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Abstract.  This paper has considered a risk measui@nd a (maybe incomplete and/or imperfect)
arbitrage-free market with pricing rulé. They are said to be compatible if there are no reachableestra
giesy such thaflI(y) is bounded ang(y) is close to—oo. We show that the lack of compatibility leads
to meaningless situations in financial or actuarial appbca.

The presence of compatibility is characterized by propsrtonnecting the Stochastic Discount Fac-
tor of IT and the sub-gradient @f Consequently, several examples pointing out that thedackhmpati-
bility may occur in very important pricing models are yieddd-or instance th€VaR is not compatible
with the Black and Scholes model or the\ PM.

We prove that for a given incompatible couplé, p) we can construct a minimal risk measugyy )
compatible withp and such thap < My ). This result is particularized for théVaR and theCAPM
and the Black and Scholes model. Therefore we construct timep@tible Conditional Value at Risk
(CCVaR). It seems that th€CVaR preserves the good properties of ti&aR and overcomes its
shortcomings.

Compatibilidad entre reglas de valoraci  6n y medidas de riesgo: el CCVaR

Resumen. Consideraremos una medida de riepgpun mercado libre de arbitraje (puede ser que in-
completo o imperfecto) con regla de valoracldnEstos seran compatibles si no hay estrategias alcanza-
blesy tales qudl(y) permanece acotadogfy) se acerca a-oo. Veremos que la falta de compatibilidad
conduce a situaciones sin sentido econémico en las ajiegactuariales o financieras.

La compatibilidad sera caracterizada mediante propisiagie ligan al Factor de Descuento Es-
tocastico dd1 y al sub-gradiente de. Consecuentemente, se podran dar importantes ejemplos gue
hay falta de compatibilidad. Por ejemplo,&VaR no es compatible con el modelo de Black-Scholes o
el CAPM.

Probaremos que para cualquier par incompatilblep) se puede construir una medida de riesgo
minimal M1 ,) compatible corp, y tal quep < My, ,). Este resultado se particularizara par&®bR
y el CAPM y el modelo de Black-Scholes. Por tanto, construirem@s\élR Compatible CCVaR). El
CCVaR parece preservar las buenas propiedade€®eR y superar sus deficiencias.

1 Introduction

General risk functions are becoming very important in firgggred insurance. Since Artzner et &l.[1999)]
introduced the axioms and properties of the “Coherent Megsof Risk” many authors have extended the
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discussion. The recent development of new markets and predine necessity of managing new types
of risk, and the obligation of providing initial capital regements have made it necessary to overcome
the variance as the most used risk measure and to introdugegeneral risk functions.Hence, it is not
surprising that the recent literature presents many isti&g contributions focusing on new methods for
measuring risk levels. Among others, Follmer and Schie€rl (2002)] have defined the Convex Risk Mea-
sures, Goovaerts et alL], (2004)] have introduced the Consistent Risk Measuresk&elar et al. [L6,
(2006)] have defined the General Deviations and the ExpestBbunded Risk Measures, and Brown and
Sim [7, (2009)] have introduced the Satisfying Measures. Fuitifermation about modern risk functions
may be found in Balbas3[ (2007)].

Many classical actuarial and financial problems have beesited by using new risk functions. So,
with regard to portfolio choice and asset allocation protdeamongst many others authors, Alexander et
al. [2, (2006)] compare the minimization of the Value at RidkaR) and the Conditional Value at Risk
(CVaR) for a portfolio of derivatives, Calafiore3] (2007)] studies “robust” efficient portfolios in discrete
probability spaces, Mansini et alL, (2007)] use general risk measures in portfolio theory actdesl [L9,
(2007)] deals with optimal investment with convex risk meas.

Pricing and hedging issues in incomplete markets have aeo Btudied (Follmer and Schietl(
(2002)], Nakano,I4, (2004)], Staum,40, (2004)], etc.), as well as Equity Linked Annuities hedgsgles
(Barbarin and Devoldeig] 2005]) and Optimal Reinsurance Problems (Balbas et/hl2D09). However,
several optimization problems involving risk functiong€bme unbounded, which does not make any sense
in practical applications. It seems that this fact has nenl#eeply analyzed in the literature until now.

The present paper simultaneously considers the pricirggatithe market and the risk measurement
procedure, and it points out that the “pathological” unbdeshoptimization problems may arise due to some
lack of compatibility between the pricing rule and the riskétion. In some sense, our major objective is
to introduce and characterize the notion of compatibil#gmeen prices and risks, as well as to recover it
when it does not hold.

The article’s outline is as follows. Secti@will present the notations and the general framework we
are going to deal with. The concept of compatibility will berbduced in SectioB. We will consider a
(maybe incomplete and/or imperfect) arbitrage-free mtawkih pricing rulell and an expectation bounded
risk measure. They are compatible if there are no reachable strateggsh thaflI(y) is bounded and
p(y) is close to—oo or, equivalently, there are no reachable strategiesich thatp(y’) is bounded and
TI(y’) is close to—oco. We will show that he lack of compatibility leads to mean#gs situations in financial
of actuarial applications. For instance, a manager coukerttee capital requirements disappear, borrow as
much money as desired, and simultaneously face a risklesgqng in the sense that the global risk of the
strategy vanishes.

The most important result of this section is Theorgmvhich establishes that the necessary and suf-
ficient condition to ensure compatibility is the existendeStochastic Discount Factors of in the sub-
gradient ofp. Accordingly, we will present several examples pointing that the lack of compatibility
may occur in very important pricing models. For instancéaippens if the sub-gradient pfis composed
of essentially bounded random variables and the Stochastount Factor§DF) is unbounded. Exam-
ples of risk measures satisfying the condition above are@nanothers, theVaR and the Dual Power
Transform DPT) of Wang 21, (2000)]. Examples of pricing models are, amongst othéesBlack and
Scholes model and the Capital Asset Pricing Mod&l PM).

Section4 is devoted to show that for a given incompatible coujlep) we can construct a minimal
expectation bounded risk measuy; ,, compatible withp and such that < My ,y. The mostimportant
result of this section is Theore®) where My , is constructed and profoundly analyzed. The possible
coherence of\/(1; ) for a coherenp is also studied.

We focus on concrete risk functions and pricing models orti@26. In particular, we deal with the
CVaR, the DPT, and the Absolute Deviation, as well as with thtdPM and the Black and Scholes

1t has been proved that the variance is not compatible wirStacond Order Stochastic Dominance if asymmetries andémyh
tails are involved (Ogryczak and. Ruszczynskk,[1999]).
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model. For them all we analyze the extensidyy ,y, and point out its major properties. Special attention
is devoted to theCVaR because this expectation bounded and coherent risk meiasbhegoming very
popular among researchers, managers and practitionersy ita favorable properties. From thd/aR we
apply the findings of Sectio# so as to build the Compatible Conditional Value at Ri6IC{VaR), a new
coherent and expectation bounded measure of risk compatith theCAPM and the Black and Scholes
model. Hence, it seems that tG&VaR preserves the good properties of i®aR and overcomes its
shortcomings.

Section6 points out the most important conclusions of the paper.

2 Preliminaries and notations

Consider the probability spac€, 7, ;1) composed of the set of “states of the world; the o-algebraF
and the probability measuge Consider also a couple of conjugate numbess [1,00) andg € (1, ]
(i.e.,1/p+ 1/q = 1). As usualL? (L?) denotes the Banach spacelofvalued random variablegon
such thafE (|y|?) < oo, E () representing the mathematical expectatiBii|{|?) < oo, or y essentially
bounded iff = o0). According to the Riesz Representation Theorem, we haatel/this the dual space
of LP.

Consider a time intervdD, T'], a subse? C [0, T'] of trading dates containingand?’, and a filtration
of o-algebrag F;),. providing the arrival of information and such thgg = {0, @} andFr = F.

Let us assume that c L? is a convex cone composed of super-replicable pay-offs,foe every
y € Y there exists at least one self-financing portfolio whosd fiag-off is S > y. Denote byS(y) the
family of such self-financing portfolios, and suppose thate exists

(y) = inf{ So; (St)ter € S(y) }

for everyy € Y. We will say thafll(y) is the price ofy. The market will be said to be complete if for every
y € LP there existyS;)er € S(y) such thatS; = y, and incomplete otherwise. Besides, the market
will be said to be perfect it is a subspace af?” andIl: Y — R is linear and continuous, and imperfect
otherwise. In general, we will impose the natural cond#isub-additivity

H(y1 +y2) < H(y1) + (y2) 1)
for everyy,, y2 € Y, and positive homogeneity
(ay) = all(y) )

for everyy € Y anda > 0. ConsequenthyiT is a convex function. Finally, we will assume the existence
of a riskless asset that does not generate any frictionalmost surely constant random variables &
belong toY” for everyk € R, and there exists a risk-free rate > 0 such that

(k) = ke "7 (3)
holds. Itis easy to see tha&)(leads to
(y + k) = (y) + ke ™" (4)
foreveryy € Y andk € R. IndeedlI(y + k) < Il(y) + ke~"/T is clear, and
W(y) =y + k= k) <T(y + &) +(—k) =y + k) — ke 7"

implies the opposite inequality.
Let
p: LP — R
be a general risk function that a trader uses in order to obtie risk level of his final wealth &'. Assume
thatp is continuous and satisfies:
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a)
p(y+k)=ply) —k (5)
for everyy € L? andk € R.
b)
play) = ap(y) (6)
for everyy € L? anda > 0.
c)
p(y1 +y2) < p(y1) + p(y2) (7
for everyy,, yo € LP.
d)
p(y) > —E(y) (8)

for everyy € LP. 2

Particular interesting examples are the Conditional Valu®isk (CVaR) of Rockafellar et al. 16,
(2006)], the Dual Power TransfornrDPT) of Wang 21, (2000)] and the Wang Measure (Wangl[
(2000)]), among many others. Furthermore, following thigioal idea of Rockafellar et al1[, (2006)] to
identify their Expectation Bounded Risk Measures and tbeiiation Measures, it is easy to see that

py) =o(y) —E(y) (9)

is continuous and satisfi@g, b), ¢) andd) if and only if o: L? — R is a continuous deviation, that is,df
is continuous and satisfids, c),

e)
oy +k)=o(y)
for everyy € L? andk € R, and

f)
a(y) >0

for everyy € LP.

Particular examples of deviation measures are the clagsibaviation given by

o(y) = [E([E(y) — )], (10)

or the downside-semi-deviation given by

o(y) = [E( jmax{E (y) — y,0}" )] """, (11)

among many others.
Consider a continuoyssatisfyinga), b), ¢) andd). Denote by

A, ={z€ L% ~E(yz) <p(y), Yy € L" }. (12)

2Actually, the properties above are almost similar to thoseduby Rockafellar et al.lp, (2006)] in order to introduce their
Expectation Bounded Risk Measures. These authors alses@apd), c) andd), work with p = 2, allow for p(y) = oo, and impose
p(y) > —E(y) if y is not constant.
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The setA,, is obviously convex. Bearing in mind the Representationofém 2.4.9 in Zalinescu2p,
(2002)] for convex functions, and using a proof similar tattbf the Representation Theorem of risk mea-
sures stated in Rockafellar et al.g (2006)], it may be stated thak, is alsoc(L9, L”)-compact, the
constant random variablec A ,, and

ply) = max{ -E(yz) : z € A, } (13)
holds for everyy € L?. Furthermore,
A,C{zeLl E(z)=1}. (14)

Following Rockafellar et al.][6, (2006)], if p is continuous and satisfies Properigsh), c) andd) above
then it is also coherent in the sense of Artzner etal(1999)F if and only if

A, C Ly ={ze L% nz>0)=1}. (15)

Finally, by means of the Hahn Banach Separation Theorenmayeeasily prove that i C LY is convex
ando (L%, LP)-compactl € A, andA satisfies {4), then there exists a unique continugusatisfyinga),
b), ¢) andd) such that {3) holds.

Summarizing, as indicated in the diagram below

D, = M, = C,
c=p+E = p = A, (16)
Expression §) establishes a one to one bijection between theAdgtof continuous functions satisfying
a), b), c) andd) and the seD,, of continuous functions satisfying), c), e) andf), whereas 13) (or (12))
establishes a one to one bijection between theAdgtand the se€,, of convex ands(L?, L”)-compact
subsets of ¢ fulfilling ( 14) and containing the constant random variable whose valueThhe coherence
of the risk measure is characterized by the inclusith),(and both identifications inl@) are increasing,
i.e., higher deviations are associated with higher risksuess and higher sets Gf .

3 Compatibility between pricing rules and risk measures

This section will be devoted to introduce and charactehizaenbtion of compatibility between risk measures
and pricing rules.

Definition 1 The pricing rulell and the risk measurg € M,, are said to be compatible if there are no
sequencesy,, )52, C Y such thafll(y,) < 0 for everyn € N and

lim p(yn) = —00 17)
simultaneously hold.

As some examples below will illustrate, the absence of cdibitity may hold in practice.

Actually, if IT and p were not compatible, then every manager could make theatapijuirements
become-oc, which does not make any sense in an economic frameworkctndappose that the random
variabley, € Y represents the valug of the portfolio traded by the manager. Its final risk will bieemn by
p(y0), which justifies that this quantity may be an adequate finkievéatT) of the capital requiremerit.
Indeed, b) leads to

p(Yo + p(yo)) = 0

Si.e., p(y1) > p(y2) wheneveryy, yo € LP andy; < yo.
4i.e.,p(y)e*TfT should be the initial cash reserve (or capital requiremiemgsted in the risk-free asset.
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and the risk will vanish if the amount(yo)e~"7 is invested in the riskless security. Buf) @nd the
existence of the sequents, )5, C Y above imply that

p(Yo + Yn) — —o0

while
I(yo + yn) < (o),

which means that no capital has to be added and the risk leaglb@ reduced as desired if the manager
buysy,,. Thus, the capital requiremepfy,) does not have to be added. On the contrary, by adgirtbe
trader may even borrow an arbitrary amount of moreyy, + v,) — oo, since, according tdsj,

(o + yn + p(yo +yn)) = 0.

Analogously, the lack of compatibility would allow an amaity trader to borrow an unbounded amount
of money without facing any risky position. Indeed, borrowi-p(y,) — oo euros and buying,, for
II(y,) < 0 euros would imply a global risk given by

p(Yn + p(yn)) =0,

that must be interpreted as a null level of risk.
Next we will show that the inequaliti(y,,) < 0 may be substituted by a more general one.

Proposition 1 The pricing rulell and the risk measurg € M, are not compatible if and only if for
everya € R there exists a sequence,)>>; C Y such thatll(y,) < a for everyn € N and (17)
simultaneously hold.

PROOF  Suppose thall andp are not compatible and take the sequefigg;>, C Y of Definition 1.
Then, @) leads to

H(yn + aeTfT) <a,
while (5) leads to

T

plyn + ae
which completes the proof.H

) = pyn) —ae™"

— —09,

Next let us prove that the risk measure and the pricing rulgimtarchange their roles in Definitidh

Proposition 2 The pricing rulell and the risk measurg € M, are not compatible if and only if for
everya € R there exists a sequen¢g,);>; C Y such thafp(y,) < a for everyn € N and

Hm I (y,) = —o0
simultaneously hold.
PrROOF If (y,)52; C Y satisfies the conditions above the) &nd &) easily show that
(e~ T () "), C Y

satisfies the conditions of Definitidh
Conversely, if(y, )22, C Y satisfies the conditions of Definitidhthen @) and 6) easily show that

(yn + p(yn) - a)fzozl cY
satisfies the conditions abovel

The interpretation of Propositioisand2 seems to be clear. I andp are incompatible then there is
a significant lack of balance between prices and risks. &k inay provoke pathological situations, as
described above, that cannot be accepted in economic afppfis.
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Next we will attempt to characterize the notion of compéitipby means of practical criteria. To this
purpose we will consider the optimization problem

min p(y)
I(y) <0 (18)
yey

Problem (8) minimizes the attainable risk level with non-positiveqais. Obviously,18) is bounded if
and only ifIT andp are compatible.

Problem (8) is not differentiable becausgeis not differentiable either. Recent literature has devetb
several optimization methods that may solve this caveat @®ong others, Ruszczynski and Shapli®) [
(2006)]). In this paper we will follow a procedure quite péghto that used in Balbas et al4,[ (2009)]
and [5, (2009)], where the authors use risk measures and deal wittlzematical programming problems
related to actuarial and financial classic topics. Someitydalked properties and Theoretnbelow will
not be proved due to their analogy with similar results ofrttentioned papers.

In particular, bearing in mind1@) and following Balbas et al.5f (2009)], (L8) is equivalent to the
infinite-dimensional linear optimization problem

min 6

0+E(yz) >0, Vze A, (19)
I(y) <0

0 € R, yey

0 € R andy € LP being the decision variables. Furthermayes Y solves (8) if and only if there exists
6 € R such tha{ 9, y) solves (9), in which casé = p(y) holds.
Besides, following parallel developments to that presgimeBalbas et al.4, (2009)], one can show
that Problem
max 0

MI(y) —E(yz) >0, VyeV (20)
A € R, A >0, z€A,

is the dual of 19), A € R andz € A, being the decision variables.
Proposition 3 If (), z) is (20)-feasible them\ = e"/ 7.

ProoOE Constraint
MI(y) —E(yz) >0, VyeVY

implies thatE(z) = Xe "#7, since we can takg = 1 andy = —1 and apply 8). Then (4) leads to
A=evT, |

As a consequence2@) may be simplified to

max 0
e TT(y) — E(yz) >0, VyeY (21)
z€ A,

Finally, following Balbas et al.4, (2009)] and §, (2009)], there is no duality gap betwedfand 1),
and the following primal-dual relationship holds

Theorem 1 The three following conditions are equivalent:

a) II andp are not compatible.
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b) Problem(18) is unbounded.

¢) Problem(21) has no feasible solutions.

Remark 1 Those elements satisfying the first constrain@) will be called Stochastic Discount Factors
(SDF) of II. Actually, this notion oSDF is less restrictive than the usual one in Mathematical Firean
(Duffie[9, (1988)), since the classic framework takes- 2 and a perfect market. However, it is worthwhile
to point out that the classic&dDF would satisfy the first constraint i{21).

Notice that Theorer2 indicates thafll and p are compatible if and only if there afeDF of II in the
sub-gradientd, of p.

Finally, let us remark that for a perfect market the first cwat in (21) must also apply if-y replaces
y, which implies that the constraint may by given by

E(yz) = "/ T(y) (22)
foreveryy € Y.
Corollary 1 1T andp are compatible if and only if

ply) > —Tl(y)e" " (23)
foreveryy € Y.
PROOF  Suppose thdil andp are compatible and takeSDF z € A,. Takey € Y. Then (L3) and @3)
imply that

p(y) > —E(yz) > —e" " TI(y).

Conversely, suppose th&3) holds. TherdI(y) < 0 obviously implies thap(y) > 0. Thus (L8) cannot
be unbounded, and andp are compatible. B

Example 1 (Example illustrating that the compatibility bet ween pricing rules and risk mea-
sures is not guaranteed) Consider? = {wjwa}, u(wr) = 0.1, p(we) = 0.9, and

(a(1,1) + B(1,0)) = a + 0.56.

The example indicates that the risk-free rate vanishes hadisky asset with pay-offl, 0) has a price
equal to0.5. Suppose that

Ap = { (Zl,ZQ); 0.1z1 +0.920 = 1 and0 < z; < 2.5,1=1,2 }

According to Rockafellar et a[.16, (2006)] A, corresponds to the Conditional Value at Risk with =
60% as the level of confidence. Notice that this simple modesfgedi many “good properties”. For in-
stance, it is perfect and complete, and it is also arbitréige because

21:5, 2225

is a positiveSDF (Duffie[9, (1988)). However, the conditions defining tf@l)-feasible set are

0.121 + 0920 =1
0<z <25, i=1,2

and this set is obviously void. Thus, according to Thedtewe are facing incompatibility.
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Proposition 4 Suppose tha{18) (or (19)) is bounded. Then so iR1), every(21)-feasible solution
solves(21) and y* € Y solves(18) if and only if II(y*) = 0 and p(y*) = 0. In particular, y* = 0
solveq18).

PROOF (21) must be bounded due to the classical relationships betmweeal and dual problems (Lu-
enberger]2, (1969))]). Ify* € Y solves (8) the absence of duality gap shows thag*) = 0. Let us prove
II(y*) = 0. If TI(y*)) = —a < 0 then

H(y* +aeTfT) =0,

whereas
p(y*+ae") =p(y") —a < p(y"),
which implies thaty* is not optimal and we have a contradiction.
Converselyy* € Y, II(y*) = 0 andp(y*) = 0 imply thaty* is (18)-feasible and 18) achieves its
optimal value ay*, soy* is optimal. B

Remark 2 Examplel points out thafp andIT may be incompatible, but we can provide more interesting
examples. To this purpose, for< po < 1 define theVaR,,, of every random variablg by (Baltas[3,
(2007))

VaR,,(y) = —inf{a e R; pu(y <a) >1—puo}. (24)

SinceL? C L', suppose thap may be extended to the whole spdce Important expectation bounded
risk measures satisfy this condition. Among others[IRa" of Wang[21, (2000)] given by

1
DPTa(y):A VaRi_¢(y)g, (t) dt (25)

for everyy € L', a > 1 being an arbitrary constant and
Ga: (07 1) - (07 1)

given by
ga(t) =1—(1—1)",

theCVaR,, given by
1

11— po

for0 < pp < 1andy € L', the weighted”VaR (WCVaR) given by a convex combination of several
CVaRs with different confidence level, and the meaq@¢f o is thel-deviation (or absolute deviation)
or the 1-down-side semi-deviation (or down-side absolute semiiation) (see(10) and (11)). In such a
case(12) points out thatA, C L, and therefore the elements in, are essentially bounded. But there
are many important pricing models in Financial Economice&SDF are not essentially bounded. For
instance, the Black and Scholes model, whereSth&' is unique because the market is complete and it
is unbounded too, as pointed out in W&2d, (2000)] Another important example is the Heston model,
which allows us to price derivatives in an stochastic vditgtframework®

CVaRy, (y)

1—po
/ VaR;_¢(y) dt (26)
0

Remark 3 Expression$24) and(26) point out that

CVaRy,, (y) > VaR,, (v)

5 Notice that théSDF of Examplel is in L.°°, so there are much more cases generating incompatibiétythe given conditions
are only sufficient.
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for everyy € L', which implies that
lim VaR,,, (yn) = —o0

for every sequendey,,) C L' such that
lim CVaR,, (yn) = —oc.

Thus, if the coupl¢Il, CVaR,, ) is not compatible then nor I, VaR,,, ), in the sense thafl, VaR )
does not satisfy Definitioh Similarly, if the coupléIl, WCVaR) is not compatible then the same occurs
if WCVaR is replaced byWVaR. ©

4 Recovering compatibility

Since Exampld and the previous remarks show that compatibility may faiteny important cases, it is
natural to analyze whether modifications of the risk meaallogv us to recover some kind of balance.

Theorem 2 Fix the pricing rulell and a risk measurg € M,,. Suppose that there exists a continuous
II: L? — R extendindl and satisfying1) and(2). Then there existd/(r,,) € M,, such that:

a) Il and My, ,) are compatible, ang < My ).
b) M,y is minimal, i.e., ifll andp € M,, are compatiblep < pandp < My ,) thenp = M ).
c) IT andp are compatible if and only if/ (1 ,) = p.

d)
M) (y) = max{~II(y) e"", p(y)}

holds for everyy € Y.

e) If the market is perfect (i.e., Il is linear and continuous) then

M(H,p) (y) = max{*n(?J) eTfTv p(y)} (27)
holds for everyy € Y.

f) If the market is complete and perfect and the pricing fillés increasing then/(yy ) is coherent if
and only ifp is coherent.

PrROOF  Consider the subspade C Y of L? composed of the constant functions and deffiie) =
ke"sT for everyk € L. Bearing in mind 8), Theorem 3.2 in Rudinl[7, (1972)] guarantees the existence
of a linear functiomA: L? — R such that

A(k) = ke T (28)
for everyk € L and ) )
—1I(—y) < Ay) < I(y) (29)

for everyy € LP. The continuity ofll and @9) obviously imply the continuity of\. Hence, the Riesz
Theorem guarantees the existence@t L? such thatA(y) e"s? = E(yzo) for everyy € L. Thus, @9
shows that .
E(yzo) < I(y)e™ T (30)
1

for everyy € L?, and @8) shows thai(zp) = 1 (k = 1).

51t may be worth to recall now thafaR andWVaR are not expectation bounded because they are not subvadditi
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It is easy to see that the set
A={tz+(1—-t)z; 0<t <1, 2€A,}

is convex,o(L?, L?)-compact, and is composed of random variables whose exjpecta one. Thus,
AeC,.
Define
R = {z € L% E(z) = 1andE(yz) < I(y)e™ T vye L”}

and let us prove that
C,={AcC; ANR#DandA, CA}

is inductive (with the opposite order, i.e\; > Ay if Ay C Ay). Indeed,A € C,, implies thatC; is
not empty, and the intersection of the elements in a chady, a6 obviously convexg(L?, L?)-compact,
composed of random variables whose expectation equal&ndeontaing ,. Moreover, this intersection
has elements dR becauser is (weakly) closed, and a finite intersection in the chain obviouslytams
elements ink.

The Zorn's Lemma implies the existence of a minimal elemeré C;; such thatA C A. According
to (16) and (L3) A defines a risk measur yy ,) € M,, and (L3) andA, C A imply thatp < Mgy ,).
Moreoverb) holds becausa is minimal inC%, and the identification ofl(6) conserves the natural order.

Propertyc) trivially follows from a) andb) if one takess = p.

Propertyd) trivially follows from a) and Corollaryl. To seee), i.e., the opposite inequality in a perfect
market, fixy € Y. A C A implies that

M1, (y) < max { —E(yz):z €A } .
Takezs € A where the maximum above is reached and A, andt € [0, 1] such that
zo =tz + (1 —t)zp.
Since the market is perfec8@) and @2) lead to
M,p)(y) < —tE(yz1) — (1 —t) E(yzo)

<tp(y) — (1 = t)I(y) e
< max {~II(y) /", p(y)}

Finally, to sed), from (27) it trivially follows that M1y ,) is decreasing if so areIl andp. Conversely,
if M1, is coherentthen its associate et C,, is composed of non-negative random variables ($8),(
and thereforesoia, C A. H

Remark 4 Notice that the existence of the extensibabove frequently holds. For instance, if the market
is perfect, i.e., ift” is a subspace anH is linear and continuous, then the existencéldbllows from the
Hahn Banach Theorem. On the other hand, if the market is cetmphd perfect theH will be increasing

S0 as to prevent the existence of arbitrage (DUfi€1988)), i.e., Propertye) applies.

5 Modified risk measures: The CCVaR

Now we are in a position to revisit Exampleand those important cases of Remazlkend3.

With respect to Examplé, we are dealing with a complete market, so we can fake- II in the
latter theorem. Thus we have a modifiedaR, ¢ that we will denote byCCVaR 9.6y and will call
“CompatibleCVaRg ¢". Itis a new risk measure that retrieves compatibility vitik pricing rule. Therefore

261



A. Balbas and R. Balbas

it prevents the unbalanced pathological situations of &sitipns1 and2. In some sense, the new risk
measure retrieves some kind of balance betweef@#R ¢ and the pricing rule.
Besides, according t@7)

CCVaR1,0.6)(a + 3, @) = max{—II(a + ,a), CVaRo¢(a + 3, ) }

foreverya, 8 € R, CCVaR1,0.6) > CVaRg.6, CCVaR(r1,0.6) IS €xpectation bounded and coherent, and
CCVaR11,0.6) andIl are compatible.

More generally we can take the general probability spd@teF, 1) and the general’'VaR measure
p = CVaR,,,, o € (0,1) being the level of confidence. According to Rockafellar e{&f, (2006)] we
have that

1
ACVaRuo{ZGLOO5E(Z)1’OSZ§1_MO}' (31)

Hence, bearing in mindlg), CVaR,,, is a coherent and expectation bounded measure of risk. Tdpiggy
has provoked that'VaR,,, is becoming a very popular risk measure for both researeimerpractitioners,
and it has been used to revisit many classical financial alucdgal problems (Alexander et all,[(2006)],
Mansini et al. L3, (2007)], Balbas et al.4} (2009)], etc.). However, sincAcvar,,, C L the caveat
of Remark2 applies, i.e.CVaR,,, is not compatible with the pricing rule of complete and petrfaarket
models whos&DF is unbounded (Black and Scholes model, Heston model eteyeftheless, according
to Theoren®, in these kind of models there is a minimal expectation bedrésk measur€CVaR )
that will be called “Compatibl€’VaR,,," and satisfies

CVaR,, (y) < CCVaR1,,,)(y) (32)

for everyy € L?,7
CCVaR 11, (y) = max {—H(y) e T CVaR,, (y)} (33)

for everyy € L? andCCVaR 1y ,,) is coherent and compatible with the pricing rule of the model

There are perfect but incomplete arbitrage free pricing eloduch that the classicaDF is also un-
bounded. The most important one, but not the only one, i€thBM, where theSDF is closely related to
the Market Portfolio (Duffie$, (1988)]). Since our concept 8DF is strictly weaker than the classical one
then the absence of elements 31) satisfying @2) is not guaranteed. However, it may hold, which makes
the CVaR,, a measure reflecting a serious drawback. However, accotdifibeoren? and its remark,
a CompatibleCVaR may still be defined, and it is a minimal expectation boundskd measure that also
satisfies 82), and @3) holds for every reachable pay-off Moreover,CCVaR ;) is compatible with
the pricing rule of the model, and, owing to Theor&n), CVaR,,, is compatible with the pricing rule if
and only ifCVaR,,, = CCVaR i ,,), which is consistent withd3) and Corollaryl. Finally, the element
zo in the proof of Theorem may be replaced by an alternative element6fsatisfying 2), that may be
non-negative due to the absence of arbitrage. Then, belarmgnd (15) and following the same proof as
in Theoren2, but modifying the sef;; according to

Ci={AeC; ACLi, ANR#PandA, C A},

L% denoting the usual non-negative coneldf CCVaR,yy ) may be constructed in such a way that it is
also coherent.

Let us remark that the role of tHé&VaR may be also played, amongst others, byW€VaR, theDPT
of (25) and the Absolute Deviation 09) and (L0) with p = 1. Thus we can build the CompatibV8CVaR,
the Compatibl@PT and the Compatible Absolute Deviation, denoted®¥ CVaR, CDPT andCAD.
Furthermore, as stated in Theor@nthe construction above may also make sense for risk meathat
cannot be extended o',

“Actually, for the cited models = 2.
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6 Conclusions

This paper has considered an expectation bounded risk negaand an arbitrage-free market with pric-
ing ruleII. They have been said to be compatible if there are no reaelsaiaitegies such thatll(y) is
bounded ang(y) is close to—co or, equivalently, there are no reachable strategiesich thato(y’) is
bounded andI(y’) is close to—oo. We have shown that the lack of compatibility leads to megieiss
situations in financial or actuarial applications. Foramste, a manager can borrow as much money as de-
sired and simultaneously face a riskless position. Funtloee, incompatibility makes it unbounded several
optimization problems with significant economic meaning.

Compatibility has been characterized by the existenceanftfistic Discount FactorSIDF) of IT in the
sub-gradient ofp. Hence, several examples pointing out that the lack of cailmipgy may occur in very
important pricing models have been yielded. For instaridegppens if the sub-gradient pfis composed
of essentially bounded random variables andShé' is unbounded. Examples of risk measures are, among
others, thaCVaR and theDPT. Examples of pricing models are the Black and Scholes mtuzHeston
model and th&C AP M.

We have proved that for a given incompatible couflep) we can construct a minimal risk measure
M1,y compatible withII and such thap < My ,). This result has been particularized for important
risk functions and pricing models. In particular, we havaltiwith theCVaR, theDPT, and the Absolute
Deviation, as well as with th€ APM and the Black and Scholes model. For them all the extenkign,
has been studied. Special attention was devoted t0Yadk because this expectation bounded and coherent
risk measure is becoming very popular among researchersagees and practitioners, due to its good
properties. From th€VaR we have constructed the Compatible Conditional Value at Rix®VaR), a
new coherent and expectation bounded measure of risk cdigpaith the CAPM and the Black and
Scholes model. It seems that th€”VaR preserves the good properties of i¥aR and overcomes its
shortcomings.
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