; ], .- on (R™)7 such thatF; is the smallest-algebra for whicht* (—, ')
is F;-measurable it’ € 7 andt’ < ¢. By constructior{F;],. is increasing and all of them are included
in the cylindricalo-algebra(By)? because the random varialfié(—, t) is clearly(B,)? -measurable for
everyt € 7.

Our major objective is to establish the existence of a priihameasurev: (By)? — [0, 1] so that the
projective price process* can be a martingale with respectitpsolving this way the drawback pointed out
after Theoreni. Besidess and Sz (i) should satisfy “some kind of equivalence”, since the exisgeof
Radon-Nikodyn densities seems to be desirable. We will shaivthe complete equivalence between both
probability measures does not necessarily hold in generttalvb can introduce a weaker concept. Thus
following the approach of Balbas et ak, [[2002)], or Balbas and Downarowicz [(2007)] for a one period
model with infinitely many securities, we have:

Definition 3  Two arbitrary probability measures: (By)? — [0, 1] and¢: (Bo)? — [0, 1] are said to be
projectively equivalent ifry () andmy () are equivalent for every” € Pr(7).

Obviously, ifv and¢ are equivalent then they are projectively equivalent toavill be shown that the
converse does not hold in general (see also Balbas ét, §2(02)]).

In order to establish the existence of projectively eq@imaimartingale measures it is convenient to
translate the arbitrage absence in terms of the projectice processs*. So we present a result whose
proof is very simple and therefore omitted.

Proposition 1  If the initial price processS is arbitrage free then the projective price processis arbi-
trage free.

The projective price process has been built without imppspecial assumptions on the set of trading
dates7 . In particular,7 might be finite. Consequently, the procedure also applieswdonsidering any
V € Pr(T) instead of7. In such a case, if € V thenF* denotes the smallestalgebra of(R™)"
allowing the natural sections (the projective price pre¥éR")" > @ — SV*(w,t') = w(t') € R" to be
FY*-measurable for every € V, ' < t. Itis clear thaf F)*),cy is a increasing filtration.

Next we will translate Theore@into the projective system setting. Once again we omit to@fr

Proposition2 LetV = {tp =0<t; < --- < tx} € Pp(7) and letr be a martingale measure in the
sense of Definitio@. Thenvj, = Sy (v) andSy (1) are equivalent and

Eyy (SV* (- t)IF) = 8V (=.1y), (11)

i,j=0,1,..., k,i > j. Moreoverv;, has a compact support includedfif, ., K;.
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As a consequence of the latter proposition if we were ableutidl la projective system by “correctly
connecting/;, asV grows” then the projective limit, whose existence is gutgad by Corollaryl, could
be an adequate candidate to be our “risk-neutral martingaksure”. The construction of this projective
system will be the major goal of Secti®n

5 Countable sets of trading dates

Throughout this section we will assume tlais countable. Thus there exists a bijectibnN < 7 such
that®(0) = 0. Denotet,,, = ®(m) for everym € N. Then the equality

N = G{O,l,...,m
m=1

leads to - -
= U e(0.1,....m}») = |J T,
m=1 m=1

where7,,, denotes the finite s€0, ¢4, ..., t,, }. Hence the following result has been stated:

Lemmal There exists an increasing sequefi@g, ),cn Of finite subsets of such that

7= 7 (12)

meN

and0 € 7, for everym € N. Furthermore,(R")7 can be identified with the projective limit of the
projective system of topological spaces

(((R”) M) s s €N r < s) (13)

wherer,. . denotes the standard projection(@™)?: onto (R™)7~

The sequence ofl@) and the systeml@) will be fixed throughout this section. To simplify the natet
(R™)7 will be represented byR™),. for everyr € N.

Suppose that the initial model is arbitrage free andrfix N. Proposition2 ensures the existence
of Radon probability measures on any(R™), equivalent tory (S7 (1)) and with support included in
[, K:, such that the restriction t®"™),. of the projective price process is a martingale with respect
the filtration (7} *);c7..2 Consider the seM..,. of Radon probability measures satisfying these properties
Now if s > r considerM,s = m,s(Mss) = {ms(v}) : VI € M,s} and it is easily proved that
My D M,s. DefineM, = N2, Mys C M,

Lemma 2 The setsM,.. and M,. are non void andveak'-compact for every € N.

PrROOF Proposition2 guarantees that1,, is non void for everys > r. Moreover, every probability
measure ofM ;s has a compact support mcludedmg K, so they can be considered Radon measures
on this compact space. It is easy to see thaf, is weak-closed. Then the results of SectiBishow that
M, is weak -compact and theveak -continuity of M, > v — m,.,(v}) € M, (see Sectiord) shows
that everyM,., is weak-compact. Thus it is sufficient to show that every finite stilo$g M, : s > 1}

has non void intersection. But given any finite subsétl, ;s : s = s; > s2 > -+ > s, > r } one can take

so > s1 and we have thall # 7,5, (Maysy) = Trs,; Ts;50(Magsy) C Trs; (Mss;) forj =1,2, .., k.

[ |

3Notice that the notation has been simplified did representsF; " *. Analogously,S7* will representsf‘*
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Theorem 5 Suppose tha? is countable. If the initial model is arbitrage-free thereth exists a Radon
probability measure* on (R")7 such thaSp(v*) C [, K¢, v* and Sz () are projectively equivalent
and the projective price process' is a martingale with respect to* and the increasing filtratiof7; |, -

PrROOF ConsiderH composed of those elements
(vf)yep: PCN, vi € M, andm,(v;) = v} if r,s € Pandr < s). (14)

The latter lemma proves that is non void. Consider the natural order®f i.e., a new element of{
is greater than the element aboverfincreases t@®’ and the previous measurg$s remain constant for
r € P. Itis easyto see th&{ is inductive, so the Zorn's Lemma ensures the existence @bamal element.
Suppose thatld) is this maximal. IfP is cofinal withN then it is easy to see thélt4) is a projective system
of Radon measures whose associated projective systemadbtppal spaces has a projective limit that can
be identified with(R")7 . Moreover, Theoren2 ensures the existence of, projective limit of (v),.cp,
and it is easy to prove that* satisfies the required conditions. In particuls(v*) C [],., K trivially
follows from (10) and the projective equivalence betweerand S+ (u).

Suppose thaP is not cofinal. Then there exists its maximum value P. Sincev; € M, for ever
s >r, set(v¥)2, such thav! € M,, and

vy = mps(VY). (15)

S

Set
Vgt = Trs (V) (16)

for everys > r. Expression15) shows that = 7T7“7?”+1(V:+1,s) for everys > r. If we were able to prove
the existence of;, ;, agglomeration point ofv;", ; )32, 1, we would have that

vy = Wr,r+1(’/:+1> (17)
Furthermore, being;, ; agglomeration point ofv;", ; )32, ,; and taking into account that) leads to
V:+1,s € MT+1,S - Mr+1,r+1 (18)

for everys > r + 1, one has that;", ;, € M, 1 = ﬂf;;_H M, s from where (7) generates a contra-
diction since 14) is not maximal. Thug®> must be cofinal.

Itonly remains to prove the existence of the agglomerat@ntp;:, , but this is an obvious consequence
of (18) and theweak -compactness af1,;; 1. W

It is worth to remark that minor modifications of the proof ab@an allow us to use a simple induction
method rather than the Zorn’s Lemma. Therefore, a more naiste proof of Theorerd may be available.

Notice that there are countable sets that are dense in théneawhich (under special assumptions
such as continuous paths) might lead to new proofs of The&rémat do not require the Zorn’s Lemma,
but strictly weaker axioms.

As said in the introduction this result extends those fingdiofBalbas et al.q, (2002)], since there are
no additional conditions on the countable 3et Nevertheless there are many relationships between both
analyses. So, in both cases the projective system appraeaamiarged the set of states of the world so that
the new set of states can contain the whole family of feagiths of the price process (notice that the new
set of states of nature {®™)7 in the present case). As pointed out in Balbas etl(2002)], this fact
implies that* and.S7(u) cannot be equivalent sineé must vanish over the set of new states that can not
be identified with anyo € 2. Consequently we have that the concept of projective etgrica is strictly
weaker than the concept of equivalence (see Balbas ét, §2002)] for further details).
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6 Conclusions

Representation Theorems have shown to be crucial in Matiieah&inance. Regarding pricing rules of
perfect markets, for an infinite number of trading dates tharacterization of the absence of arbitrage
by the existence of equivalent martingale measures presente difficulties, and the price process of the
assets needs less intuitive notions such as “no free luncinbdree lunch with bounded risk”, generalizing
the concept of “no arbitrage”. Moreover some constrainttherirajectories of the price process are usually
required.

This paper considers a countable set of trading dates ang drathe projective system approach. Then
we establish the equivalence between the absence of gebitired the existence of martingale measures.
The equivalence holds under quite general assumptions #iece are no conditions on the set of trading
dates or on the trajectories of the price process.

The projective system approach allows us to enlarge thef states of nature and to identify this set
and the set of feasible trajectories. Thus a complete elgmiva between the initial probability measure
and the martingale measure does not hold in general. Howlexexistence of densities between the “real”
probabilities and the “risk-neutral” probabilities is gaateed by introducing the concept of “projective
equivalence”, in the sense that both the martingale meamdehe initial probability measure generate
equivalent projections.
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