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Abstract. We develop an algorithm to construct algebraic invariants for
hyper–matrices. We then construct hyper–determinants and exhibit a gener-
alization of the Cayley–Hamilton theorem for hyper–matrices.
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Resumen. Se desarrolla un algoritmo para construir invariantes algebraicos
para hiper-matrices. A continuación se construyen hiper-determinantes y
se muestra una generalización del teorema de Cayley-Hamilton para hiper-
matrices.

1. Introduction

Hyper–matrices appear in several contexts in mathematics [22, 23, 24] and in
applications such as in the quantum mechanics of entangled states [1, 5, 7, 13],
and image processing [2, 3]. Important mathematical problems associated to
hyper–matrices are the construction of algebraic invariants and the determi-
nation of the minimal number of algebraically independent invariants. In this
work we address these problems.

For ordinary matrices the algebraic invariants associated to a matrix a
can be obtained as traces of powers of the given matrix. According to the
Cayley–Hamilton theorem only a finite number of powers of a matrix a are
linearly independent and therefore there is a finite number of algebraically
independent invariants. A different set of invariants are the discriminants,
which are suitable combinations of traces. The advantage of discriminants
is that only the first d ones are non trivial while the rest is identically zero.

37



38 Victor Tapia

Then, the Cayley–Hamilton theorem is easily written in terms of discriminants.
A different method is to consider alternating products with a second matrix
b. Generalized discriminants can then be defined and the Cayley–Hamilton
theorem takes a simpler form.

In view of further developments we construct algebraic invariants (discri-
minants) by considering all possible products among a matrix a and a second
matrix b. These products are in a one–to–one correspondence with semi–magic
squares of rank 2 (a semi–magic square is a square array of numbers such that
the sum of the elements in each row and each column gives the same result).
The discriminants can be obtained in terms of semi–magic squares by a counting
procedure which we explain in detail. Furthermore, for practical purposes, the
discriminants can be constructed using a graphical algorithm in terms of grids
which we develop and explain here.

We then proceed to the construction of a Cayley–Hamilton for hyper–
matrices. We restrict our considerations to the fourth–rank case. Ordinary
matrix multiplication is not defined for hyper–matrices. Therefore, we use the
equivalent formalism based on semi–magis squares. We obtain the correspond-
ing discriminants, the determinant and the Cayley–Hamilton theorem.

2. Matrix calculus

2.1. Index notation. For the purposes of dealing with higher–rank matrices
(or hyper–matrices from now on) we introduce an adequate notation. We
have found that an index notation similar to that of tensor analysis is more
convenient. In this case it is necessary to distinguish between covariant and
contravariant indices. According to this scheme, a matrix a is a second–rank
matrix. We can represent the matrix a by a second–rank covariant matrix with
components aij ; by a second–rank contravariant matrix with components aij ;
or, by a matrix of mixed covariance with components ai

j .
For two matrices a and b of mixed covariance the matrix multiplication is

defined by the resulting matrix c = a · b with components ci
j given by

ci
j =

d∑

k=1

ai
k bk

j . (1)

From now on the summation convention over repeated indices is assumed.
This means that we simply write

ci
j = ai

k bk
j . (2)

The unit element e for the matrix multiplication has components ei
j given

by

ei
j = δi

j =
{

1, for i = j;
0, otherwise, (3)
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which is known as the Kronecker delta. The inverse matrix a−1 is a matrix
with components (a−1)i

j satisfying

(a−1)i
k ak

j = ai
k (a−1)k

j = δi
j . (4)

The product of a matrix a with itself, a2, is the matrix with components

(a2)i
j = ai

k ak
j . (5)

Higher powers of a are defined in a similar way. Then it is direct to construct
discriminants and the Cayley–Hamilton theorem. The similarity transforma-
tions are now constructed in terms of a matrix u of mixed covariance with
components ui

j and the inverse matrix u−1 with components (u−1)i
j . Then,

the discriminants are invariant under this similarity transformations.
However, for matrices with a different covariance the scheme above does

not work anymore. If a and b are covariant matrices with components aij

and bij , then the Cartesian product is defined by the resulting matrix c with
components

cij = aik Ikl blj . (6)

where I is a second–rank contravariant matrix with components

Iij =
{

1, if i = j;
0, otherwise. (7)

With these conventions we can reproduce all the standard definitions and
results. At this point an observation is necessary. We may define the product
with an arbitrary matrix I, not given by (7) and we will obtain formally the
same results. The only reason to choose I as in (7) is that generalizes the
Cartesian product. In the next section we consider this general case.

2.2. Alternating products and discriminants. In order to compute the
inverse matrix of a matrix a all what we need is to compute its determinant,
cd(a) = det(a). The determinant is the discriminant of order d. There is,
however, a second manner for constructing the determinant. Let us consider
the Levi–Civita symbol εi1···id defined by

εi1···id =





1, if i1 · · · id is an even permutation of 1 · · · d;
−1, if i1 · · · id is an odd permutation of 1 · · · d;
0, otherwise.

(8)

Then, the determinant of a matrix a with components aij is given by

det(a) =
1
d!

εi1···id εj1···jd ai1j1 · · · aidjd
. (9)
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This is the usual definition of the determinant in matrix calculus. Let us
denote the determinant of a simply by a, that is, a = det(a). If a 6= 0, then we
have

a−1 =
1
a

∂a

∂a
. (10)

In terms of components we have

(a−1)ij =
1
a

∂a

∂aij
. (11)

Now the notation (a−1)ij is redundant; therefore, we simply write aij for
the components of the inverse matrix. Explicitly we have

aij =
1
a

1
(d− 1)!

εii1···id εjj1···jd ai1j1 · · · ai(d−1)j(d−1) . (12)

It is easy to verify that
aik akj = δi

j . (13)

Analogously we can define a covariant Levi–Civita symbol εi1···id
by

εi1···id
=





1, if i1 · · · id is an even permutation of 1 · · · d;
−1, if i1 · · · id is an odd permutation of 1 · · · d;

0, otherwise.
(14)

Then, the determinant of a matrix b with components bij is given by

b = det(b) =
1
d!

εi1···id
εj1···jd

bi1j1 · · · bidjd . (15)

Its inverse matrix b−1 with components bij is given by

bij =
1
b

1
(d− 1)!

εii1···id
εjj1···jd

bi1j1 · · · bi(d−1)j(d−1) . (16)

For a matrix b with components bij we can define the following symbols

qi1j1···isjs
s (b) = Pj bi1j1 · · · bisjs =

1
s!

b|[i1j1 · · · b isjs]| , (17)

where Pj denotes the sum over all permutations with respect to the indices
j’s; |[· · ·]| denotes complete antisymmetry with respect to the indices j’s or,
equivalently, with respect to the indices i’s. Due to the antisymmetry the
symbols q are non trivial only for s ≤ d. For the first values of s, q is given by

qij
1 (b) = bij ,

qi1j1i2j2
2 (b) =

1
2

(bi1j1 bi2j2 − bi1j2 bi2j1) ,
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qi1j1i2j2i3j3
3 (b) =

1
3!

[bi1j1 bi2j2 bi3j3(bi1j1 bi2j3 bi3j2

+bi1j3 bi2j2 bi3j1 + bi1j2 bi2j1 bi3j3)
+(bi1j2 bi2j3 bi3j1 + bi1j3 bi2j1 bi3j2)] .

(18)

Let us observe that

qi1···idj1···jd

d (b) =
1
d!

b|[i1j1 · · · bidjd]| = det(b)
1
d!

εi1···id εj1···jd . (19)

Then, we define the b–discriminants for a matrix a by

cbs (a) = qi1j1···isjs
s (b) ai1j1 · · · aisjs . (20)

For the first values of d we have

cb2 (a) =
1
2

[〈
b · a〉2 − 〈

(b · a)2
〉]

,

cb3 (a) =
1
3!

[〈
b · a〉3 − 3

〈
b · a〉 〈

(b · a)2
〉

+ 2
〈
(b · a)3

〉]
,

cb4 (a) =
1
4!

[〈
b · a〉4 − 6

〈
b · a〉2 〈

(b · a)2
〉

+8
〈
b · a〉 〈

(b · a)3
〉

+3
〈
(b · a)2

〉2 − 6
〈
(b · a)4

〉]
,

cb5 (a) =
1
5!

[〈
b · a〉5 − 10

〈
b · a〉3 〈

(b · a)2
〉

+15
〈
b · a〉 〈

(b · a)2
〉2

+20
〈
b · a〉2 〈

(b · a)3
〉− 20

〈
(b · a)2

〉 〈
(b · a)3

〉

−30
〈
b · a〉 〈

(b · a)4
〉

+ 24
〈
(b · a)5

〉]
, (21)

Using (19), we obtain

cbd (a) = det(b)
1
d!

εi1···id εj1···jd ai1j1 · · · aidjd
. (22)

Therefore
cbd (a) = det(b) det(a) . (23)

Let us denote cbd (a) simply by ab; then ab = a · b. If a 6= 0 and b 6= 0, we obtain

1
ab

∂ab

∂a
=

1
a

∂a

∂a
. (24)

Therefore
a−1 =

1
a

∂a

∂a
=

1
ab

∂ab

∂a
. (25)
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This is the new expression of the Cayley–Hamilton theorem. In fact, for
the first values of d we have

a · b · a− cb1 (a)a + cb2 (a)b−1 ≡ 0 ,

a · b · a · b · a− cb1 (a)a · b · a + cb2 (a)a− cb3 (a)b−1 ≡ 0 ,

a · b · a · b · a · b · a− cb1 (a)a · b · a · b · a
+cb2 (a)a · b · a− cb3 (a)a + cb4 (a)b−1 ≡ 0 . (26)

There are two particularly interesting instances of these relations. The
first case is b = I. In the second case we would like to have an expression
concomitant of the matrix a alone. To this purpose we choose b = a−1. In
that case all collapses to a useless identity. However, in our generalization to
fourth–rank matrices the first case is excluded while the second one is allowed
and gives the fourth–rank version of the Cayley–Hamilton theorem.

3. Semi–magic squares and graphical
construction of invariants

For hyper–matrices the expressions (21) are nor adequate. Therefore we need
a new algorithm for hyper–matrices. We have developed an algorithm based
on the use of semi–magic squares which allow to characterize all invariants and
furthermore we have developed a graphical algorithm to construct the semi–
magic squares. We now introduce both these algorithms and exemplify them
with the second–rank case.

3.1. Semi–magic squares. In order to construct algebraic invariants we
consider products of a’s, with components aij and b’s, with components bij .
In order for the result to be an invariant all indices must be contracted. This
means that we must consider an equal number n of a’s and b’s. Since both a and
b have two indices each, a can be contracted at most with 2 indices belonging
to b’s and the same is true for b’s. The way in which the n a’s are contracted
with the n b’s can be represented by an n × n square array of numbers s,
where the components sIJ denote the number of contractions between the Ith
a and the Jth b. Monomial algebraic invariants are characterized by the way
in which the indices of a are contracted with the indices of b. This contraction
scheme can be represented by a semi–magic square. Graphically

s =




b1 · · · bn

a1 s11 · · · s1n
...

...
...

an sn1 · · · snn


 . (27)

If the Ith a is contracted once with the Jth b, then sIJ = 1; if the Ith
a is contracted twice with the Jth b, then sIJ = 2; if there is no contraction
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between the Ith a and the Jth b, then sIJ = 0. Since all indices must be
contracted the sum of the elements of each row and each column must be equal
to 2, that is,

n∑

I=1

sIJ = 2 ,

n∑

J=1

sIJ = 2 . (28)

Arrays with this property are known as semi–magic squares [17]. Therefore,
the number of possible algebraic invariants is determined by the number Hn(2)
of semi–magic squares s. Semi–magic squares of rank r are defined by the
relations

n∑

I=1

sIJ = r ,

n∑

J=1

sIJ = r . (29)

The number of different possible semi–magic squares Hn(r) is given by [14, 16,
17]

H1(r) = 1 ,

H2(r) = r + 1 ,

H3(r) = 6 + 15
(

r − 1
1

)
+ 19

(
r − 1

2

)
+ 12

(
r − 1

3

)
+ 3

(
r − 1

4

)

=
1
8

(
r4 + 6 r3 + 15 r2 + 18 r + 8

)

=
1
2

R (R + 1) ,

H4(r) = 24 + 258
(

r − 1
1

)
+ 1468

(
r − 1

2

)
+ 4945

(
r − 1

3

)

+10532
(

r − 1
4

)
+ 14620

(
r − 1

5

)
+ 13232

(
r − 1

6

)

+7544
(

r − 1
7

)
+ 2464

(
r − 1

8

)
+ 352

(
r − 1

9

)
. (30)

where R = (r + 1)(r + 2)/2.
For r = 2 the result is: Hn(2) = {1, 3, 21, 282, · · ·}.
For n = 1 and n = 2 the corresponding semi–magic squares are given by

s2,1 = {(2)} ,
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s2,2 =
{(

2 0
0 2

)
,

(
0 2
2 0

)
,

(
1 1
1 1

)}
. (31)

Since each column and each row represents the same matrix, semi–magic
squares which are related by the permutation of rows and/or columns represent

the same algebraic invariant. For example, for n = 2,
(

2 0
0 2

)
and

(
0 2
2 0

)

are the same invariant. Therefore, semi–magic squares can be classifed into
equivalence classes related by permutations of rows and/or columns. Then,
we need to take care only of the representatives sr,n = {si, i = 1, · · · , pr(n)}
for each equivalence class, where pr(n) is the number of equivalence classes
for rank r and order n. For r = 2 the number of equivalence classes p2(n)
is given by the number of integer partitions of n, that is, p(n). Therefore,
p2(n) = {1, 2, 3, 5, · · ·}. For the first values of n the representatives of each
equivalence class are

s2,1 = {(2)} ,

s2,2 =
{(

2 0
0 2

)
,

(
1 1
1 1

)}
,

s2,3 =








2 0 0
0 2 0
0 0 2


 ,




2 0 0
0 1 1
0 1 1


 ,




0 1 1
1 0 1
1 1 0






 ,

s2,4 =








2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 ,




2 0 0 0
0 2 0 0
0 0 1 1
0 0 1 1


 ,




2 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


 ,




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 ,




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1








. (32)

The algebraic invariants to which each semi–magic square corresponds are
given by

(2) =
〈
ba

〉
,

(
2 0
0 2

)
=

〈
ba

〉2
,

(
1 1
1 1

)
=

〈
(ba)2

〉
,
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


2 0 0
0 2 0
0 0 2


 =

〈
ba

〉3
,




2 0 0
0 1 1
0 1 1


 =

〈
ba

〉 〈
(ba)2

〉
,




0 1 1
1 0 1
1 1 0


 =

〈
(ba)3

〉
,




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 =

〈
ba

〉4
,




2 0 0 0
0 2 0 0
0 0 1 1
0 0 1 1


 =

〈
ba

〉2 〈
(ba)2

〉
,




2 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


 =

〈
ba

〉 〈
(ba)3

〉
,




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 =

〈
(ba)2

〉2
,




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


 =

〈
(ba)4

〉
. (33)

Let us observe that block semi–magic squares can be decomposed in terms
of lower order semi–magic squares as

(
2 0
0 2

)
= (2)2 ,




2 0 0
0 2 0
0 0 2


 = (2)3 ,
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


2 0 0
0 1 1
0 1 1


 = (2)

(
1 1
1 1

)
,




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 = (2)4 ,




2 0 0 0
0 2 0 0
0 0 1 1
0 0 1 1


 = (2)2

(
1 1
1 1

)
,




2 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


 = (2)




0 1 1
1 0 1
1 1 0


 ,




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 =

(
1 1
1 1

)2

. (34)

3.2. Graphical construction of invariants. Each semi–magic square de-
termines an algebraic invariant. On the other hand, semi–magic squares are
obtained by considering all possible permutations of indices. However, for large
values of n this algorithm becomes unpractical. In order to avoid this difficulty
we now develop a graphical algorithm for the construction and characterization
of algebraic invariants which allows to simplify this task. Let us represent the
matrix a by a vertical grid with two boxes, namely

(35)

The product of n matrices is represented by

· · ·

1 2 n

(36)

Each algebraic invariant is characterized by the way in which indices are con-
tracted. We can always choose to keep fix the indices of the first row and look
at how the indices in the second row are contracted with the indices in the first
row. A void grid indicates that no permutation has been performed

(37)
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A permutation of the indices ith and jth is indicated by

c c

i j

(38)

A double permutation is indicated by

c c c c
(39)

A cyclic permutation is indicated by

c c c
(40)

In this case, however, it is necessary to take into account the sense in which
the permutation is performed. There are 2 possibilities

c c c- - c c c¾ ¾
(41)

When the sense of the permutation is irrelevant we use the right–oriented grid.
The next possibility is

c c c c
(42)

In this case there are 6 possibles senses for the permutation, namely,

c c c c- - - c c c c- -¾
c c c c-¾-

c c c c¾ ¾ ¾ c c c c¾ ¾-
c c c c¾ -¾

(43)

As in the previous case, when the sense of the permutation is irrelevant we use
only the right–oriented grid.

The semi–magic square corresponding to a given grid is obtained as follows.
The number of empty boxes in each column corresponds to the diagonal entries
in the semi–magic square. The lines correspond to the off–diagonal terms. For
example

c c ∼



2 0 0
0 1 1
0 1 1


 . (44)
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The multiplicity is the number of possible ways in which the given permutation
can be performed over the n boxes (indices). The parity is given by the number
of lines for the permutation. For example

c c
= −3




2 0 0
0 1 1
0 1 1


 . (45)

Let us perform the explicit construction of the semi–magic squares and
discriminants for the first values of n. For n = 2 the result is

=
(

2 0
0 2

)
,

c c
= −

(
1 1
1 1

)
.

(46)

For n = 3 the result is

=




2 0 0
0 2 0
0 0 2


 ,

c c
= −3




2 0 0
0 1 1
0 1 1


 ,

c c c- -
= 2




1 1 0
0 1 1
1 0 1


 .

(47)

For n = 4 the result is

=




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 ,

c c
= −6




2 0 0 0
0 2 0 0
0 0 1 1
0 0 1 1


 ,

c c c c
= 3




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 ,

c c c- -
= 8




2 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1


 ,
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c c c c- - -
= −6




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


 . (48)

The number of semi–magic squares depends on the number of possible per-
mutations. For large values of n and r this counting becomes quite involved.
Therefore, it is advisable to have an easy recipe to obtain the correct counting.

For each order we have a different number of possible permutations Pn. We
can represent them as

P2 = 0− 1 ,

P3 = 0− 3 · 1 + 2 · 2 ,

P4 = 0− 6 · 1 + 3 · 12 + 8 · 2− 6 · 3 ,

P5 = 0− 10 · 1 + 15 · 12 + 20 · 2− 20 · (21)− 30 · 3 + 24 · 4 ,

P6 = 0− 15 · 1 + 45 · 12 − 15 · 13 + 40 · 2− 120 · (21)
+40 · 22 − 90 · 3 + 90 · (31) + 144 · 4− 120 · 5 . (49)

The number of terms involving some given permutations is given by the coeffi-
cients in (49). This can be easily verified in the graphical construction above.

4. Hyper–matrices. The fourth–rank case

There is not a natural multiplication operation for hyper–matrices in the sense
that the product of two hyper–matrices be again a hyper–matrix of the same
rank. Therefore, the construction of algebraic invariants must be performed
using the semi–magic square technique developed above. This algorithm can
be easily extended to hyper–matrices of any arbitrary even–rank r.

Our construction is based on alternating products. To this purpose let us
consider a fourth–rank matrix A with components Aijkl and a fourth–rank
matrix B with components Bijkl. The discriminants are represented by semi–
magic squares of rank 4. They are constructed using the graphical algorithm
of the section above.
4.1. Alternating products and discriminants. In analogy with (9), for a
fourth–rank matrix A with componentes Aijkl we can define

det(A) =
1
d!

εi1···id · · · εl1···ld Ai1j1k1l1 · · · Aidjdkdld . (50)

Let us denote A = det(A). In analogy with (10) we define

A−1 =
1
A

∂A

∂A
. (51)
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In term of components

Aijkl =
1
A

∂A

∂Aijkl
. (52)

Then

Aijkl =
1

(d− 1)!
1
A

εii1···i(d−1) · · · εll1···l(d−1)

×Ai1j1k1l1 · · · Ai(d−1)j(d−1)k(d−1)l(d−1) . (53)

This hyper–matrix satisfies

Aik1k2k3 Ajk1k2k3 = δi
j . (54)

The definitions (50) and (52–54) were used in previous works [18, 19, 20, 21]
concerning the applications of fourth–rank geometry to the formulation of an
alternative theory for the gravitational field.

As an example of the relation above let us consider the simple case d = 2.
The determinant (50) is then given by

A = A1111 A2222 − 4 A1112 A1222 + 3 A2
1122 . (55)

The components of the hyper–matrix Aijkl are given by

A1111 =
1
A

A2222 ,

A1112 = − 1
A

A1222 ,

A1122 =
1
A

A1122 . (56)

and similar expressions for the other components. In order to check the validity
of eq. (56) let us consider the cases 11 and 12. We can then verify that

A1ijk A1ijk = 1 ,

A1ijk A2ijk = 0 , (57)

and similar relations for the other indices.
The determinant for a fourth–rank matrix B with components Bijkl is given

by

det(B) =
1
d!

εi1···id
· · · εl1···ld Bi1j1k1l1 · · · Bidjdkdld . (58)

Let us now consider a fourth–rank matrix B with components Bijkl. In a
way similar to (17) we define

Qi1j1k1l1···isjsksls
s (B) =

1
s!

B|[i1j1k1l1 · · · Bisjsksls]| . (59)
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For the first values of s we obtain

Qijkl
1 (B) = Bijkl ,

Qi1j1k1l1i2j2k2l2
2 (B) =

1
2

[Bi1j1k1l1 Bi2j2k2l2 − (Bi1j1k1l2 Bi2j2k2l1

+Bi1j1k2l1 Bi2j2k1l2 + Bi1j2k1l1 Bi2j1k2l2 (60)
+Bi2j1k1l1 Bi1j2k2l2) + (Bi1j1k2l2 Bi2j2k1l1

+Bi1j2k1l2 Bi2j1k2l1 + Bi2j1k1l2 Bi1j2k2l1)] ,

etc. Let us observe that

Qi1j1k1l1···idjdkdld
d (B) =

1
d!

B|[i1j1k1l1 · · · Bidjdkdld]| (61)

= det(B)
1
d!

εi1···id · · · εl1···ld .

Then, the B–discriminants of A are defined by

CB
s (A) = Qi1j1k1l1···isjsksls

s (B) Ai1j1k1l1 · · · Aisjsksls . (62)

For s = 2 we obtain

CB
2 (A) =

1
2

[
(Bijkl Aijkl)2 − 4 Bijkl Ajklm Bmnpq Anpqi (63)

+3 Bijkl Aklmn Bmnpq Apqij

]
.

For s > 3 the corresponding expressions are too long to be exhibited here.
Instead we will determine the B–discriminants with semi–magic squares.

In analogy with (23) we obtain

CB
d (A = det(B) det(A) . (64)

Let us denote CB
d (A) simply as AB ; then AB = A ·B. If A 6= 0 and B 6= 0, we

obtain
1

AB

∂AB

∂A
=

1
A

∂A

∂A
. (65)

Therefore

A−1 =
1
A

∂A

∂A
=

1
AB

∂AB

∂A
. (66)

This is the statement of the Cayley–Hamilton theorem for hyper–matrices. For
s = 2 we have

(Bijkl Aijkl) Aabcd − 4 A(a|ijk Bijkl Al|bcd)

+3A(ab|ij Bijkl Akl|cd) − CB
2 (A) (B−1)abcd ≡ 0 . (67)
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If we now choose B = A−1, that is B−1 = A, the above expression reduces to

A(ab|ij Aijkl Akl|cd) −
1
2

(A(mn|ij Aijkl Akl|pq) Amnpq)Aabcd ≡ 0 . (68)

4.2. Semi–magic squares. The algebraic invariants which can be con-
structed in this case are given by the semi–magic squares of rank 4. Their
number is Hn(4) = {1, 5, 120, 7558, · · ·}. As for the second–rank case we must
take care only of the representatives for each equivalence class. The number of
equivalence classes p4(n) is given by the generating function

∞∑
n=0

p4(n)xn =
∞∏

n=1

1
(1− xn)n!

, (69)

For the first values of n p4(n) is given by

p4(n) = {1, 1, 3, 9, 36, · · ·} . (70)

4.3. Construction of discriminants. Each semi–magic square determines
an algebraic invariant. However, in this case, the corresponding invariant can
no longer be represented by mean of traces, as was done for ordinary matrices.
The semi–magic squares of order 1 and 2 correspond to the following invariants

(4) = Bijkl Aijkl ,(
4 0
0 4

)
=

(
Bijkl Aijkl

)2
,

(
3 1
1 3

)
= Bi1j1k1l1 Al1i2j2k2 Bi2j2k2l2 Al2i1j1k1 ,

(
2 2
2 2

)
= Bi1j1k1l1 Ak1l1i2j2 Bi2j2k2l2 Ak2l2i1j1 . (71)

It is obvious from the expressions above that semi–magic squares are more
practical for representing algebraic invariants.

The corresponding discriminants are linear combinations of the monomial
algebraic invariants (semi–magic squares) of the same order. In order to deter-
mine the coefficients of this linear combination we proceed in a way similar to
that for ordinary matrices. The hyper–matrices can be contracted according to
the allowed number of possible permutations. The possible permutations are
the same as described in Section 3.2. However, this time there are three addi-
tions involved. It is obvious that the number of terms which must be computed
growth very fast, as (n!)r−1. Therefore, even when this algorithm provides a
direct answer, a more practical way to evaluate the coefficients is necessary.
Then we must consider the graphical algorithm developed in Section 3.2.
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4.4. The Cayley–Hamilton theorem. Let us write the Cayley–Hamilton
theorem in terms of almost–magic rectangles. For the first values of d we obtain

(
4 0
0 4

)
− 4

(
3 1
1 3

)
+ 3

(
2 2
2 2

)
− CB

2 (A)B−1 ≡ 0 ,

1
2







4 0 0
0 4 0
0 0 4


− 4




3 1 0
1 3 0
0 0 4


 + 3




2 2 0
2 2 0
0 0 4







− 4




4 0 0
0 3 1
0 1 3


 + 3




4 0 0
0 2 2
0 2 2


 + 4




3 1 0
0 3 1
1 0 3




+ 6




3 0 1
0 3 1
1 1 2


 + 12




3 1 0
1 2 1
0 1 3


− 12




3 1 0
1 1 2
0 2 2




−12




3 0 1
1 2 1
0 2 2


 + 3




2 2 0
2 0 2
0 2 2


− 12




2 2 0
2 1 1
0 1 3




+ 6




2 2 0
1 1 2
1 1 2


 + 12




2 1 1
2 1 1
0 2 2


− 6




2 1 1
1 2 1
1 1 2




−CB
3 (A)B−1 ≡ 0 . (72)

The above is the Cayley–Hamilton theorem for fourth–rank matrices.

5. Concluding remarks

We have developed an algorithm to construct algebraic invariants for hyper–
matrices. We constructed hyper–determinants and exhibit an extension of the
Cayley–Hamilton theorem to hyper–matrices.

These algebraic invariants were considered by Cayley [6]; see [8, 9] for an
updated account.

Higher–rank tensors look similar to hyper–matrices and the results pre-
sented here are a first step for the construction of algebraic invariants for
higher–rank tensors. Higher–rank tensors appear in several contexts such as in
Finsler geometry [4, 15], fourth–rank gravity [18, 19, 20, 21], dual models for
higher spin gauge fields [10, 11, 12].
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