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Abstract. This paper has considered a risk measureρ and a (maybe incomplete and/or imperfect)
arbitrage-free market with pricing ruleΠ. They are said to be compatible if there are no reachable strate-
giesy such thatΠ(y) is bounded andρ(y) is close to−∞. We show that the lack of compatibility leads
to meaningless situations in financial or actuarial applications.

The presence of compatibility is characterized by properties connecting the Stochastic Discount Fac-
tor of Π and the sub-gradient ofρ. Consequently, several examples pointing out that the lackof compati-
bility may occur in very important pricing models are yielded. For instance theCVaR is not compatible
with the Black and Scholes model or theCAPM.

We prove that for a given incompatible couple(Π, ρ) we can construct a minimal risk measureM(Π,ρ)

compatible withρ and such thatρ ≤ M(Π,ρ). This result is particularized for theCVaR and theCAPM
and the Black and Scholes model. Therefore we construct the Compatible Conditional Value at Risk
(CCVaR). It seems that theCCVaR preserves the good properties of theCVaR and overcomes its
shortcomings.

Compatibilidad entre reglas de valoraci ón y medidas de riesgo: el CCVaR

Resumen. Consideraremos una medida de riesgoρ y un mercado libre de arbitraje (puede ser que in-
completo o imperfecto) con regla de valoraciónΠ. Éstos serán compatibles si no hay estrategias alcanza-
blesy tales queΠ(y) permanece acotado yρ(y) se acerca a−∞. Veremos que la falta de compatibilidad
conduce a situaciones sin sentido económico en las aplicaciones actuariales o financieras.

La compatibilidad será caracterizada mediante propiedades que ligan al Factor de Descuento Es-
tocástico deΠ y al sub-gradiente deρ. Consecuentemente, se podrán dar importantes ejemplos enlos que
hay falta de compatibilidad. Por ejemplo, elCVaR no es compatible con el modelo de Black-Scholes o
el CAPM.

Probaremos que para cualquier par incompatible(Π, ρ) se puede construir una medida de riesgo
minimalM(Π,ρ) compatible conρ, y tal queρ ≤ M(Π,ρ). Este resultado se particularizará para elCVaR
y el CAPM y el modelo de Black-Scholes. Por tanto, construiremos elCVaR Compatible (CCVaR). El
CCVaR parece preservar las buenas propiedades delCVaR y superar sus deficiencias.

1 Introduction

General risk functions are becoming very important in finance and insurance. Since Artzner et al. [2, (1999)]
introduced the axioms and properties of the “Coherent Measures of Risk” many authors have extended the
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discussion. The recent development of new markets and products, the necessity of managing new types
of risk, and the obligation of providing initial capital requirements have made it necessary to overcome
the variance as the most used risk measure and to introduce more general risk functions.1 Hence, it is not
surprising that the recent literature presents many interesting contributions focusing on new methods for
measuring risk levels. Among others, Föllmer and Schied [10, (2002)] have defined the Convex Risk Mea-
sures, Goovaerts et al. [11, (2004)] have introduced the Consistent Risk Measures, Rockafellar et al. [16,
(2006)] have defined the General Deviations and the Expectation Bounded Risk Measures, and Brown and
Sim [7, (2009)] have introduced the Satisfying Measures. Furtherinformation about modern risk functions
may be found in Balbás [3, (2007)].

Many classical actuarial and financial problems have been revisited by using new risk functions. So,
with regard to portfolio choice and asset allocation problems, amongst many others authors, Alexander et
al. [2, (2006)] compare the minimization of the Value at Risk (VaR) and the Conditional Value at Risk
(CVaR) for a portfolio of derivatives, Calafiore [8, (2007)] studies “robust” efficient portfolios in discrete
probability spaces, Mansini et al. [13, (2007)] use general risk measures in portfolio theory and Schied [19,
(2007)] deals with optimal investment with convex risk measures.

Pricing and hedging issues in incomplete markets have also been studied (Föllmer and Schied [10,
(2002)], Nakano, [14, (2004)], Staum, [20, (2004)], etc.), as well as Equity Linked Annuities hedgingissues
(Barbarin and Devolder [6, 2005]) and Optimal Reinsurance Problems (Balbás et al. [4], 2009). However,
several optimization problems involving risk functions become unbounded, which does not make any sense
in practical applications. It seems that this fact has not been deeply analyzed in the literature until now.

The present paper simultaneously considers the pricing rule of the market and the risk measurement
procedure, and it points out that the “pathological” unbounded optimization problems may arise due to some
lack of compatibility between the pricing rule and the risk function. In some sense, our major objective is
to introduce and characterize the notion of compatibility between prices and risks, as well as to recover it
when it does not hold.

The article’s outline is as follows. Section2 will present the notations and the general framework we
are going to deal with. The concept of compatibility will be introduced in Section3. We will consider a
(maybe incomplete and/or imperfect) arbitrage-free market with pricing ruleΠ and an expectation bounded
risk measureρ. They are compatible if there are no reachable strategiesy such thatΠ(y) is bounded and
ρ(y) is close to−∞ or, equivalently, there are no reachable strategiesy′ such thatρ(y′) is bounded and
Π(y′) is close to−∞. We will show that he lack of compatibility leads to meaningless situations in financial
of actuarial applications. For instance, a manager could make the capital requirements disappear, borrow as
much money as desired, and simultaneously face a riskless position, in the sense that the global risk of the
strategy vanishes.

The most important result of this section is Theorem1, which establishes that the necessary and suf-
ficient condition to ensure compatibility is the existence of Stochastic Discount Factors ofΠ in the sub-
gradient ofρ. Accordingly, we will present several examples pointing out that the lack of compatibility
may occur in very important pricing models. For instance, ithappens if the sub-gradient ofρ is composed
of essentially bounded random variables and the StochasticDiscount Factor (SDF) is unbounded. Exam-
ples of risk measures satisfying the condition above are, among others, theCVaR and the Dual Power
Transform (DPT) of Wang [21, (2000)]. Examples of pricing models are, amongst others, the Black and
Scholes model and the Capital Asset Pricing Model (CAPM).

Section4 is devoted to show that for a given incompatible couple(Π, ρ) we can construct a minimal
expectation bounded risk measureM(Π,ρ) compatible withρ and such thatρ ≤ M(Π,ρ). The most important
result of this section is Theorem2, whereM(Π,ρ) is constructed and profoundly analyzed. The possible
coherence ofM(Π,ρ) for a coherentρ is also studied.

We focus on concrete risk functions and pricing models on Section 5. In particular, we deal with the
CVaR, the DPT, and the Absolute Deviation, as well as with theCAPM and the Black and Scholes

1It has been proved that the variance is not compatible with the Second Order Stochastic Dominance if asymmetries and/or heavy
tails are involved (Ogryczak and. Ruszczynski, [15, 1999]).
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model. For them all we analyze the extensionM(Π,ρ), and point out its major properties. Special attention
is devoted to theCVaR because this expectation bounded and coherent risk measureis becoming very
popular among researchers, managers and practitioners, due to its favorable properties. From theCVaR we
apply the findings of Section4 so as to build the Compatible Conditional Value at Risk (CCVaR), a new
coherent and expectation bounded measure of risk compatible with theCAPM and the Black and Scholes
model. Hence, it seems that theCCVaR preserves the good properties of theCVaR and overcomes its
shortcomings.

Section6 points out the most important conclusions of the paper.

2 Preliminaries and notations

Consider the probability space(Ω,F , µ) composed of the set of “states of the world”Ω, theσ-algebraF
and the probability measureµ. Consider also a couple of conjugate numbersp ∈ [1,∞) andq ∈ (1,∞]
(i.e., 1/p + 1/q = 1). As usualLp (Lq) denotes the Banach space ofR-valued random variablesy on Ω
such thatE (|y|p) < ∞, E ( ) representing the mathematical expectation (E (|y|q) < ∞, or y essentially
bounded ifq = ∞). According to the Riesz Representation Theorem, we have that Lq is the dual space
of Lp.

Consider a time interval[0, T ], a subsetT ⊂ [0, T ] of trading dates containing0 andT , and a filtration
of σ-algebras(Ft)t∈T

providing the arrival of information and such thatF0 = {∅, Ω} andFT = F .
Let us assume thatY ⊂ Lp is a convex cone composed of super-replicable pay-offs, i.e., for every

y ∈ Y there exists at least one self-financing portfolio whose final pay-off isST ≥ y. Denote byS(y) the
family of such self-financing portfolios, and suppose that there exists

Π(y) = inf{S0; (St)t∈T ∈ S(y) }

for everyy ∈ Y . We will say thatΠ(y) is the price ofy. The market will be said to be complete if for every
y ∈ Lp there exists(St)t∈T ∈ S(y) such thatST = y, and incomplete otherwise. Besides, the market
will be said to be perfect ifY is a subspace ofLp andΠ: Y → R is linear and continuous, and imperfect
otherwise. In general, we will impose the natural conditions, sub-additivity

Π(y1 + y2) ≤ Π(y1) + Π(y2) (1)

for everyy1, y2 ∈ Y , and positive homogeneity

Π(αy) = αΠ(y) (2)

for everyy ∈ Y andα ≥ 0. Consequently,Π is a convex function. Finally, we will assume the existence
of a riskless asset that does not generate any friction, i.e., almost surely constant random variablesy = k
belong toY for everyk ∈ R, and there exists a risk-free raterf ≥ 0 such that

Π(k) = k e−rf T (3)

holds. It is easy to see that (3) leads to

Π(y + k) = Π(y) + k e−rf T (4)

for everyy ∈ Y andk ∈ R. IndeedΠ(y + k) ≤ Π(y) + k e−rf T is clear, and

Π(y) = Π(y + k − k) ≤ Π(y + k) + Π(−k) = Π(y + k) − k e−rf T

implies the opposite inequality.
Let

ρ : Lp −→ R

be a general risk function that a trader uses in order to control the risk level of his final wealth atT . Assume
thatρ is continuous and satisfies:
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a)
ρ(y + k) = ρ(y) − k (5)

for everyy ∈ Lp andk ∈ R.

b)
ρ(αy) = αρ(y) (6)

for everyy ∈ Lp andα > 0.

c)
ρ(y1 + y2) ≤ ρ(y1) + ρ(y2) (7)

for everyy1, y2 ∈ Lp.

d)
ρ(y) ≥ −E(y) (8)

for everyy ∈ Lp. 2

Particular interesting examples are the Conditional Valueat Risk (CVaR) of Rockafellar et al. [16,
(2006)], the Dual Power Transform (DPT) of Wang [21, (2000)] and the Wang Measure (Wang [21,
(2000)]), among many others. Furthermore, following the original idea of Rockafellar et al. [16, (2006)] to
identify their Expectation Bounded Risk Measures and theirDeviation Measures, it is easy to see that

ρ(y) = σ(y) − E(y) (9)

is continuous and satisfiesa), b), c) andd) if and only if σ : Lp → R is a continuous deviation, that is, ifσ
is continuous and satisfiesb), c),

e)
σ(y + k) = σ(y)

for everyy ∈ Lp andk ∈ R, and

f)
σ(y) ≥ 0

for everyy ∈ Lp.

Particular examples of deviation measures are the classical p-deviation given by

σ(y) =
[

E (|E(y) − y|p)
]1/p

, (10)

or the downsidep-semi-deviation given by

σ(y) =
[

E
(

|max {E (y) − y, 0}|p
)]1/p

, (11)

among many others.
Consider a continuousρ satisfyinga), b), c) andd). Denote by

∆ρ = { z ∈ Lq; −E(yz) ≤ ρ(y), ∀y ∈ Lp }. (12)

2Actually, the properties above are almost similar to those used by Rockafellar et al. [16, (2006)] in order to introduce their
Expectation Bounded Risk Measures. These authors also imposea), b), c) andd), work with p = 2, allow for ρ(y) = ∞, and impose
ρ(y) > −E(y) if y is not constant.
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The set∆ρ is obviously convex. Bearing in mind the Representation Theorem 2.4.9 in Zalinescu [22,
(2002)] for convex functions, and using a proof similar to that of the Representation Theorem of risk mea-
sures stated in Rockafellar et al. [16, (2006)], it may be stated that∆ρ is alsoσ(Lq, Lp)-compact, the
constant random variable1 ∈ ∆ρ, and

ρ(y) = max{−E(yz) : z ∈ ∆ρ } (13)

holds for everyy ∈ Lp. Furthermore,

∆ρ ⊂ { z ∈ Lq; E(z) = 1 }. (14)

Following Rockafellar et al. [16, (2006)], if ρ is continuous and satisfies Propertiesa), b), c) andd) above
then it is also coherent in the sense of Artzner et al. [2, (1999)]3 if and only if

∆ρ ⊂ Lq
+ = { z ∈ Lq; µ(z ≥ 0) = 1 }. (15)

Finally, by means of the Hahn Banach Separation Theorem, onemay easily prove that if∆ ⊂ Lq is convex
andσ(Lq, Lp)-compact,1 ∈ ∆, and∆ satisfies (14), then there exists a unique continuousρ satisfyinga),
b), c) andd) such that (13) holds.

Summarizing, as indicated in the diagram below

Dµ ⇌ Mµ ⇌ Cµ

σ = ρ + E ⇌ ρ ⇌ ∆ρ
(16)

Expression (9) establishes a one to one bijection between the setMµ of continuous functions satisfying
a), b), c) andd) and the setDµ of continuous functions satisfyingb), c), e) andf), whereas (13) (or (12))
establishes a one to one bijection between the setMµ and the setCµ of convex andσ(Lq, Lp)-compact
subsets ofLq fulfilling ( 14) and containing the constant random variable whose value is1. The coherence
of the risk measure is characterized by the inclusion (15), and both identifications in (16) are increasing,
i.e., higher deviations are associated with higher risk measures and higher sets ofCµ.

3 Compatibility between pricing rules and risk measures

This section will be devoted to introduce and characterize the notion of compatibility between risk measures
and pricing rules.

Definition 1 The pricing ruleΠ and the risk measureρ ∈ Mµ are said to be compatible if there are no
sequences(yn)∞n=1 ⊂ Y such thatΠ(yn) ≤ 0 for everyn ∈ N and

lim ρ(yn) = −∞ (17)

simultaneously hold.

As some examples below will illustrate, the absence of compatibility may hold in practice.
Actually, if Π andρ were not compatible, then every manager could make the capital requirements

become−∞, which does not make any sense in an economic framework. In fact, suppose that the random
variabley0 ∈ Y represents the valueT of the portfolio traded by the manager. Its final risk will be given by
ρ(y0), which justifies that this quantity may be an adequate final value (atT ) of the capital requirement.4

Indeed, (5) leads to
ρ(y0 + ρ(y0)) = 0

3i.e.,ρ(y1) ≥ ρ(y2) whenevery1, y2 ∈ Lp andy1 ≤ y2.
4i.e.,ρ(y)e−rf T should be the initial cash reserve (or capital requirement)invested in the risk-free asset.
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and the risk will vanish if the amountρ(y0) e−rf T is invested in the riskless security. But (7) and the
existence of the sequence(yn)∞n=1 ⊂ Y above imply that

ρ(y0 + yn) −→ −∞

while
Π(y0 + yn) ≤ Π(y0),

which means that no capital has to be added and the risk level may be reduced as desired if the manager
buysyn. Thus, the capital requirementρ(y0) does not have to be added. On the contrary, by addingyn the
trader may even borrow an arbitrary amount of money−ρ(y0 + yn) → ∞, since, according to (5),

ρ(y0 + yn + ρ(y0 + yn)) = 0.

Analogously, the lack of compatibility would allow an arbitrary trader to borrow an unbounded amount
of money without facing any risky position. Indeed, borrowing −ρ(yn) → ∞ euros and buyingyn for
Π(yn) ≤ 0 euros would imply a global risk given by

ρ(yn + ρ(yn)) = 0,

that must be interpreted as a null level of risk.
Next we will show that the inequalityΠ(yn) ≤ 0 may be substituted by a more general one.

Proposition 1 The pricing ruleΠ and the risk measureρ ∈ Mµ are not compatible if and only if for
everya ∈ R there exists a sequence(yn)∞n=1 ⊂ Y such thatΠ(yn) ≤ a for everyn ∈ N and (17)
simultaneously hold.

PROOF. Suppose thatΠ andρ are not compatible and take the sequence(yn)∞n=1 ⊂ Y of Definition 1.
Then, (3) leads to

Π(yn + a erfT ) ≤ a,

while (5) leads to
ρ(yn + a erf T ) = ρ(yn) − a erf T −→ −∞,

which completes the proof.�

Next let us prove that the risk measure and the pricing rule may interchange their roles in Definition1.

Proposition 2 The pricing ruleΠ and the risk measureρ ∈ Mµ are not compatible if and only if for
everya ∈ R there exists a sequence(yn)∞n=1 ⊂ Y such thatρ(yn) ≤ a for everyn ∈ N and

limΠ(yn) = −∞

simultaneously hold.

PROOF. If (yn)∞n=1 ⊂ Y satisfies the conditions above then (4) and (5) easily show that
(

yn − Π(yn) erf T
)∞

n=1
⊂ Y

satisfies the conditions of Definition1.
Conversely, if(yn)∞n=1 ⊂ Y satisfies the conditions of Definition1 then (4) and (5) easily show that

(yn + ρ(yn) − a)∞n=1 ⊂ Y

satisfies the conditions above.�

The interpretation of Propositions1 and2 seems to be clear. IfΠ andρ are incompatible then there is
a significant lack of balance between prices and risks. This lack may provoke pathological situations, as
described above, that cannot be accepted in economic applications.
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Next we will attempt to characterize the notion of compatibility by means of practical criteria. To this
purpose we will consider the optimization problem











min ρ(y)

Π(y) ≤ 0

y ∈ Y

(18)

Problem (18) minimizes the attainable risk level with non-positive prices. Obviously, (18) is bounded if
and only ifΠ andρ are compatible.

Problem (18) is not differentiable becauseρ is not differentiable either. Recent literature has developed
several optimization methods that may solve this caveat (see, among others, Ruszczynski and Shapiro [18,
(2006)]). In this paper we will follow a procedure quite parallel to that used in Balbás et al. [4, (2009)]
and [5, (2009)], where the authors use risk measures and deal with amathematical programming problems
related to actuarial and financial classic topics. Some duality linked properties and Theorem1 below will
not be proved due to their analogy with similar results of thementioned papers.

In particular, bearing in mind (13) and following Balbás et al. [5, (2009)], (18) is equivalent to the
infinite-dimensional linear optimization problem



















min θ

θ + E(yz) ≥ 0, ∀z ∈ ∆ρ

Π(y) ≤ 0

θ ∈ R, y ∈ Y

(19)

θ ∈ R andy ∈ Lp being the decision variables. Furthermore,y ∈ Y solves (18) if and only if there exists
θ ∈ R such that(θ, y) solves (19), in which caseθ = ρ(y) holds.

Besides, following parallel developments to that presented in Balbás et al. [4, (2009)], one can show
that Problem











max0

λΠ(y) − E(yz) ≥ 0, ∀y ∈ Y

λ ∈ R, λ ≥ 0, z ∈ ∆ρ

(20)

is the dual of (19), λ ∈ R andz ∈ ∆ρ being the decision variables.

Proposition 3 If (λ, z) is (20)-feasible thenλ = erf T .

PROOF. Constraint
λΠ(y) − E(yz) ≥ 0, ∀y ∈ Y

implies thatE(z) = λe−rf T , since we can takey = 1 andy = −1 and apply (3). Then (14) leads to
λ = erf T . �

As a consequence, (20) may be simplified to










max 0

erf T Π(y) − E(yz) ≥ 0, ∀y ∈ Y

z ∈ ∆ρ

(21)

Finally, following Balbás et al. [4, (2009)] and [5, (2009)], there is no duality gap between (18) and (21),
and the following primal-dual relationship holds

Theorem 1 The three following conditions are equivalent:

a) Π andρ are not compatible.
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b) Problem(18) is unbounded.

c) Problem(21) has no feasible solutions.

Remark 1 Those elements satisfying the first constraint in(21) will be called Stochastic Discount Factors
(SDF) of Π. Actually, this notion ofSDF is less restrictive than the usual one in Mathematical Finance
(Duffie[9, (1988)]), since the classic framework takesp = 2 and a perfect market. However, it is worthwhile
to point out that the classicalSDF would satisfy the first constraint in(21).

Notice that Theorem2 indicates thatΠ andρ are compatible if and only if there areSDF of Π in the
sub-gradient∆ρ of ρ.

Finally, let us remark that for a perfect market the first constraint in (21) must also apply if−y replaces
y, which implies that the constraint may by given by

E(yz) = erf T Π(y) (22)

for everyy ∈ Y .

Corollary 1 Π andρ are compatible if and only if

ρ(y) ≥ −Π(y)erf T (23)

for everyy ∈ Y .

PROOF. Suppose thatΠ andρ are compatible and take aSDF z ∈ ∆ρ. Takey ∈ Y . Then (13) and (23)
imply that

ρ(y) ≥ −E(yz) ≥ −erf T Π(y).

Conversely, suppose that (23) holds. ThenΠ(y) ≤ 0 obviously implies thatρ(y) ≥ 0. Thus (18) cannot
be unbounded, andΠ andρ are compatible. �

Example 1 (Example illustrating that the compatibility bet ween pricing rules and risk mea-
sures is not guaranteed) ConsiderΩ = {ω1ω2}, µ(ω1) = 0.1, µ(ω2) = 0.9, and

Π(α(1, 1) + β(1, 0)) = α + 0.5β.

The example indicates that the risk-free rate vanishes and the risky asset with pay-off(1, 0) has a price
equal to0.5. Suppose that

∆ρ = { (z1, z2); 0.1z1 + 0.9z2 = 1 and0 ≤ zi ≤ 2.5, i = 1, 2 }.

According to Rockafellar et al.[16, (2006)]∆ρ corresponds to the Conditional Value at Risk with0.6 =
60% as the level of confidence. Notice that this simple model satisfies many “good properties”. For in-
stance, it is perfect and complete, and it is also arbitrage-free because

z1 = 5, z2 =
5

9

is a positiveSDF (Duffie[9, (1988)]). However, the conditions defining the(21)-feasible set are










0.1z1 = 0.5

0.1z1 + 0.9z2 = 1

0 ≤ zi ≤ 2.5, i = 1, 2

and this set is obviously void. Thus, according to Theorem1, we are facing incompatibility.
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Proposition 4 Suppose that(18) (or (19)) is bounded. Then so is(21), every(21)-feasible solution
solves(21) and y∗ ∈ Y solves(18) if and only if Π(y∗) = 0 and ρ(y∗) = 0. In particular, y∗ = 0
solves(18).

PROOF. (21) must be bounded due to the classical relationships betweenprimal and dual problems (Lu-
enberger [12, (1969)]). Ify∗ ∈ Y solves (18) the absence of duality gap shows thatρ(y∗) = 0. Let us prove
Π(y∗) = 0. If Π(y∗)) = −a < 0 then

Π
(

y∗ + a erf T
)

= 0,

whereas
ρ

(

y∗ + a erf T
)

= ρ(y∗) − a < ρ(y∗),

which implies thaty∗ is not optimal and we have a contradiction.
Converselyy∗ ∈ Y , Π(y∗) = 0 andρ(y∗) = 0 imply that y∗ is (18)-feasible and (18) achieves its

optimal value aty∗, soy∗ is optimal. �

Remark 2 Example1 points out thatρ andΠ may be incompatible, but we can provide more interesting
examples. To this purpose, for0 < µ0 < 1 define theVaRµ0

of every random variabley by (Balb́as [3,
(2007)])

VaRµ0
(y) = − inf{α ∈ R; µ(y ≤ α) > 1 − µ0 }. (24)

SinceLp ⊂ L1, suppose thatρ may be extended to the whole spaceL1. Important expectation bounded
risk measures satisfy this condition. Among others, theDPT of Wang[21, (2000)], given by

DPTa(y) =

∫ 1

0

VaR1−t(y)g′a(t) dt (25)

for everyy ∈ L1, a > 1 being an arbitrary constant and

ga : (0, 1) −→ (0, 1)

given by
ga(t) = 1 − (1 − t)a,

theCVaRµ0
given by

CVaRµ0
(y) =

1

1 − µ0

∫ 1−µ0

0

VaR1−t(y) dt (26)

for 0 < µ0 < 1 and y ∈ L1, the weightedCVaR (WCVaR) given by a convex combination of several
CVaRs with different confidence level, and the measure(9) if σ is the1-deviation (or absolute deviation)
or the1-down-side semi-deviation (or down-side absolute semi-deviation) (see(10) and (11)). In such a
case(12) points out that∆ρ ⊂ L∞, and therefore the elements in∆ρ are essentially bounded. But there
are many important pricing models in Financial Economics whoseSDF are not essentially bounded. For
instance, the Black and Scholes model, where theSDF is unique because the market is complete and it
is unbounded too, as pointed out in Wang[21, (2000)]. Another important example is the Heston model,
which allows us to price derivatives in an stochastic volatility framework.5

Remark 3 Expressions(24) and(26) point out that

CVaRµ0
(y) ≥ VaRµ0

(y)

5 Notice that theSDF of Example1 is in L∞, so there are much more cases generating incompatibility, i.e., the given conditions
are only sufficient.
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for everyy ∈ L1, which implies that
limVaRµ0

(yn) = −∞

for every sequence(yn) ⊂ L1 such that

limCVaRµ0
(yn) = −∞.

Thus, if the couple(Π, CVaRµ0
) is not compatible then nor is(Π, VaRµ0

), in the sense that(Π, VaRµ0
)

does not satisfy Definition1. Similarly, if the couple(Π, WCVaR) is not compatible then the same occurs
if WCVaR is replaced byWVaR. 6

4 Recovering compatibility

Since Example1 and the previous remarks show that compatibility may fail invery important cases, it is
natural to analyze whether modifications of the risk measureallow us to recover some kind of balance.

Theorem 2 Fix the pricing ruleΠ and a risk measureρ ∈ Mµ. Suppose that there exists a continuous
Π̃ : Lp → R extendingΠ and satisfying(1) and (2). Then there existsM(Π,ρ) ∈ Mµ such that:

a) Π andM(Π,ρ) are compatible, andρ ≤ M(Π,ρ).

b) M(Π,ρ) is minimal, i.e., ifΠ andρ̃ ∈ Mµ are compatible,ρ ≤ ρ̃ andρ̃ ≤ M(Π,ρ) thenρ̃ = M(Π,ρ).

c) Π andρ are compatible if and only ifM(Π,ρ) = ρ.

d)
M(Π,ρ)(y) ≥ max{−Π(y) erfT , ρ(y)}

holds for everyy ∈ Y .

e) If the market is perfect (i.e., ifΠ is linear and continuous) then

M(Π,ρ)(y) = max{−Π(y) erfT , ρ(y)} (27)

holds for everyy ∈ Y .

f) If the market is complete and perfect and the pricing ruleΠ is increasing thenM(Π,ρ) is coherent if
and only ifρ is coherent.

PROOF. Consider the subspaceL ⊂ Y of Lp composed of the constant functions and definef(k) =
k e−rf T for everyk ∈ L. Bearing in mind (3), Theorem 3.2 in Rudin [17, (1972)] guarantees the existence
of a linear functionΛ: Lp → R such that

Λ(k) = k e−rf T (28)

for everyk ∈ L and
− Π̃(−y) ≤ Λ(y) ≤ Π̃(y) (29)

for everyy ∈ Lp. The continuity ofΠ̃ and (29) obviously imply the continuity ofΛ. Hence, the Riesz
Theorem guarantees the existence ofz0 ∈ Lq such thatΛ(y) erf T = E(yz0) for everyy ∈ Lp. Thus, (29)
shows that

E(yz0) ≤ Π̃(y) erf T (30)

for everyy ∈ Lp, and (28) shows thatE(z0) = 1 (k = 1).

6It may be worth to recall now thatVaR andWVaR are not expectation bounded because they are not sub-additive.
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It is easy to see that the set

∆̃ = { tz + (1 − t)z0; 0 ≤ t ≤ 1, z ∈ ∆ρ }

is convex,σ(Lq, Lp)-compact, and is composed of random variables whose expectation is one. Thus,
∆̃ ∈ Cµ.

Define
R =

{

z ∈ Lq; E(z) = 1 andE(yz) ≤ Π̃(y) erf T ∀y ∈ Lp
}

and let us prove that
C∗

µ = {∆ ∈ Cµ; ∆ ∩R 6= ∅ and∆ρ ⊂ ∆ }

is inductive (with the opposite order, i.e.,∆1 ≥ ∆2 if ∆1 ⊂ ∆2). Indeed,∆̃ ∈ C∗
µ implies thatC∗

µ is
not empty, and the intersection of the elements in a chain ofC∗

µ is obviously convex,σ(Lq, Lp)-compact,
composed of random variables whose expectation equals one,and contains∆ρ. Moreover, this intersection
has elements ofR becauseR is (weakly∗) closed, and a finite intersection in the chain obviously contains
elements inR.

The Zorn’s Lemma implies the existence of a minimal element∆ ∈ C∗
µ such that∆ ⊂ ∆̃. According

to (16) and (13) ∆ defines a risk measureM(Π,ρ) ∈ Mµ, and (13) and∆ρ ⊂ ∆ imply thatρ ≤ M(Π,ρ).
Moreoverb) holds because∆ is minimal inC∗

µ, and the identification of (16) conserves the natural order.
Propertyc) trivially follows from a)andb) if one takes̃ρ = ρ.
Propertyd) trivially follows from a) and Corollary1. To seee), i.e., the opposite inequality in a perfect

market, fixy ∈ Y . ∆ ⊂ ∆̃ implies that

M(Π,ρ)(y) ≤ max
{

−E(yz) : z ∈ ∆̃
}

.

Takez2 ∈ ∆̃ where the maximum above is reached andz1 ∈ ∆ρ andt ∈ [0, 1] such that

z2 = tz1 + (1 − t)z0.

Since the market is perfect, (30) and (22) lead to

M(Π,ρ)(y) ≤ −t E (yz1) − (1 − t) E(yz0)

≤ tρ(y) − (1 − t)Π(y) erf T

≤ max
{

−Π(y) erf T, ρ(y)
}

Finally, to seef), from (27) it trivially follows that M(Π,ρ) is decreasing if so are−Π andρ. Conversely,
if M(Π,ρ) is coherent then its associate set∆ ∈ Cµ is composed of non-negative random variables (see (15)),
and therefore so is∆ρ ⊂ ∆. �

Remark 4 Notice that the existence of the extensionΠ̃ above frequently holds. For instance, if the market
is perfect, i.e., ifY is a subspace andΠ is linear and continuous, then the existence ofΠ̃ follows from the
Hahn Banach Theorem. On the other hand, if the market is complete and perfect thenΠ will be increasing
so as to prevent the existence of arbitrage (Duffie[9, (1988)]), i.e., Propertye) applies.

5 Modified risk measures: The CCVaR

Now we are in a position to revisit Example1 and those important cases of Remarks2 and3.
With respect to Example1, we are dealing with a complete market, so we can takeΠ̃ = Π in the

latter theorem. Thus we have a modifiedCVaR0.6 that we will denote byCCVaR(Π,0.6) and will call
“CompatibleCVaR0.6”. It is a new risk measure that retrieves compatibility withthe pricing rule. Therefore
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it prevents the unbalanced pathological situations of Propositions1 and2. In some sense, the new risk
measure retrieves some kind of balance between theCVaR0.6 and the pricing rule.

Besides, according to (27)

CCVaR(Π,0.6)(α + β, α) = max{−Π(α + β, α), CVaR0.6(α + β, α)}

for everyα, β ∈ R, CCVaR(Π,0.6) ≥ CVaR0.6, CCVaR(Π,0.6) is expectation bounded and coherent, and
CCVaR(Π,0.6) andΠ are compatible.

More generally we can take the general probability space(Ω,F , µ) and the generalCVaR measure
ρ = CVaRµ0

, µ0 ∈ (0, 1) being the level of confidence. According to Rockafellar et al. [16, (2006)] we
have that

∆CVaRµ0
=

{

z ∈ L∞; E(z) = 1, 0 ≤ z ≤
1

1 − µ0

}

. (31)

Hence, bearing in mind (15), CVaRµ0
is a coherent and expectation bounded measure of risk. This property

has provoked thatCVaRµ0
is becoming a very popular risk measure for both researchersand practitioners,

and it has been used to revisit many classical financial and actuarial problems (Alexander et al. [1, (2006)],
Mansini et al. [13, (2007)], Balbás et al. [4, (2009)], etc.). However, since∆CVaRµ0

⊂ L∞ the caveat
of Remark2 applies, i.e.,CVaRµ0

is not compatible with the pricing rule of complete and perfect market
models whoseSDF is unbounded (Black and Scholes model, Heston model etc.). Nevertheless, according
to Theorem2, in these kind of models there is a minimal expectation bounded risk measureCCVaR(Π,µ0)

that will be called “CompatibleCVaRµ0
” and satisfies

CVaRµ0
(y) ≤ CCVaR(Π,µ0)(y) (32)

for everyy ∈ Lp,7

CCVaR(Π,µ0)(y) = max
{

−Π(y) erf T , CVaRµ0
(y)

}

(33)

for everyy ∈ Lp andCCVaR(Π,µ0) is coherent and compatible with the pricing rule of the model.
There are perfect but incomplete arbitrage free pricing models such that the classicalSDF is also un-

bounded. The most important one, but not the only one, is theCAPM, where theSDF is closely related to
the Market Portfolio (Duffie [9, (1988)]). Since our concept ofSDF is strictly weaker than the classical one
then the absence of elements in (31) satisfying (22) is not guaranteed. However, it may hold, which makes
theCVaRµ0

a measure reflecting a serious drawback. However, accordingto Theorem2 and its remark,
a CompatibleCVaR may still be defined, and it is a minimal expectation bounded risk measure that also
satisfies (32), and (33) holds for every reachable pay-offy. Moreover,CCVaR(Π,µ0) is compatible with
the pricing rule of the model, and, owing to Theorem2c), CVaRµ0

is compatible with the pricing rule if
and only ifCVaRµ0

= CCVaR(Π,µ0), which is consistent with (33) and Corollary1. Finally, the element
z0 in the proof of Theorem2 may be replaced by an alternative element ofLq satisfying (22), that may be
non-negative due to the absence of arbitrage. Then, bearingin mind (15) and following the same proof as
in Theorem2, but modifying the setC∗

µ according to

C∗
µ = {∆ ∈ Cµ; ∆ ⊂ Lq

+, ∆ ∩R 6= ∅ and∆ρ ⊂ ∆ },

Lq
+ denoting the usual non-negative cone ofLq, CCVaR(Π,µ0) may be constructed in such a way that it is

also coherent.
Let us remark that the role of theCVaR may be also played, amongst others, by theWCVaR, theDPT

of (25) and the Absolute Deviation of (9) and (10) with p = 1. Thus we can build the CompatibleWCVaR,
the CompatibleDPT and the Compatible Absolute Deviation, denoted byCWCVaR, CDPT andCAD.
Furthermore, as stated in Theorem2, the construction above may also make sense for risk measures that
cannot be extended toL1.

7Actually, for the cited modelsp = 2.
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6 Conclusions

This paper has considered an expectation bounded risk measure ρ and an arbitrage-free market with pric-
ing ruleΠ. They have been said to be compatible if there are no reachable strategiesy such thatΠ(y) is
bounded andρ(y) is close to−∞ or, equivalently, there are no reachable strategiesy′ such thatρ(y′) is
bounded andΠ(y′) is close to−∞. We have shown that the lack of compatibility leads to meaningless
situations in financial or actuarial applications. For instance, a manager can borrow as much money as de-
sired and simultaneously face a riskless position. Furthermore, incompatibility makes it unbounded several
optimization problems with significant economic meaning.

Compatibility has been characterized by the existence of Stochastic Discount Factors (SDF) of Π in the
sub-gradient ofρ. Hence, several examples pointing out that the lack of compatibility may occur in very
important pricing models have been yielded. For instance, it happens if the sub-gradient ofρ is composed
of essentially bounded random variables and theSDF is unbounded. Examples of risk measures are, among
others, theCVaR and theDPT. Examples of pricing models are the Black and Scholes model,the Heston
model and theCAPM.

We have proved that for a given incompatible couple(Π, ρ) we can construct a minimal risk measure
M(Π,ρ) compatible withΠ and such thatρ ≤ M(Π,ρ). This result has been particularized for important
risk functions and pricing models. In particular, we have dealt with theCVaR, theDPT, and the Absolute
Deviation, as well as with theCAPM and the Black and Scholes model. For them all the extensionM(Π,ρ)

has been studied. Special attention was devoted to theCVaR because this expectation bounded and coherent
risk measure is becoming very popular among researchers, managers and practitioners, due to its good
properties. From theCVaR we have constructed the Compatible Conditional Value at Risk (CCVaR), a
new coherent and expectation bounded measure of risk compatible with theCAPM and the Black and
Scholes model. It seems that theCCVaR preserves the good properties of theCVaR and overcomes its
shortcomings.

Acknowledgement. Research partially supported by “RD Sistemas SA”, “ Comunidad Autónoma de
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